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Abstract We propose a more efficient version of the slice
sampler for Dirichlet process mixture models described by
Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007).
This new sampler allows for the fitting of infinite mixture
models with a wide-range of prior specifications. To illus-
trate this flexibility we consider priors defined through in-
finite sequences of independent positive random variables.
Two applications are considered: density estimation using
mixture models and hazard function estimation. In each case
we show how the slice efficient sampler can be applied
to make inference in the models. In the mixture case, two
submodels are studied in detail. The first one assumes that
the positive random variables are Gamma distributed and
the second assumes that they are inverse-Gaussian distrib-
uted. Both priors have two hyperparameters and we consider
their effect on the prior distribution of the number of occu-
pied clusters in a sample. Extensive computational compar-
isons with alternative “conditional” simulation techniques
for mixture models using the standard Dirichlet process
prior and our new priors are made. The properties of the
new priors are illustrated on a density estimation problem.

Keywords Dirichlet process · Markov chain Monte Carlo ·
Mixture model · Normalized weights · Slice sampler ·
Hazard function

M. Kalli
Centre for Health Services Studies, University of Kent,
Canterbury, UK

J.E. Griffin (�) · S.G. Walker
Institute of Mathematics, Statistics & Actuarial Science,
University of Kent, Canterbury, UK
e-mail: jeg28@kent.ac.uk

1 Introduction

The well-known and widely used mixture of Dirichlet
process (MDP) model was first introduced by Lo (1984).
The MDP model, with Gaussian kernel, is given by

fP (y) =
∫

N(y;μ,σ 2)dP(φ)

with P ∼ D(M,P0). We write P ∼ D(M,P0) to denote that
P follows a Dirichlet process (Ferguson 1973) with parame-
ters M > 0, the scale parameter, and P0, a distribution on
R × R+ where φ = (μ,σ 2) with μ to represent the mean
and σ 2 the variance of the normal component. Since the ad-
vent of Markov chain Monte Carlo methods within the main-
stream statistics literature (Smith and Roberts 1993), and the
specific application to the MDP model (Escobar 1988, 1994;
Escobar and West 1995), the model has become one of the
most popular in Bayesian nonparametrics since it is possible
to integrate P from the posterior defined by this model.

Variations of the original algorithm of Escobar (1988)
have been numerous; for example, MacEachern (1994),
MacEachern and Müller (1998), Neal (2000). All of these
algorithms rely on integrating out the random distribution
function from the model, removing the infinite dimensional
problem. These are usually referred to as “marginal” meth-
ods. Recent ideas have left the infinite dimensional distri-
bution in the model and found ways of sampling a suffi-
cient but finite number of variables at each iteration of a
Markov chain with the correct stationary distribution. See
Ishwaran and James (2000), who propose an approximate
method, Papaspiliopoulos and Roberts (2008) and Walker
(2007); the latter paper using slice sampling ideas. These
define so-called “conditional” methods.

There has recently been interest in defining nonparamet-
ric priors for P that move beyond the Dirichlet process (see
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e.g. Lijoi et al. 2007) in infinite mixture models. These al-
ternative priors allow for more control over the prior clus-
ter structure than is possible with the Dirichlet process. The
availability of general computational methods allows the de-
velopment of these priors without the need to develop spe-
cific computational methods on a case-by-case basis.

The purpose of this paper is: (1) to develop more ef-
ficient versions of the slice sampling algorithm for MDP
models proposed by Walker (2007) and to extend it to more
general nonparametric priors such as general stick-breaking
processes and normalised weights priors, (2) to develop a
new class of nonparametric priors for infinite mixture mod-
els by normalizing an infinite sequence of positive random
variables, which will be termed a normalized weights prior
and (3) to illustrate how slice sampling ideas can be applied
to more general applications such as survival analysis. The
lay-out of the paper is as follows. In Sect. 2 we describe
the slice-efficient sampler for the MDP model. Section 3
describes the normalized weights prior and discusses con-
structing a slice sampler for infinite mixture models with this
prior. Section 4 discusses an application of the normalized
weights prior to modeling the hazard in survival analysis and
Sect. 5 contains numerical illustrations. Finally, Sect. 6 con-
tains conclusions and a discussion.

2 Slice-efficient samplers for the MDP

It is well-known that P ∼ D(M,P0) has a stick-breaking
representation (Sethuraman 1994) given by

P =
∞∑

j=1

wjδφj
,

where φ1, φ2, φ3, . . . are independent and identically distrib-
uted from P0 and

w1 = v1, wj = vj

∏
l<j

(1 − vl)

with the (vj ) being independent and identically distributed
from Be(1,M) where Be(a, b) represents the Beta distrib-
ution with parameters a and b. It is possible to integrate P

from the posterior defined by the MDP model. However, the
stick-breaking representation is essential to estimation via
the non-marginal methods of Papaspiliopoulos and Roberts
(2008) and Walker (2007). The idea is that we can write

fv,μ,σ 2(y) =
∞∑

j=1

wj N(y;μj ,σ
2
j )

and the key is to find exactly which (finite number of) vari-
ables need to be sampled to produce a valid Markov chain
with correct stationary distribution.

