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Summary. Structured additive regression models are perhaps the most commonly used class of
models in statistical applications. It includes, among others, (generalized) linear models, (gener-
alized) additive models, smoothing spline models, state space models, semiparametric regres-
sion, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and
geoadditive models. We consider approximate Bayesian inference in a popular subset of struc-
tured additive regression models, latent Gaussian models, where the latent field is Gaussian,
controlled by a few hyperparameters and with non-Gaussian response variables. The posterior
marginals are not available in closed form owing to the non-Gaussian response variables. For
such models, Markov chain Monte Carlo methods can be implemented, but they are not without
problems, in terms of both convergence and computational time. In some practical applications,
the extent of these problems is such that Markov chain Monte Carlo sampling is simply not
an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace
approximation and its simplified version, we can directly compute very accurate approximations
to the posterior marginals. The main benefit of these approximations is computational: where
Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide
more precise estimates in seconds or minutes. Another advantage with our approach is its gen-
erality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way,
and to compute model comparison criteria and various predictive measures so that models can
be compared and the model under study can be challenged.

Keywords: Approximate Bayesian inference; Gaussian Markov random fields; Generalized
additive mixed models; Laplace approximation; Parallel computing; Sparse matrices;
Structured additive regression models

1. Introduction

1.1. Aim of the paper
This paper discusses how to perform approximate Bayesian inference in a subclass of structured
additive regression models, named latent Gaussian models. Structured additive regression mod-
els are a flexible and extensively used class of models; see for example Fahrmeir and Tutz (2001)
for a detailed account. In these models, the observation (or response) variable yi is assumed to
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belong to an exponential family, where the mean μi is linked to a structured additive predictor
ηi through a link function g.·/, so that g.μi/=ηi. The structured additive predictor ηi accounts
for effects of various covariates in an additive way:

ηi =α+
nf∑

j=1
f .j/.uji/+

nβ∑
k=1

βkzki + "i: .1/

Here, the {f .j/.·/}s are unknown functions of the covariates u, the {βk}s represent the linear
effect of covariates z and the "is are unstructured terms. This class of model has a wealth of
applications, thanks to the very different forms that the unknown functions {f .j/} can take.
Latent Gaussian models are a subset of all Bayesian additive models with a structured additive
predictor (1), namely those which assign a Gaussian prior to α, {f .j/.·/}, {βk} and {"t}. Let
x denote the vector of all the latent Gaussian variables, and θ the vector of hyperparameters,
which are not necessarily Gaussian. In the machine learning literature, the phrase ‘Gaussian
process models’ is often used (Rasmussen and Williams, 2006). We discuss various applications
of latent Gaussian models in Section 1.2.

The main aim of this paper is twofold:

(a) to provide accurate and fast deterministic approximations to all, or some of, the n pos-
terior marginals for xi, the components of latent Gaussian vector x, plus possibly the
posterior marginals for θ or some of its components θj (if needed, the marginal densities
can be post-processed to compute quantities like posterior expectations, variances and
quantiles);

(b) to demonstrate how to use these marginals
(i) to provide adequate approximations to the posterior marginal for subvectors xS for

any subset S,
(ii) to compute the marginal likelihood and the deviance information criterion (DIC)

for model comparison and
(iii) to compute various Bayesian predictive measures.

1.2. Latent Gaussian models: applications
Latent Gaussian models have a numerous and wide ranging list of applications; most structured
Bayesian models are in fact of this form; see for example Fahrmeir and Tutz (2001), Gelman et al.
(2004) and Robert and Casella (1999). We shall first give some areas of applications grouped
according to their physical dimension. Let f.·/ denote one of the f .j/.·/ terms in equation (1)
with variables f1, f2, . . ..

(a) Regression models: Bayesian generalized linear models correspond to the linear predictor
ηi =α+Σ

nβ

k=1 βkzki (Dey et al., 2000). The f.·/ terms are used either to relax the linear
relationship of the covariate as argued for by Fahrmeir and Tutz (2001), or to introduce
random effects or both. Popular models for modelling smooth effects of covariates are
penalized spline models (Lang and Brezger, 2004) and random-walk models (Fahrmeir
and Tutz, 2001; Rue and Held, 2005), or continuous indexed spline models (Wahba,
1978; Wecker and Ansley, 1983; Kohn and Ansley, 1987; Rue and Held, 2005) or Gauss-
ian processes (O’Hagan, 1978; Chu and Ghahramani, 2005; Williams and Barber, 1998;
Besag et al., 1995; Neal, 1998). Random effects make it possible to account for overdis-
persion caused by unobserved heterogeneity, or for correlation in longitudinal data, and
can be introduced by defining f.ui/=fi and letting {fi} be independent, zero mean and
Gaussian (Fahrmeir and Lang, 2001).
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(b) Dynamic models: temporal dependence can be introduced by using i in equation (1) as
a time index t and defining f.·/ and covariate u so that f.ut/=ft . Then {ft} can model
a discrete time or continuous time auto-regressive model, a seasonal effect or more gen-
erally the latent process of a structured time series model (Kitagawa and Gersch, 1996;
West and Harrison, 1997). Alternatively, {ft} can represent a smooth temporal function
in the same spirit as regression models.