The details of the slice sampler algorithm are given in
Walker (2007), but we briefly describe the basis for the al-
gorithm here. Our starting point is the joint density

fv,μ,σ 2(y,u) =
∞∑

j=1

1(u < wj )N(y;μj ,σ
2
j ).

Given u, the number of components is finite, the indices be-
ing Au = {j : wj > u}. One has

fv,μ,σ 2(y|u) = N−1
u

∑
j∈Au

N(y;μj ,σ
2
j ),

and the size of Au is
∑∞

j=1 1(wj > u) while Nu =∑
j∈Au

wj .
One can then introduce a further latent variable which in-

dicates which of these finite number of components provides
the observation to give the joint density

fv,μ,σ 2(y,u, d) = 1(u < wd)N(y;μd,σ 2
d ).

Hence, a complete likelihood function for (v,μ,σ 2) is
available as a simple product of terms and crucially d is
finite. Without u, d can take an infinite number of values
which would make the implementation of a Markov chain
Monte Carlo algorithm problematic.

The joint posterior distribution is proportional to

n∏
i=1

1(ui < wdi
)N(yi;μdi

, σ 2
di

)

and this allows a simple Gibbs sampling scheme for the pos-
terior to be derived, which is given in Walker (2007). There
are several problems with this algorithm. Firstly, it will of-
ten mix slowly due to the correlation between u and w. Sec-
ondly, updating u can lead to changes in the set

⋃n
i=1 A(ui)

which can lead to the simulation of more w’s. As we shall
see in the normalized weights section, simulating these val-
ues can involve some additional work. The first problem can
be addressed by a suitable blocking structure for the Gibbs
sampler, which was independently noted by Papaspiliopou-
los (2008). The second problem can be addressed by a more
general approach to slice sampling.

A general class of slice sampler can be defined by writing

fv,μ,σ 2(y,u, d) = ξ−1
d 1(u < ξd)wdN(y;μd,σ 2

d )

where ξ1, ξ2, ξ3, . . . is any positive sequence. Previous im-
plementations of slice sampler (see e.g. Walker 2007; Pa-
paspiliopoulos 2008; Dunson 2008 and Yau et al. 2008) arise
when ξj = wj . Typically, the sequence will be a determinis-
tic, decreasing sequence but a random sequence could also
be considered. The choice of ξ1, ξ2, ξ3, . . . is a delicate issue
and any choice has to balance efficiency and computational
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time. We find that mixing depends on the rate at which the
ratio ri = E[wi]/ξi increases with i. Faster rates of increase
are associated with better mixing but longer running times,
since the average size of Au increases. We suggest increas-
ing the rate of increase of ri until the gains in mixing are
counter-balanced by the longer running time. In our exam-
ples, we find that ri ∝ (1.5)i strikes a good balance.

The variables that need to be sampled at each sweep of a
Gibbs sampler are

{(μj , σ
2
j , vj ), j = 1,2, . . . ; (di, ui), i = 1, . . . , n}

and the joint posterior distribution is proportional to

n∏
i=1

1(ui < ξdi
)wdi

/ξdi
N(yi;μdi

, σ 2
di

).

If ξ and v are conditionally independent then our Gibbs sam-
pler is

1. π(μj ,σ
2
j | · · ·) ∝ p0(μj , σ

2
j )

∏
di=j N(yi;μj ,σ

2
j ).

2. π(vj ) ∝ Be(vj ;aj , bj ), where

aj = 1 +
n∑

i=1

1(di = j)

and

bj = M +
n∑

i=1

1(di > j).

3. π(ui | · · ·) ∝ 1(0 < ui < ξdi
).

4. P(di = k| · · ·) ∝ 1(k : ξk > ui)wk/ξkN(yi;μk,σ
2
k ).

This naturally defines a blocking scheme for u and v

which are conditionally independent. If ξj = wj then we can
also define a blocking scheme by jointly updating u and v

which leads to the algorithm above.
Obviously, we can not sample all of the (μj , σ

2
j , vj ). But

it is not required to in order to proceed with the chain. We
only need to sample up to the integer N for which we have
found all the appropriate k in order to do step 4 exactly. In
fact it is easy to find the set of (k) required since it will be
of the kind {1, . . . ,N} where N = maxi{Ni} and Ni is the
largest integer l for which ξl > ui . This can often be found
analytically for suitable choice of ξl . If we take ξj = wj ,
as in Papaspiliopoulos (2008), it is sufficient to find an Ni

such that
∑Ni

k=1 wk > 1 − ui then it is not possible for any
wk , for k > Ni , to be greater than ui . This search is more
cumbersome since it can only be checked by simulation.

There are some important points to make here. First, it is
a trivial extension to consider more general stick-breaking
processes for which vj ∼ Be(αj ,βj ) independently. Then,
in this case, we would have

aj = αj +
n∑

i=1

1(di = j)

and

bj = βj +
n∑

i=1

1(di > j).

This easy extension to more general priors is not a feature
of alternative, marginal sampling algorithms. Secondly, the
algorithm is remarkably simple to implement; all full condi-
tionals are standard. Thirdly, further levels of a hierarchical
model can be updated using the model marginalising over
u1, u2, . . . , un and will have the same form as for the block
sampler of Ishwaran and James (2001), with the exception
of a random truncation point.

Later, for the illustrations and comparison with the other
‘conditional’ algorithms, namely the blocked Gibbs sam-
pler (Ishwaran and James 2001) and the retrospective sam-
pler (Papaspiliopoulos and Roberts 2008), we will consider
three types of slice sampler. The original “slice“ algorithm
appearing in Walker (2007), a “dependent slice-efficient”
with ξj = wj and an “independent slice-efficient” where
ξ1, ξ2, ξ3, . . . is a deterministic sequence.

The retrospective sampler (Papaspiliopoulos and Roberts
2008) is an alternative, conditional method which defines
a Markov chain with the correct posterior for the infinite
dimensional model. The difference between this approach
and our slice sampling approach rests on the way that the
allocation variables di are sampled. Our approach uses a
slice variable to make the choice of di finite at each itera-
tion of a Gibbs, whereas the retrospective sampler proposes
a new value of di in a Metropolis-Hastings update where the
proposal is cleverly chosen to define an efficient algorithm.
From a computational point of view, the retrospective sam-
pler involves the potential simulation of extra variables n

time per iteration (once for every update of each di ) whereas
the slice sampler only generates extra variables once per it-
eration.

3 Mixtures based on normalized weights

3.1 Definition and properties

The slice sampling idea can be extended to mixture mod-
els with weights obtained via normalization. The Dirichlet
process has been the dominant prior in nonparametrics but
the definition of alternative nonparametric priors has been a
recent area of interest. For example, Lijoi et al. (2007) de-
fine nonparametric priors through the normalization of the
generalized Gamma process to define an NGG prior. The
generalized Gamma process is a Lévy process and so has
independent and identically distributed jumps. We discuss
an alternative construction using the normalization of an in-
finite sequence of positive random variables. These play the



96 Stat Comput (2011) 21: 93–105

same role as the jumps in the construction of the NGG but
are no longer identically distributed. We consider

f (y) =
∞∑

j=1

wjK(y;φj )

where wj = λj/
, 
 = ∑∞
j=1 λj and φ1, φ2, φ3, . . . are in-

dependent and identically distributed with distribution P0.
We will also use 
m = ∑∞

j=m+1 λj . Here the λ1, λ2, λ3, . . .

are positive and will be assigned independent prior distribu-
tions, say λj ∼ πj (λj ). These must be constructed so as to
ensure that 
 < +∞ a.s. which is easy to achieve by ensur-
ing that

∑
j E(λj ) < +∞. Since E(λj ) is our choice, we can

obviously pick these so the sum is finite. If this sum is finite
then it is easy to show that

∑∞
j=1 λj < +∞ a.s. We sug-

gest defining specific priors by defining E(λj ) = Mqj where
M > 0 and q1, q2, q3, . . . are probabilities from a known
probability distribution. For example, if they follow a geo-
metric distribution, then

qj = (1 − θ)θj−1.

The parameter θ controls the rate at which E(λj ) tends to
zero. We have defined a nonparametric prior with two para-

meters θ and M . As we will see in the following examples,
the choice of the distributions (πj ) controls the properties of
the process. So we would not necessarily wish for the (qj )

to decay too slowly ensuring we do not put too much mass
on large integers. Hyperpriors for (θ,M) can be assigned
though we do not consider that here.

Example 1 (Gamma distribution) Here we take the (λj ) to
be independent gamma distributions, say λj ∼ Ga(γj ,1). To
ensure that 
 < +∞ a.s. we take

∑∞
j=1 γj < +∞. Clearly,

wj has expectation qj and variance qj (1 − qj )/(M + 1),
since marginally wj ∼ Be(Mqj ,M(1 − qj )). We can inter-
pret M as a mass parameter. We will refer to this model as an
infinite Dirichlet prior since if we have a finite number of un-
normalized weights (λ1, λ2, . . . , λN) then (w1,w2, . . . ,wN)

would be Dirichlet distributed. In infinite mixture models,
the prior distribution on the number of clusters from n ob-
servations is important. Figure 1 shows this distribution for
n = 30. Larger values of θ for fixed M place more mass
on larger numbers of clusters (as we would expect since the
weights decay increasingly slowly with larger θ ). The mass
parameter M also plays an important role. Larger values of
M lead to more dispersed distributions with a larger median
value.

Fig. 1 Prior distribution of the number of clusters from 30 observations with the infinite Dirichlet prior
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Fig. 2 Prior distribution of the number of clusters from 30 observations for the infinite normalized inverse-Gaussian prior

Stick-breaking priors were introduced to Bayesian non-
parametrics by Ishwaran and James (2001). They are defined
by two infinite vectors of parameters. Clearly, there is a need
to develop priors within this class that have a few hyper-
parameters to allow easy prior specification. The Dirichlet
process and Poisson-Dirichlet process are two such priors
and the infinite Dirichlet prior represents another. The stick-
breaking representation of the infinite Dirichlet prior takes
αj = Mqj and βj = M(1 − ∑j

i=1 qi).