(c) Spatial and spatiotemporal models: spatial dependence can be modelled similarly, using
a spatial covariate u so that f.us/=fs, where s represents the spatial location or spatial
region s. The stochastic model for fs is constructed to promote spatial smooth realiza-
tions of some kind. Popular models include the Besag–York–Mollié model for disease
mapping with extensions for regional data (Besag et al., 1991; Held et al., 2005; Weir and
Pettitt, 2000; Gschløssl and Czado, 2008; Wakefield, 2007), continuous indexed Gauss-
ian models (Banerjee et al., 2004; Diggle and Ribeiro, 2006), texture models (Marroquin
et al., 2001; Rellier et al., 2002). Spatial and temporal dependences can be achieved either
by using a spatiotemporal covariate .s, t/ or a corresponding spatiotemporal Gaussian
field (Kammann and Wand, 2003; Cressie and Johannesson, 2008; Banerjee et al., 2008;
Finkenstadt et al., 2006; Abellan et al., 2007; Gneiting, 2002; Banerjee et al., 2004).

In many applications, the final model may consist of a sum of various components, such as
a spatial component, random effects and both linear and smooth effects of some covariates.
Furthermore, linear or sum-to-zero constraints are sometimes imposed as well to separate the
effects of various components in equation (1).

1.3. Latent Gaussian models: notation and basic properties
To simplify the following discussion, denote generically π.·|·/ as the conditional density of its
arguments, and let x be all the n Gaussian variables {ηi}, α, {f .j/} and {βk}. The density π.x|θ1/

is Gaussian with (assumed) zero mean and precision matrix Q.θ1/ with hyperparameters θ1.
Denote by N .x;μ,Σ/, the N .μ,Σ/ Gaussian density with mean μ and covariance (inverse
precision) Σ at configuration x. Note that we have included {ηi} instead of {"i} in x, as it
simplifies the notation later.

The distribution for the nd observational variables y={yi : i∈I} is denoted by π.y|x, θ2/ and
we assume that {yi : i∈I} are conditionally independent given x and θ2. For simplicity, denote
by θ= .θT

1 , θT
2 /T with dim.θ/=m. The posterior then reads (for a non-singular Q.θ/)

π.x, θ|y/∝π.θ/π.x|θ/
∏
i∈I

π.yi|xi, θ/

∝π.θ/|Q.θ/|1=2 exp
[
−1

2
xTQ.θ/x + ∑

i∈I
log{π.yi|xi, θ/}

]
:

The imposed linear constraints (if any) are denoted by Ax = e for a k × n matrix A of rank k.
The main aim is to approximate the posterior marginals π.xi|y/, π.θ|y/ and π.θj|y/.

Many, but not all, latent Gaussian models in the literature (see Section 1.2) satisfy two basic
properties which we shall assume throughout the paper. The first is that the latent field x, which
is often of large dimension, n = 102–105, admits conditional independence properties. Hence,
the latent field is a Gaussian Markov random field (GMRF) with a sparse precision matrix
Q.θ/ (Rue and Held, 2005). This means that we can use numerical methods for sparse matri-
ces, which are much quicker than general dense matrix calculations (Rue and Held, 2005). The
second property is that the number of hyperparameters, m, is small, say m�6. Both properties
are usually required to produce fast inference, but exceptions exist (Eidsvik et al., 2009).
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1.4. Inference: Markov chain Monte Carlo approaches
The common approach to inference for latent Gaussian models is Markov chain Monte Carlo
(MCMC) sampling. It is well known, however, that MCMC methods tend to exhibit poor per-
formance when applied to such models. Various factors explain this. First, the components of
the latent field x are strongly dependent on each other. Second, θ and x are also strongly depen-
dent, especially when n is large. A common approach to (try to) overcome this first problem is
to construct a joint proposal based on a Gaussian approximation to the full conditional of x
(Gamerman, 1997, 1998; Carter and Kohn, 1994; Knorr-Held, 1999; Knorr-Held and Rue, 2002;
Rue et al., 2004). The second problem requires, at least partially, a joint update of both θ and
x. One suggestion is to use the one-block approach of Knorr-Held and Rue (2002): make a pro-
posal for θ to θ′, update x from the Gaussian approximation conditional on θ′, then accept or
reject jointly; see Rue and Held (2005), chapter 4, for variations on this approach. Some models
can alternatively be reparameterized to overcome the second problem (Papaspiliopoulos et al.,
2007). Independence samplers can also sometimes be constructed (Rue et al., 2004). For some
(observational) models, auxiliary variables can be introduced to simplify the construction of
Gaussian approximations (Shephard, 1994; Albert and Chib, 1993; Holmes and Held, 2006;
Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007; Rue and
Held, 2005). Despite all these developments, MCMC sampling remains painfully slow from the
end user’s point of view.

1.5. Inference: deterministic approximations
Gaussian approximations play a central role in the development of more efficient MCMC algo-
rithms. This remark leads to the following questions.

(a) Can we bypass MCMC methods entirely and base our inference on such closed form
approximations?

(b) To what extent can we advocate an approach that leads to a (presumably) small approx-
imation error over another approach giving rise to a (presumably) large MCMC
error?

Obviously, MCMC errors seem preferable, as they can be made arbitrarily small, for arbitrarily
large computational time. We argue, however, that, for a given computational cost, the deter-
ministic approach that is developed in this paper outperforms MCMC algorithms to such an
extent that, for latent Gaussian models, resorting to MCMC sampling rarely makes sense in
practice.