Example 2 (Inverse-Gaussian distribution) The inverse-
Gaussian distribution, IG(α, γ ), has a density function given
by

π(λ) = α√
2π

λ−3/2 exp

{
−1

2

(
α2

λ
+ η2λ

)
+ ηα

}
,

where α and η can be interpreted as a shape and a scale
parameter, respectively. We take λj to follow independent
IG(γj ,1) distributions. Then 
m = ∑∞

j=m+1 λj is distrib-
uted as IG(

∑∞
j=m+1 γj ,1) and the normalization is well-

defined if
∑∞

j=1 γj < +∞ which implies that 
 is al-
most surely finite. The finite dimensional normalized dis-
tribution (λ1/
,λ2/
, . . . , λm/
) has been studied by Li-

joi et al. (2005) as the normalized inverse-Gaussian distri-
bution. We again define γj = Mqj and it follows directly
from their results that wi has expectation qi and variance
qi(1 − qi)M

2 exp{M}�(−2,M). This prior will be referred
to as the infinite normalized inverse-Gaussian prior. Figure 2
shows the prior distribution of the number of clusters in 30
observations. The effects of M and θ follow the same pat-
tern as the infinite Dirichlet case discussed above. However,
the effect of M is less marked for small M . In the infinite
Dirichlet case for M = 0.1, the distributions are almost in-
distinguishable for different values of θ but in this case it is
clear that the location of the distribution is increasing with θ .

3.2 Slice sampler

The model can be fitted using an extension of the slice sam-
pler developed in Sect. 2. We will assume that the distribu-
tion of 
m has a known form for all m, which we will de-
note by π�

m(
m). We introduce the additional latent variable
v, we consider the joint density

f (y, v,u, d) = exp(−v
)1(u < ξd)λd/ξdK(y;φd).
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Clearly the marginal density is

f (y, d) = λd



K(y;φd).

The likelihood function based on a sample of size n is given
by

n∏
i=1

exp(−vi
)1(ui < ξdi
)λdi

/ξdi
K(yi;φdi

).

It is simpler to deal with the posterior replacing v1, v2, . . . ,

vn by v = ∑n
i=1 vi which has the form

vn−1 exp(−v
)

n∏
i=1

1(ui < ξdi
)λdi

/ξdi
K(yi;φdi

).

We describe two algorithms: (1) a dependent slice-efficient
sampler where ξj = λj and (2) the independent slice-
efficient sampler where ξj and λj are independent.

In the dependent slice-efficient sampler the full condi-
tional distributions of ui , v and φj are trivial. The distribu-
tion of di is also trivial. Complications arise when we try to
find the number of λj ’s (and also φj ’s) to be sampled in or-
der to implement the sampling of di . The non-trivial aspect
of the algorithm is the sampling of the sufficient number of
{λj }. We simulate λ1, . . . , λm,
m (where m is the number
of atoms given in the previous iteration) in a block from their
full conditional distribution which is proportional to

exp{−v
m}π�
m(
m)

m∏
j=1

exp{−vλj }λnj

j πj (λj ),

where nj = ∑n
i=1 1(di = j). We need to find the small-

est value of m′ for which 
m′ < mini{ui} so that we can
evaluate the full conditional distribution of di . This value
can be found by sequentially simulating [λj ,
j |
j−1]
for j = m + 1, . . . ,m′. The conditional distribution of
[λj = x,
j = 
j−1 − x|
j−1] is given by

f (x) ∝ πj (x)π�
j (
j−1 − x),

0 < x < 
j−1.

In some cases simulation from the distribution will be
straightforward. If not, generic univariate simulation meth-
ods such as Adaptive Rejection Metropolis Sampling (Gilks
et al. 1995) can be employed. The algorithm is

1. π(μj ,σ
2
j | · · ·) ∝ p0(μj , σ

2
j )

∏
di=j N(yi;μj ,σ

2
j ).

2. π(λj ) ∝ λ
nj

j exp{−vλj } and π(
m) ∝ exp{−v
}
× π�(
m).

3. π(ui | · · ·) ∝ 1(0 < ui < ξdi
).

4. P(di = k| · · ·) ∝ 1(k : ξk > ui)wk/ξkN(yi;μk,σ
2
k ).

5. v is Gamma distributed with shape parameter n − 1 and
mean (n − 1)/(
m + ∑m

i=1 λi).

In these models, the dependent slice efficient sampler
(and retrospective sampler) can be difficult to implement
since we need to simulate λj conditional on 
j−1. The rea-
son for conditioning is that we need 
j to update v and
to check which components to include in each full condi-
tional for di . In the independent slice-efficient sampler, we
do not need 
m to find which elements to include in the full
conditional of di and we can integrate 
m from the model
and update v using this marginalized version of the posterior
distribution. That is the full conditional distribution of v is
proportional to

E[exp {−v
m}]vn−1 exp

⎧⎨
⎩−v

m∑
j=1

λj

⎫⎬
⎭ .

Since E[exp{−v
m}] is the moment generating function of

m, it’s form will often be available analytically. An impor-
tant advantage of this approach is that we can simulate λm+1

from its unconditional distribution.

1. π(μj ,σ
2
j | · · ·) ∝ p0(μj , σ

2
j )

∏
di=j N(yi;μj ,σ

2
j ).

2. π(λj ) ∝ λ
nj

j exp{−vλj }.
3. π(ui | · · ·) ∝ 1(0 < ui < ξdi

).
4. P(di = k| · · ·) ∝ 1(k : ξk > ui)wk/ξkN(yi;μk,σ

2
k ).

5. π(v) ∝ E[exp{−v
m}]vn−1 exp{−v
∑m

i=1 λi} which is a
univariate distribution and can be updated using standard
methods.

We now consider a couple of examples.

Example 1 (Gamma distribution) The non-standard ele-
ment of the sampler is simulating λj |
j−1. In this case
the simulation is simple since ηj = λj/
j−1|
j−1 ∼
Be(γj ,

∑∞
i=j+1 γi). We simulate ηj ∼ Be(γj ,

∑∞
i=j+1 γi)

and set λj = ηj
j−1 and 
j = (1 − ηj−1)
j−1.

Example 2 (Inverse-Gaussian distribution) The full condi-
tional distribution of λj is given by

π(λj | · · ·) ∝ λ
nj −3/2
j exp

{
−1

2

(
γ 2
j

λj

+ (1 + 2v)λj

)}
,

where nj is the number of observations allocated to com-
ponent j . The full conditional distribution of 
m is propor-
tional to



−3/2
m exp

{
−1

2

(
(
∑∞

i=m+1 γi)
2

λj

+ (1 + 2v)λj

)}
.

These are both generalized inverse-Gaussian distributions
which can be simulated directly; see e.g. Devroye (1986).

We can simulate from λj |
j−1 by defining λj = ηj
j−1

and 
j = (1 − ηj )
j−1 where the density of ηj is given by

g(ηj ) ∝ η
−3/2
j (1 − ηj )

−3/2
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× exp

{
−1

2

[
γ 2
j


j−1ηj

+ (
∑∞

i=j+1 γi)
2


j−1(1 − ηj )

]}
.

Unlike the gamma case, this conditional distribution de-
pends on 
j−1. The distribution of ηj/(1−ηj ) can be iden-
tified as a two-mixture of generalized inverse-Gaussian dis-
tributions and hence can be sampled easily (details are given
in the Appendix).

4 Hazard functions

Another model which has a similar form of posterior to the
normalized mixture models arises in the modeling of ran-
dom hazard functions. Suppose we model the unknown haz-
ard function h(t), for t > 0, using a set of known functions
{hk(t)}∞k=1, via

h(t) =
∞∑

k=1

λkhk(t).

Here the {λk > 0} are the model parameters and can be
assigned independent gamma prior distributions; say λk ∼
Ga(ak, bk). Obviously we will need to select (ak, bk) to en-
sure that h(t) < +∞ a.s. for all t < +∞. The corresponding
density function is given by

f (t) =
∞∑

k=1

λkhk(t) exp

{
−

∞∑
k=1

λkHk(t)

}
,

where Hk is the cumulative hazard corresponding to hk .
So with observations {ti}ni=1, the likelihood function is

given by

l(λ|t) ∝
n∏

i=1

[ ∞∑
k=1

λkhk(ti) exp

{
−

∞∑
k=1

λkHk(ti)

}]
.

Our approach is based on the introduction of a latent vari-
able, say u, so that we consider the joint density with t given
by

f (t, u) =
∞∑

k=1

1(u < ξk)λk/ξkhk(t)

× exp

{
−

∞∑
k=1

λkHk(t)

}
.

A further latent variable d picks out the mixture component
from which (t, u) come,

f (t, u, d) = 1(u < ξd)λd/ξdhd(t)

× exp

{
−

∞∑
k=1

λkHk(t)

}
.

We will now introduce the key latent variables, one for each
observation, and label them (ui, di), into the likelihood,
which is given by

l(λ|t, u, d) ∝
n∏

i=1

1(ui < ξdi
)λdi

/ξdi
hdi

(ti )

× exp

{
−

∞∑
k=1

λkHk(ti)

}
.

The point is that the choice of di is finite. It is now clear
that the sampling algorithm for this model is basically the
same now as for the normalized case. We could take the
λj to be gamma with parameters aj + ∑

di=j 1 and bj +∑
di=j Hj (ti) and we would first sample up to M = maxi di .

Then the ui are from Un(0, ξdi
). In order to sample the di we

need to find all the ξj greater than ui which is trivial to do.

5 Illustration and comparisons

In this section we carry out a comparison of the slice sam-
pling algorithms with the retrospective sampler and the
blocked Gibbs sampler (Ishwaran and James 2001) with the
Dirichlet process and a comparison between the slice sam-
pler algorithms and retrospective sampler for the normalized
weights prior. We also consider inference for the normalized
weights prior mixture model applied to the galaxy data and
the hazard function model.

5.1 Algorithmic performance for mixture models

To monitor the performance of the algorithms we look at the
convergence of two quantities:

• The number of clusters: at each iteration there are j =
1, . . . ,N clusters of the i = 1, . . . , n data points with mj

being the size of the j cluster, so that
∑N

j=1 mj = n.
• The deviance, D, of the estimated density, calculated as

D = −2
n∑

i=1

log

⎛
⎝∑

j

mj

n
K(yi |φj )

⎞
⎠ .