It is useful to provide some orders of magnitude. In typical spatial examples where the dimen-
sion n is a few thousands, our approximations for all the posterior marginals can be computed in
(less than) a minute or a few minutes. The corresponding MCMC samplers need hours or even
days to compute accurate posterior marginals. The approximation bias is, in typical examples,
much less than the MCMC error and negligible in practice. More formally, on one hand it is
well known that MCMC sampling is a last resort solution: Monte Carlo averages are charac-
terized by additive Op.N−1=2/ errors, where N is the simulated sample size. Thus, it is easy to
obtain rough estimates, but nearly impossible to obtain accurate ones; an additional correct
digit requires 100 times more computational power. More importantly, the implicit constant in
Op.N−1=2/ often hides a curse of dimensionality with respect to the dimension n of the problem,
which explains the practical difficulties with MCMC sampling that were mentioned above. On
the other hand, Gaussian approximations are intuitively appealing for latent Gaussian models.
For most real problems and data sets, the conditional posterior of x is typically well behaved,
and looks ‘almost’ Gaussian. This is clearly due to the latent Gaussian prior that is assigned to
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x, which has a non-negligible effect on the posterior, especially in terms of dependence between
the components of x.

1.6. Approximation methods in machine learning
A general approach towards approximate inference is the variational Bayes (VB) methodology
that was developed in the machine learning literature (Hinton and van Camp, 1993; MacKay,
1995; Bishop, 2006). VB methodology has provided numerous promising results in various
areas, like hidden Markov models (MacKay, 1997), mixture models (Humphreys and Tittering-
ton, 2000), graphical models (Attias, 1999, 2000) and state space models (Beal, 2003), among
others; see Beal (2003), Titterington (2004) and Jordan (2004) for extensive reviews.

For the sake of discussion, consider the posterior distribution π.x, θ|y/ of a generic Bayesian
model, with observation y, latent variable x and hyperparameter θ. The principle of VB meth-
ods is to use as an approximation the joint density q.x, θ/ that minimizes the Kullback–Leibler
contrast of π.x, θ|y/ with respect to q.x, θ/. The minimization is subject to some constraint on
q.x, θ/, most commonly q.x, θ/=qx.x/qθ.θ/. Obviously, the VB approximated density q.x, θ/

does not capture the dependence between x and θ, but one hopes that its marginals (of x and
θ) approximate well the true posterior marginals. The solution of this minimization problem is
approached through an iterative, EM-like algorithm.

In general, the VB approach is not without potential problems. First, even though VB meth-
ods seem often to approximate well the posterior mode (Wang and Titterington, 2006), the
posterior variance can be (sometimes severely) underestimated; see Bishop (2006), chapter 10,
and Wang and Titterington (2005). In the case of latent Gaussian models, this phenomenon
does occur as we demonstrate in Appendix A; we show that the VB-approximated variance can
be up to n times smaller than the true posterior variance in a typical application. The second
potential problem is that the iterative process of the basic VB algorithm is tractable for ‘conju-
gate exponential’ models only (Beal, 2003). This implies that π.θ/ must be conjugate with respect
to the complete likelihood π.x, y|θ/ and the complete likelihood must belong to an exponential
family. However, few of the latent Gaussian models that are encountered in applications are
of this type, as illustrated by our worked-through examples in Section 5. A possible remedy
around this requirement is to impose restrictions on q.x, θ/, such as independence between
blocks of components of θ (Beal (2003), chapter 4), or a parametric form for q.x, θ/ that allows
for a tractable minimization algorithm. However, this requires case-specific solutions, and the
constraints will increase the approximation error.

Another approximation scheme that is popular in machine learning is the expectation–prop-
agation (EP) approach (Minka, 2001); see for example Zoeter and Heskes (2005) and Kuss
and Rasmussen (2005) for applications of EP to latent Gaussian models. EP follows princi-
ples which are quite similar to VB methods, i.e. it minimizes iteratively some pseudodistance
between π.x, θ|y/ and the approximation q.x, θ/, subject to q.x, θ/ factorizing in a ‘simple’ way,
e.g. as a product of parametric factors, each involving a single component of .x, θ/. However,
the pseudodistance that is used in EP is the Kullback–Leibler contrast of q.x, θ/ relative to
π.x, θ|y/, rather than the other way around (as in VB methods). Because of this, EP usually
overestimates the posterior variance (Bishop (2006), chapter 10). Kuss and Rasmussen (2005)
derived an EP approximation scheme for classification problems involving Gaussian processes
that seems to be accurate and fast; but their focus is on approximating π.x|θ, y/ for θ set to the
posterior mode, and it is not clear how to extend this approach to a fully Bayesian analysis.
More importantly, deriving an efficient EP algorithm seems to require specific efforts for each
class of models. With respect to computational cost, VB and EP methods are both designed
to be faster than exact MCMC methods, but, owing to their iterative nature, they are (much)



324 H. Rue, S. Martino and N. Chopin

slower than analytic approximations (such as those developed in this paper); see Section 5.3 for
an illustration of this in one of our examples. Also, it is not clear whether EP and VB methods
can be implemented efficiently in scenarios involving linear constraints on x.

The general applicability of the VB and EP approaches does not contradict the existence of
improved approximation schemes for latent Gaussian models, hopefully without the problems
just discussed. How this can be done is described next.