These variables have been used in the previous comparison
studies of Papaspiliopoulos and Roberts (2008), Green and
Richardson (2001) and Neal (2000). Here D is one of the
most common functionals used in comparing algorithms,
because it is seen as a global function of all model para-
meters. Although we concentrate on this variable and study
its algorithmic performance we are also concerned with the
convergence of the number of clusters.

The efficiency of the algorithms is summarized by com-
puting an estimate τ̂ of the integrated autocorrelation time,
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τ , for each of the variables. Integrated autocorrelation time
is defined by Sokal (1997) as

τ = 1

2
+

∞∑
l=1

ρl,

where ρl is the autocorrelation at lag l. An estimate of τ has
been used in Papaspiliopoulos and Roberts (2008), Green
and Richardson (2001) and Neal (2000). Integrated autocor-
relation time is of interest as it controls the statistical error in
Monte Carlo measurements of a desired function f . To clar-
ify this point, consider the Monte Carlo sample estimate, f̄ .
The variance of f̄ (Sokal 1997) is

Var(f̄ ) ≈ 1

M
2τ × V,

where V is the marginal variance of f and M is the num-
ber of iterations. This variance is a factor of 2τ larger than
the variance when the samples are independent. Therefore a
run of M iterations contains only M/(2τ) “effectively inde-
pendent data points”. This means that the algorithm with the
smallest estimated value of τ will be the most efficient. The
problem with the calculation of τ lies in accurately estimat-
ing the covariance between the states, which in turn is used
to calculate the autocorrelation ρl . Sokal (1997) suggests the
estimator

τ̂ = 1

2
+

C−1∑
l=1

ρ̂l

for τ where ρ̂l is the estimated autocorrelation at lag l (ob-
tained via MatLab) and C is a cut-off point. In our compar-
isons we define, as is commonly done,

C = min
{
l : |ρ̂l | < 2/

√
M

}
.

Then C is the smallest lag for which we would not reject
the null hypothesis H0 : ρl = 0. A similar approach has also
been used in Papaspiliopoulos (2008). According to Sokal
(1997), this approach works well when a sufficient quan-
tity of data is available which we can control by running the
sampler for a sufficient number of iterations.

The algorithms are compared using the normal kernel
K(y|φ) with components φ = (μ,σ 2), and P0(μ,σ−2) =
N(μ|μ0, σ

2
0 ) × Ga(σ−2|γ,β). For comparison purposes we

consider a real data set and two simulated data sets. The real
data set is the galaxy data which consist of the velocities of
82 distant galaxies diverging from our own galaxy. This is
the most commonly used data set in density estimation stud-
ies. The simulated data sets are based on the models used in
Green and Richardson (2001) and consist of 100 draws from
a bimodal and a leptokurtic mixture. The bimodal mixture
assumes that f (yi) = 0.5N(−1,0.52) + 0.5N(1,0.52) and
the leptokurtic mixture assumes that f (yi) = 0.67N(0,1)+
0.33N(0.3,0.252). Both of these simulated data sets were
used in the algorithm comparison study carried out in Pa-
paspiliopoulos and Roberts (2008); since we are comparing
our slice sampler with the retrospective sampler, we decided
to use these simulated data sets.

The hyperparameters of P0 are set according to Green
and Richardson (2001). If R is the range of the data; then
we take μ0 = R/2, σ 2

0 = R, γ = 2, and β = 0.2R2. In the
comparison of the estimates of the statistics used, we took
the Monte Carlo sample size to be N = 2,000,000 for each
algorithm, with the initial 10,000 used as a burn in period.

5.1.1 Dirichlet process

In these comparison the precision parameter of the Dirichlet
Process is set at M = 1. We fit a class of independent slice-
efficient samplers by defining ξj = (1 − κ)κj−1. An inter-
esting choice is κ = 0.5 which guarantees that ξj = E[wj ].
However, we also consider alternative choices of κ . The
blocked Gibbs sampler of Ishwaran and James (2001) ap-
proximates the infinite dimensional P by a finite version
which is chosen to ensure that the discrepancy between the
marginal likelihood of the data under the full model and fi-
nite version is less than ε. We consider the values ε = 10−6

and ε = 10−10.
Density estimates using the retrospective and dependent

slice-efficient samplers are shown in Fig. 3. They show a
strong agreement between the estimates using the two sam-
plers as we would expect.

Fig. 3 Predictive densities for the two simulated data sets using the retrospective sampler and dependent slice-efficient sampler
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Table 1 Estimates of the integrated autocorrelation times for the de-
viance (D) and for the number of clusters (K) with the three data sets
with the Dirichlet process mixture model. The algorithms are: original

slice sampler (Slice), dependent slice-efficient (SE dep) and indepen-
dent slice-efficient (SE ind) with various values of κ

Galaxy data Leptokurtic data Bimodal data

τ̂ for K τ̂ for D τ̂ for K τ̂ for D τ̂ for K τ̂ for D

Slice 62.56 20.04 313.52 238.18 334.50 108.72

SE dep 20.08 8.28 65.60 51.60 53.12 21.18

SE ind (κ = 0.3) 65.86 21.86 136.18 78.84 125.40 56.82

SE ind (κ = 0.4) 41.66 16.34 77.86 49.96 76.00 33.48

SE ind (κ = 0.5) 32.36 15.50 56.20 38.54 52.46 26.88

SE ind (κ = 0.6) 24.76 10.22 43.04 30.62 40.48 20.86

SE ind (κ = 0.7) 19.30 8.72 34.64 24.34 39.64 18.42

SE ind (κ = 0.8) 16.56 7.08 30.30 21.38 29.70 15.54

Retrospective 13.04 5.48 26.82 18.10 28.94 13.82

Block Gibbs (ε = 10−6) 13.18 6.06 25.36 18.40 26.54 13.02

Block Gibbs (ε = 10−10) 13.52 5.92 26.92 17.86 25.92 13.00

Table 2 Estimates of the integrated autocorrelation times for the de-
viance (D) and for the number of clusters (K) with the three data
sets fitting the infinite Dirichlet distribution mixture model. The al-

gorithms are: dependent slice-efficient sampler (SE dep), independent
slice-efficient sampler (SE ind) and Retrospective sampler

Galaxy data Leptokurtic data Bimodal data

τ̂ for K τ̂ for D τ̂ for K τ̂ for D τ̂ for K τ̂ for D

SE dep 50.50 23.92 230.22 158.90 127.88 34.06

SE ind (κ = 0.5) 98.60 16.20 99.24 64.04 279.32 83.18

SE ind (κ = 0.6) 94.26 11.58 81.44 51.58 86.00 17.36

SE ind (κ = 0.7) 76.90 7.10 71.82 37.96 63.04 12.72

SE ind (κ = 0.8) 43.34 7.14 59.48 33.72 50.02 10.36

Retrospective 53.74 13.66 96.14 57.76 87.60 16.78

Table 3 Estimates of the integrated autocorrelation times for the de-
viance (D) and for the number of clusters (K) with the three data
sets fitting the infinite normalized inverse-Gaussian distribution mix-

ture model. The algorithms are: dependent slice-efficient sampler (SE
dep), independent slice-efficient sampler (SE ind) and Retrospective
sampler

Galaxy data Leptokurtic data Bimodal data

τ̂ for K τ̂ for D τ̂ for K τ̂ for D τ̂ for K τ̂ for D

SE dep 44.32 17.28 83.40 62.78 68.94 31.08

SE ind (κ = 0.5) 71.12 17.40 53.92 40.02 50.36 20.94

SE ind (κ = 0.6) 45.80 11.92 41.62 31.56 37.98 16.02

SE ind (κ = 0.7) 37.18 9.92 34.70 23.44 36.62 14.30

SE ind (κ = 0.8) 33.06 9.50 31.02 20.86 31.08 12.24

Retrospective 33.32 9.00 54.76 42.54 45.90 18.40

The integrated autocorrelation times for the algorithms
for the three data sets are presented in Table 1. For each data
set we find that the original slice sampler is the least effi-
cient. The dependent slice-efficient sampler is much more
efficient with a reduction in integrated autocorrelation time
of 3 to 6 times. The efficiency of the independent slice-

efficient sampler depends on the value of κ with the inte-
grated autocorrelation time falling as κ increases. The value
of κ makes a big difference with the integrated autocorre-
lation time when κ = 0.3 roughly 4 times the value when
κ = 0.8 for all three data sets. The retrospective sampler is
usually the most efficient but differences between the most
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Fig. 4 Posterior mean density estimates for the galaxy data using the infinite Dirichlet prior with different values of M and θ

efficient slice samplers and these methods are very small.
Even though the retrospective sampler performs marginally
better, the slice-efficient sampler is easier to use as simulat-
ing the v and d is carried out in an easy way, as opposed
to the complexity of the set up of the retrospective sampling
steps.

5.1.2 Mixtures based on normalized weights

We reject the slice sampler and independent slice-efficient
sampler with κ < 0.5 and concentrate on the other methods.
We use the infinite Dirichlet (Table 2) and infinite normal-
ized inverse-Gaussian (Table 3) mixture models with M = 1
and θ = 0.5 on the three data sets. The relative performance
of the samplers for the normalized weights prior is similar
to the relative performance for the Dirichlet process prior.
The retrospective sampler is usually more efficient than the
dependent slice-efficient sampler with a small difference for
the galaxy data set and a much larger difference for the two
simulated data sets. The effect is also more pronounced for
the infinite Dirichlet distribution prior rather than the infinite
normalized inverse-Gaussian prior.

The integrated autocorrelation time for the independent
slice-sampling methods depends on the choice of κ . In
all case, the best independent slice-efficient samplers (for
larger κ) outperforms the dependent slice-efficient and ret-
rospective samplers. It seems that the difference in the al-
gorithm is due to integrating 
m from the model. Standard
MCMC theory would suggest that this will define more effi-
cient samplers (which is supported by the results of Celeux
et al. 2000 for finite mixture models).