1.7. Inference: the new approach
The posterior marginals of interest can be written as

π.xi|y/=
∫

π.xi|θ, y/π.θ|y/dθ,

π.θj|y/=
∫

π.θ|y/dθ−j,

and the key feature of our new approach is to use this form to construct nested approximations

π̃.xi|y/=
∫

π̃.xi|θ, y/ π̃.θ|y/dθ,

π̃.θj|y/=
∫

π̃.θ|y/dθ−j:

.2/

Here, π̃.·|·/ is an approximated (conditional) density of its arguments. Approximations to π.xi|y/

are computed by approximating π.θ|y/ and π.xi|θ, y/, and using numerical integration (i.e. a
finite sum) to integrate out θ. The integration is possible as the dimension of θ is small; see
Section 1.3. As will become clear in what follows, the nested approach makes Laplace approxi-
mations very accurate when applied to latent Gaussian models. The approximation of π.θj|y/

is computed by integrating out θ−j from π̃.θ|y/; we return in Section 3.1 to the practical details.
Our approach is based on the following approximation π̃.θ|y/ of the marginal posterior of θ:

π̃.θ|y/∝ π.x, θ, y/

π̃G.x|θ, y/

∣∣∣∣
x=xÅ.θ/

.3/

where π̃G.x|θ, y/ is the Gaussian approximation to the full conditional of x, and xÅ.θ/ is the
mode of the full conditional for x, for a given θ. The proportionality sign in expression (3)
comes from the fact that the normalizing constant for π.x, θ|y/ is unknown. This expression
is equivalent to Tierney and Kadane’s (1986) Laplace approximation of a marginal posterior
distribution and this suggests that the approximation error is relative and of order O.n

−3=2
d /

after renormalization. However, since n is not fixed but depends on nd , standard asymptotic
assumptions that are usually invoked for Laplace expansions are not verified here; see Section
4 for a discussion of the error rate.

π̃.θ|y/ itself tends to depart significantly from Gaussianity. This suggests that a cruder approx-
imation based on a Gaussian approximation to π.θ|y/ is not sufficiently accurate for our
purposes; this also applies to similar approximations that are based on ‘equivalent Gaussian
observations’ around xÅ, and evaluated at the mode of expression (3) (Breslow and Clayton,
1993; Ainsworth and Dean, 2006). A critical aspect of our approach is to explore and manipu-
late π̃.θ|y/ and π̃.xi|y/ in a ‘non-parametric’ way. Rue and Martino (2007) used expression (3)
to approximate posterior marginals for θ for various latent Gaussian models. Their conclusion
was that π̃.θ|y/ is particularly accurate: even long MCMC runs could not detect any error in
it. For the posterior marginals of the latent field, they proposed to start from π̃G.x|θ, y/ and to
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approximate the density of xi|θ, y with the Gaussian marginal derived from π̃G.x|θ, y/, i.e.

π̃.xi|θ, y/=N{xi;μi.θ/, σ2
i .θ/}: .4/

Here, μ.θ/ is the mean (vector) of the Gaussian approximation, whereas σ2.θ/ is a vector of cor-
responding marginal variances. This approximation can be integrated numerically with respect
to θ (see expression (2)), to obtain approximations of the marginals of interest for the latent
field,

π̃.xi|y/=∑
k

π̃.xi|θk, y/ π̃.θk|y/Δk: .5/

The sum is over values of θ with area weights Δk. Rue and Martino (2007) showed that the
approximate posterior marginals for θ were accurate, whereas the error in the Gaussian approx-
imation (4) was higher. In particular, equation (4) can present an error in location and/or a lack
of skewness. Other issues in Rue and Martino (2007) were both the difficulty to detect the xis
whose approximation is less accurate and the inability to improve the approximation at those
locations. Moreover, they could not control the error of the approximations and choose the
integration points {θk} in an adaptive and automatic way.

In this paper, we solve all the remaining issues in Rue and Martino (2007), and present a
fully automatic approach for approximate inference in latent Gaussian models which we name
integrated nested Laplace approximations (INLAs). The main tool is to apply the Laplace approx-
imation once more, this time to π.xi|y, θ/. We also present a faster alternative which corrects
the Gaussian approximation (4) for error in the location and lack of skewness at moderate
extra cost. The corrections are obtained by a series expansion of the Laplace approximation.
This faster alternative is a natural first choice, because of its low computational cost and high
accuracy. It is our experience that INLA outperforms without comparison any MCMC alter-
native, in terms of both accuracy and computational speed. We shall also demonstrate how the
various approximations can be used to derive tools for assessing the approximation error, to
approximate posterior marginals for a subset of x, and to compute interesting quantities like
the marginal likelihood, the DIC and various Bayesian predictive measures.

1.8. Plan of paper
Section 2 contains preliminaries on GMRFs, sparse matrix computations and Gaussian approx-
imations. Section 3 explains the INLA approach and how to approximate π.θ|y/, π.θj|y/ and
π.xi|θ, y/. For the latent field, three approximations are discussed: Gaussian, Laplace and sim-
plified Laplace. Section 4 discusses the error rates of the Laplace approximations that are used
in INLA. Section 5 illustrates the performance of INLA through simulated and real examples,
which include stochastic volatility models, a longitudinal mixed model, a spatial model for map-
ping of cancer incidence data and spatial log-Gaussian Cox processes. Section 6 discusses some
extensions: construction of posterior marginals for subsets xS , approximations of the marginal
likelihood and predictive measures, the DIC for model comparison and an alternative integra-
tion scheme for cases where the number of hyperparameters is not small but moderate. We end
with a general discussion in Section 7.

2. Preliminaries

We present here basic properties of GMRFs and explain how to perform related computations
using sparse matrix algorithms. We then discuss how to compute Gaussian approximations for
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a latent GMRF. See Rue and Held (2005) for more details on both issues. Denote by x−i the
vector x minus its ith element and by Γ.τ ; a, b/ the Γ.a, b/ density (with mean a=b) at point τ .

2.1. Gaussian Markov random fields
A GMRF is a Gaussian random variable x = .x1, . . . , xn/ with Markov properties: for some
i �=js, xi and xj are independent conditional on x−ij. These Markov properties are conveniently
encoded in the precision (inverse covariance) matrix Q: Qij =0 if and only if xi and xj are inde-
pendent conditional on x−ij. Let the undirected graph G denote the conditional independence
properties of x; then x is said to be a GMRF with respect to G. If the mean of x is μ, the density
of x is

π.x/= .2π/−n=2|Q|1=2 exp{− 1
2 .x −μ/TQ.x −μ/}: .6/

In most cases only O.n/ of the n2 entries of Q are non-zero, so Q is sparse. This allows for
fast factorization of Q as LLT, where L is the (lower) Cholesky triangle. The sparseness of
Q is inherited into L, thanks to the global Markov property: for i < j, such that i and j are
separated by F.i, j/={i+ 1, . . . , j − 1, j + 1, . . . , n} in G, Lji = 0. Thus, only non-null terms in
L are computed. In addition, nodes can be reordered to decrease the number of non-zero terms
in L. The typical cost of factorizing Q into LLT depends on the dimension of the GMRF, e.g.
O.n/ for one dimension, O.n3=2/ for two dimensions and O.n2/ for three dimensions. Solving
equations which involve Q also makes use of the Cholesky triangle. For example, Qx = b is
solved in two steps. First solve Lv = b; then solve LTx = v. If z ∼N .0, I/ then the solution of
LTx=z has precision matrix Q. This is the general method for producing random samples from
a GMRF. The log-density at any x, log{π.x/}, can easily be computed by using equation (6)
since log |Q|=2Σi log.Lii/.

Marginal variances can also be computed efficiently. To see this, we can start with the equa-
tion LTx = z where z ∼N .0, I/. Recall that the solution x has precision matrix Q. Writing this
equation out in detail, we obtain Liixi =zi −Σn

k=i+1Lkixk for i=n, . . . , 1. Multiplying each side
with xj, j � i, and taking the expectation, we obtain

Σij = δij

Lii

2

− 1
Lii

n∑
k=i+1

LkiΣkj, j � i, i=n, . . . , 1, .7/

where Σ .=Q−1) is the covariance matrix, and δij =1 if i=j and δij =0 otherwise. Thus Σij can
be computed from expression (7), letting the outer loop i run from n to 1 and the inner loop j
from n to i. If we are interested only in the marginal variances, we need to compute only Σijs
for which Lji (or Lij) is not known to be 0; see above. This reduces the computational costs
to typically O{n log.n/2} in the spatial case; see Rue and Martino (2007), section 2, for more
details.

When the GMRF is defined with additional linear constraints, like Ax = e for a k ×n matrix
A of rank k, the following strategy is used: if x is a sample from the unconstrained GMRF,
then

xc =x −Q−1AT.AQ−1AT/−1.Ax − e/ .8/

is a sample from the constrained GMRF. The expected value of xc can also be computed by using
equation (8). This approach is commonly called ‘conditioning by kriging’; see Cressie (1993) or
Rue (2001). Note that Q−1AT is computed by solving k linear systems, one for each column of
AT. The additional cost of the k linear constraints is O.nk2/. Marginal variances under linear
constraints can be computed in a similar way; see Rue and Martino (2007), section 2.
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2.2. Gaussian approximations
Our approach is based on Gaussian approximations to densities of the form

π.x/∝ exp
{

−1
2

xTQx + ∑
i∈I

gi.xi/

}
, .9/

where gi.xi/ is log{π.yi|xi, θ/} in our setting. The Gaussian approximation π̃G.x/ is obtained
by matching the modal configuration and the curvature at the mode. The mode is computed
iteratively by using a Newton–Raphson method, which is also known as the scoring algorithm
and its variant, the Fisher scoring algorithm (Fahrmeir and Tutz, 2001). Let μ.0/ be the initial
guess, and expand gi.xi/ around μ

.0/
i to the second order,

gi.xi/≈gi.μ
.0/
i /+bixi − 1

2 cix
2
i .10/

where {bi} and {ci} depend on μ.0/. A Gaussian approximation is obtained, with precision
matrix Q + diag.c/ and mode given by the solution of {Q + diag.c/}μ.1/ = b. This process is
repeated until it converges to a Gaussian distribution with, say, mean xÅ and precision matrix
QÅ = Q + diag.cÅ/. If there are linear constraints, the mean is corrected at each iteration by
using the expected value of equation (8).

Since the non-quadratic term in expression (9) is only a function of xi and not a function of
xi and xj, say, the precision matrix of the Gaussian approximation is of the form Q+diag.c/.
This is computationally convenient, as the Markov properties of the GMRF are preserved.

There are some suggestions in the literature about how to construct an improved Gaussian
approximation to expression (9) with respect to that obtained by matching the mode and the
curvature at the mode; see Rue (2001), section 5, Rue and Held (2005), section 4.4.1, and Kuss
and Rasmussen (2005). We have chosen not to pursue this issue here.

3. The integrated nested Laplace approximation

In this section we present the INLA approach for approximating the posterior marginals of the
latent Gaussian field, π.xi|y/, i= 1, . . . , n. The approximation is computed in three steps. The
first step (Section 3.1) approximates the posterior marginal of θ by using the Laplace approxi-
mation (3). The second step (Section 3.2) computes the Laplace approximation, or the simpli-
fied Laplace approximation, of π.xi|y, θ/, for selected values of θ, to improve on the Gaussian
approximation (4). The third step combines the previous two by using numerical integration (5).