5.2 Inference for mixture models with the normalized
weights priors

The galaxy data has been a popular data set in Bayesian
nonparametric modelling and we will illustrate the infinite
Dirichlet and infinite normalized inverse-Gaussian priors on
it. The posterior mean density estimates are shown in Fig. 4
for the infinite Dirichlet prior and Fig. 5 for the infinite
normalized inverse-Gaussian prior. The hyperparameters of
the prior distributions have a clear effect on the posterior
mean estimates. Prior distributions that places more mass
on a small number of components tend to find estimates
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Fig. 5 Posterior mean density estimates for the galaxy data using the infinite normalized inverse-Gaussian prior with different values of M and θ

with three clear modes. As the prior mean number of com-
ponents increases so do the number of modes in the esti-
mate from four to five for the prior within each class that
places most mass on a large number of components (M = 10
and φ = 0.9). However, there are some clear differences be-
tween the two classes of prior. The effects of the two hyper-
parameters on the prior distribution of the number of non-
empty components were more clearly distinguishable in the
infinite normalized inverse-Gaussian prior than the infinite
Dirichlet prior. In the infinite normalized inverse-Gaussian
prior θ controls the mean number of non-empty components
whereas M controls the dispersion around the mean. This
property is carried forward to the posterior mean density
and the number of modes in the posterior mean increases
with θ . For example, when M = 0.1, there are three modes
in the posterior mean if θ = 0.4 whereas there are four when
θ = 0.9. Similarly, larger values of M are associated with
larger variability in the prior mean and favour distributions
which uses a larger number of components. This suggests
that infinite normalized inverse-Gaussian distribution may
be a more easily specified prior distribution than the infinite
Dirichlet prior.

5.3 Inference for hazard functions

This example considers applying the Bayesian nonparamet-
ric model for the hazard function in Sect. 4. We choose the
components of the hazard function hk(t) to have a Weibull
form so that hk(t) = tαk , λk ∼ Ga(M(1 − θ)θk−1,1) and
αk ∼ Ga(2,1/2). The parameter M = 10 and θ = 0.7 which
places most of the prior mass on four to ten components. The
data consists of remission times in weeks of leukemia pa-
tients. There were 21 observed times of which 12 were cen-
sored. Figure 6 shows the posterior median integrated hazard
function with 95% pointwise credible interval and a Kaplan-
Meier estimate. There is clear agreement between the two
nonparametric estimates with the Bayesian model offering a
“smoothed” version of the Kaplan-Meier estimate.

6 Conclusions and discussion

This paper has shown how mixture models based on random
probability measures, of either the stick-breaking or normal-
ized types, can be easily handled via the introduction of a
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Fig. 6 Estimates of the integrated hazard function, H(t), using the
nonparametric prior showing the median (solid line) and 95% credible
interval (dashed line) with Kaplan-Meier estimator (dotted line)

key latent variable which makes finite the number of mix-
tures. The more complicated of the two is the normalized
type, which requires particular distributions of the unnor-
malized weights in order to be able to make the simulation
algorithm work. Nevertheless, such distributions based on
the gamma and inverse-Gaussian distributions are popular
choices anyway.

Further ideas which need to be worked out include the
case when we can generate weights which are decreasing.
This for example would make the search for those wj > u

are far simpler exercise and would lead to more efficient al-
gorithms.

In conclusion, concerning performance of slice-efficient
and retrospective samplers, we note that once running, both
samplers are approximately the same in terms of efficiency
and performance. However, the savings are in the pre-
running work where setting up a slice sampler is far easier
than setting up a retrospective sampler.

The slice sampler allows the Gibbs sampling step for a fi-
nite mixture model to be used at each iteration and introduce
a method for updating the truncation point in each iteration.
This allows standard methods for finite mixture models to
be used directly. For example, Van Gael et al. (2008) fit an
infinite hidden Markov model using the forward-backward
sampler for finite hidden Markov model using the slice sam-
pling idea. This would be difficult to implement in a retro-
spective framework since the truncation point changes when
updating the allocations.

Acknowledgements We acknowledge the helpful comments of two
referees and an associate editor.

Appendix

Simulation for the Inverse-Gaussian model We wish to
simulate from the density g(xj+1)

g(xj+1) ∝ x
−3/2
j+1 (1 − xj+1)

−3/2

× exp

{
−1

2

[
γ 2
j


jxj+1
+ (

∑∞
i=j+1 γi)

2


j(1 − xj+1)

]}
.

The transformation yj+1 = xj+1
1−xj+1

has the density

g(yj+1) ∝ y
−3/2
j+1 (1 + yj+1)

× exp

{
−1

2

[
γ 2
j


jyj+1
+ (

∑∞
i=j+1 γi)

2


j

yj+1

]}
,

which can be expressed as a mixture of two generalized
inverse-Gaussian distributions

wGIG

⎛
⎝−1/2, γj /
j ,

∞∑
i=j+1

γi/
j

⎞
⎠

+ (1 − w)GIG

⎛
⎝1/2, γj /
j ,

∞∑
i=j+1

γi/
j

⎞
⎠

where

w = γj∑∞
i=j+1 γi

and GIG(p, a, b) denotes a distribution with density

(b/a)p/2

2Kp(
√

ab)
x(p−1) exp{−(a/x + bx)/2}

where Kν denotes the modified Bessel function of the third
kind with index ν.
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