3.1. Exploring π̃(θjy)
The first step of the INLA approach is to compute our approximation to the posterior marginal
of θ; see expression (3). The denominator in expression (3) is the Gaussian approximation to
the full conditional for x and is computed as described in Section 2.2. The main use of π̃.θ|y/

is to integrate out the uncertainty with respect to θ when approximating the posterior marginal
of xi; see equation (5). For this task, we do not need to represent π̃.θ|y/ parametrically, but
rather to explore it sufficiently well to be able to select good evaluation points for the numerical
integration. At the end of this section, we discuss how the posterior marginals π.θj|y/ can be
approximated. Assume for simplicity that θ= .θ1, . . . , θm/∈Rm, which can always be obtained
by reparameterization.

(a) Step 1: locate the mode of π̃.θ|y/, by optimizing log{π̃.θ|y/} with respect to θ. This can
be done by using some quasi-Newton method which builds up an approximation to the
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second derivatives of log{π̃.θ|y/} by using the difference between successive gradient
vectors. The gradient is approximated by using finite differences. Let θÅ be the modal
configuration.

(b) Step 2: at the modal configuration θÅ compute the negative Hessian matrix H > 0, using
finite differences. Let Σ= H−1, which would be the covariance matrix for θ if the den-
sity were Gaussian. To aid the exploration, use standardized variables z instead of θ. Let
Σ=VΛVT be the eigendecomposition of Σ, and define θ via z, as follows:

θ.z/=θÅ +VΛ1=2z:

If π̃.θ|y/ is a Gaussian density, then z is N .0, I/. This reparameterization corrects for scale
and rotation, and simplifies numerical integration; see for example Smith et al. (1987).

(c) Step 3: explore log{π̃.θ|y/} by using the z-parameterization. Fig. 1 illustrates the proce-
dure when log{π̃.θ|y/} is unimodal. Fig. 1(a) shows a contour plot of log{π̃.θ|y/} for
m= 2, the location of the mode and the new co-ordinate axis for z. We want to explore
log{π̃.θ|y/} to locate the bulk of the probability mass. The result of this procedure is
displayed in Fig. 1(b). Each dot is a point where log{π̃.θ|y/} is considered as significant,
and which is used in the numerical integration (5). Details are as follows. We start from
the mode .z = 0/ and go in the positive direction of z1 with step length δz say δz = 1, as
long as

log[π̃{θ.0|y}]− log[π̃{θ.z/|y}] < δπ .11/

where, for example, δπ = 2:5. Then we switch direction and do similarly. The other co-
ordinates are treated in the same way. This produces the black dots. We can now fill in
all the intermediate values by taking all different combinations of the black dots. These
new points (which are shown as grey dots) are included if condition (11) holds. Since we
lay out the points θk in a regular grid, we may take all the area weights Δk in equation (5)
to be equal.

(d) Approximating π(θj|y): posterior marginals for θj can be obtained directly from π̃.θ|y/

by using numerical integration. However, this is computationally demanding, as we need
to evaluate π̃.θ|y/ for a large number of configurations. A more feasible approach is to
use the points that were already computed during steps 1–3 to construct an interpolant

(a) (b)

Fig. 1. Illustration of the exploration of the posterior marginal for θ: in (a) the mode is located and the Hes-
sian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (�) until the
log-density drops below a certain limit; finally the new points ( ) are explored
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to log{π̃.θ|y/}, and to compute marginals by using numerical integration from this
interpolant. If high accuracy is required, we need in practice a more dense configura-
tion (e.g. δz = 1

2 or δz = 1
4 ) than is required for the latent field x; see Martino (2007) for

numerical comparisons.

3.2. Approximating π(xi jθ; y)
We have now a set of weighted points {θk} to be used in the integration (5). The next step is to
provide accurate approximations for the posterior marginal for the xis, conditioned on selected
values of θ. We discuss three approximations π̃.xi|y, θk/, i.e. the Gaussian, the Laplace and a
simplified Laplace approximation. Although the Laplace approximation is preferred in general,
the much smaller cost of the simplified Laplace approximation generally compensates for the
slight loss in accuracy.

3.2.1. Using Gaussian approximations
The simplest (and cheapest) approximation to π.xi|θ, y/ is the Gaussian approximation
π̃G.xi|θ, y/, where the mean μi.θ/ and the marginal variance σ2

i .θ/ are derived by using the
recursions (7), and possibly correcting for linear constraints. During the exploration of π̃.θ|y/

(see Section 3.1), we already compute π̃G.x|θ, y/, so only marginal variances need to be addi-
tionally computed. The Gaussian approximation often gives reasonable results, but there can
be errors in the location and/or errors due to the lack of skewness (Rue and Martino, 2007).

3.2.2. Using Laplace approximations
The natural way to improve the Gaussian approximation is to compute the Laplace approxi-
mation

π̃LA.xi|θ, y/∝ π.x, θ, y/

π̃GG.x−i|xi, θ, y/

∣∣∣∣
x−i=xÅ

−i.xi,θ/

: .12/

Here, π̃GG is the Gaussian approximation to x−i|xi, θ, y and xÅ−i.xi, θ/ is the modal configura-
tion. Note that π̃GG is different from the conditional density corresponding to π̃G.x|θ, y/.

Unfortunately, expression (12) implies that π̃GG must be recomputed for each value of xi

and θ, since its precision matrix depends on xi and θ. This is far too expensive, as it requires
n factorizations of the full precision matrix. We propose two modifications to expression (12)
which make it computationally feasible.

Ourfirstmodificationconsists inavoidingtheoptimizationstep incomputing π̃GG.x−i|xi, θ, y/

by approximating the modal configuration,

xÅ
−i.xi, θ/≈Eπ̃G .x−i|xi/: .13/

The right-hand side is evaluated under the conditional density that is derived from the Gaussian
approximation π̃G.x|θ, y/. The computational benefit is immediate. First, the conditional mean
can be computed by a rank 1 update from the unconditional mean, by using equation (8). In
the spatial case the cost is O{n log.n/}, for each i, which comes from solving QÅ.θ/v =1i, where
1i equals 1 at position i and 0 otherwise. This rank 1 update is computed only once for each
i, as it is linear in xi. Although their settings are slightly different, Hsiao et al. (2004) showed
that deviating from the conditional mode does not necessarily degrade the approximation error.
Another positive feature of approximation (13) is that the conditional mean is continuous with
respect to xi, which is not so when numerical optimization is used to compute xÅ−i.xi, θ/.
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Our next modification materializes the following intuition: only those xj that are ‘close’ to xi

should have an effect on the marginal of xi. If the dependence between xj and xi decays as the
distance between nodes i and j increases, only those xjs in a ‘region of interest’ around i, Ri.θ/,
determine the marginal of xi. The conditional expectation in approximation (13) implies that

Eπ̃G .xj|xi/−μj.θ/

σj.θ/
=aij.θ/

xi −μi.θ/

σi.θ/
.14/

for some aij.θ/ when j �= i. Hence, a simple rule for constructing the set Ri.θ/ is

Ri.θ/={j : |aij.θ/|> 0:001}: .15/

The most important computational saving using Ri.θ/ comes from the calculation of the denom-
inator of expression (12), where we now only need to factorize an |Ri.θ/|×|Ri.θ/| sparse matrix.

Expression (12), simplified as explained above, must be computed for different values of
xi to find the density. To select these points, we use the mean and variance of the Gaussian
approximation (4) and choose, say, different values for the standardized variable

x
.s/
i = xi −μi.θ/

σi.θ/
.16/

according to the corresponding choice of abscissae given by the Gauss–Hermite quadrature
rule. To represent the density π̃LA.xi|θ, y/, we use

π̃LA.xi|θ, y/∝N{xi;μi.θ/, σ2
i .θ/}exp{cubic spline.xi/}: .17/

The cubic spline is fitted to the difference of the log-density of π̃LA.xi|θ, y/ and π̃G.xi|θ, y/ at
the selected abscissa points, and then the density is normalized by using quadrature integration.

3.2.3. Using a simplified Laplace approximation
In this section we derive a simplified Laplace approximation π̃SLA.xi|θ, y/ by doing a series
expansion of π̃LA.xi|θ, y/ around xi = μi.θ/. This allows us to correct the Gaussian approx-
imation π̃G.xi|θ, y/ for location and skewness. For many observational models including the
Poisson and the binomial, these corrections are sufficient to obtain essentially correct posterior
marginals. The benefit is purely computational: as most of the terms are common for all i, we
can compute all the n marginals in only O{n2 log.n/} time in the spatial case. Define

d.3/
j .xi, θ/= @3

@x3
j

log{π.yj|xj, θ/}
∣∣∣∣
xj=Eπ̃G

.xj |xi/

,

which we assume exists. The evaluation point is found from equation (14). The following trivial
lemma will be useful.

Lemma 1. Let x = .x1, . . . , xn/T ∼N .0,Σ/; then for all x1

−1
2

.x1, E.x−1|x1/T/Σ−1
(

x1

E.x−1|x1/

)
=−1

2
x2

1

Σ11
:

We expand the numerator and denominator of expression (12) around xi = μi.θ/, using
approximation (13) and lemma 1. Up to third order, we obtain

log{π.x, θ, y/}
∣∣∣∣
x−i=Eπ̃G.x−i|xi/

=−1
2

.x
.s/
i /2 + 1

6
.x

.s/
i /3 ∑

j∈I\i

d.3/
j {μi.θ/, θ}{σj.θ/aij.θ/}3 + . . .:

.18/
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The first- and second-order terms give the Gaussian approximation, whereas the third-order
term provides a correction for skewness. Further, the denominator of expression (12) reduces
to

log{π̃GG.x−i|xi, θ, y/}
∣∣∣∣
x−i=Eπ̃G

.x−i|xi/

= constant+ 1
2 log |H +diag{c.xi, θ/}| .19/

where H is the prior precision matrix of the GMRF with ith column and row deleted, and c.xi, θ/

is the vector of minus the second derivative of the log-likelihood evaluated at xj =Eπ̃G .xj|xi/;
see equation (14). Using that

d{log |H +diag.c/|}=∑
j

[{H +diag.c/}−1]jj dcj

we obtain

log{π̃GG.x−i|xi, θ, y/}
∣∣∣∣
x−i=Eπ̃G

.x−i|xi/

= constant

− 1
2

x
.s/
i

∑
j∈I\i

varπ̃G .xj|xi/d.3/
j {μi.θ/, θ}σj.θ/aij.θ/+ . . .: .20/

For Gaussian data equation (19) is just a constant, so the first-order term in equation (20) is
the first correction for non-Gaussian observations. Note that

varπ̃G .xj|xi/=σ2
j .θ/{1− corrπ̃G .xi, xj/2}

and that the covariance between xi and xj (under π̃G) is computed while doing the rank 1 update
in approximation (13), as the jth element of the solution of QÅ.θ/v =1i.

We now collect the expansions (18) and (20). Define

γ
.1/
i .θ/= 1

2

∑
j∈I\i

σ2
j .θ/{1− corrπ̃G .xi, xj/2}d.3/

j {μi.θ/, θ}σj.θ/aij.θ/

γ
.3/
i .θ/= ∑

j∈I\i

d.3/
j {μi.θ/, θ}{σj.θ/aij.θ/}3;

.21/

then

log {π̃SLA.xs
i |θ, y/}= constant− 1

2
.x

.s/
i /2 +γ

.1/
i .θ/x

.s/
i + 1

6
.x

.s/
i /3 γ

.3/
i .θ/+ . . .: .22/

Equation (22) does not define a density as the third-order term is unbounded. A common way
to introduce skewness into the Gaussian distribution is to use the skew normal distribution
(Azzalini and Capitanio, 1999)

πSN.z/= 2
ω

φ

(
z− ξ

ω

)
Φ
(

a
z− ξ

ω

)
.23/

where φ.·/ and Φ.·/ are the density and distribution function of the standard normal distri-
bution, and ξ, ω > 0 and a are respectively the location, scale and skewness parameters. We
fit a skew normal density to equation (22) so that the third derivative at the mode is γ

.3/
i , the

mean is γ
.1/
i and the variance is 1. In this way, γ

.3/
i contributes only to the skewness whereas the

adjustment in the mean comes from γ
.1/
i ; see Appendix B for details.

We have implicitly assumed that the expansion (18) is dominated by the third-order term.
This is adequate when the log-likelihood is skewed, but not for symmetric distributions with
thick tails like a Student tν-distribution with a low degree of freedom. For such cases, we expand
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only the denominator (20) and fit the spline-corrected Gaussian (17) instead of a skewed normal
distribution. This is slightly more expensive, but it is needed.

The simplified Laplace approximation appears to be highly accurate for many observational
models. The computational cost is dominated by the calculation of vector ai·.θ/, for each i; thus
the ‘region of interest’ strategy (15) is unhelpful here. Most of the other terms in expression (21)
do not depend on i and thus are computed only once. The cost for computing equation (22), for
a given i, is of the same order as the number of non-zero elements of the Cholesky triangle, e.g.
O{n log.n/} in the spatial case. Repeating the procedure n times gives a total cost of O{n2 log.n/}
for each value of θ. We believe that this is close to the lower limit for any general algorithm that
approximates all the n marginals. Since the graph of x is general, we need to visit all other sites, for
each i, for a potential contribution. This operation alone costs O.n2/. In summary, the total cost
for computing all n marginals π̃.xi|y/, i=1, . . . , n, using equation (5) and the simplified Laplace
approximation, is exponential in the dimension of θ times O{n2 log.n/} (in the spatial case).

4. Approximation error: asymptotics and practical issues

4.1. Approximation error of π̃(θjy)
For the sake of discussion, denote p the dimension of vector .x, θ/, i.e. p=n+m, and recall that
nd denotes the number of observations. Up to normalization, π̃.θ|y/ is formally equivalent to
the Laplace approximation of a marginal posterior density that was proposed by Tierney and
Kadane (1986), which, under ‘standard’ conditions, has error rate O.n−1

d /. We want to make it
clear, however, that these standard conditions are not relevant in many applications of latent
Gaussian models. We shall now discuss several asymptotic schemes and their influence on the
actual error rate of π̃.θ|y/.

First, assume that p is fixed while nd →∞; for instance, a GMRF model with a fixed number
of nodes but a growing number of observations accumulating at each node. In this case, the
usual assumptions for the asymptotic validity of a Laplace approximation (see Kass et al. (1999)
or Schervish (1995), page 453) are typically satisfied. This asymptotic scheme is obviously quite
specific, but it explains the good properties of INLA in a few applications, such as a GMRF
model with binomial observations, yi|xi ∼Bin{ni, logit−1.xi/}, provided that all the ni take large
values.

Second, if n (and therefore p) grows with nd , then, according to Shun and McCullagh (1995),
the error rate is O.n=nd/ as n is the dimension of the integral defining the unnormalized version
of π̃.θ|y/. Note that this rate is not established rigorously. This asymptotic scheme is rele-
vant to regression models involving individual effects, in which case n=nd → 0 is not a taxing
assumption. However, many GMRF models are such that n=nd is a constant (typically 1). For
such models, we have the following result. If, as nd →∞, the true latent field x converges to a
degenerate Gaussian random distribution of rank q, then the asymptotic error rate is O.q=nd/.
Conversely, if the model considered is such that the components of x are independent, one can
show that the approximation error is O.1/ but almost never o.1/.

In conclusion, the accuracy of π̃.θ|y/ seems to be directly related to the ‘actual’ dimension
of x. Thus, we recommend to evaluate, conditionally on θ, the effective number of parameters,
pD.θ/, as defined by Spiegelhalter et al. (2002). Since x given y and θ is roughly Gaussian, pD.θ/

is conveniently approximated by

pD.θ/≈n− tr{Q.θ/QÅ.θ/−1}, .24/

the trace of the prior precision matrix times by the posterior covariance matrix of the Gauss-
ian approximation (Spiegelhalter et al. (2002), equation (16)). (The computation of pD.θ/ is
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computationally cheap, since the covariances of neighbours are obtained as a by-product of the
computation of the marginal variances in the Gaussian approximation based on equation (7).)
This quantity also measures to what extent the Gaussianity and the dependence structure of
the prior are preserved in the posterior of x, given θ. For instance, for non-informative data,
pD.θ/= 0, and the approximation error is zero, since the posterior equals the Gaussian prior.
In all our applications, we observed that pD.θ/ is typically small relative to nd for values of θ
near the posterior mode.

Note finally that in most cases normalizing the approximated density reduces further the
asymptotic rate, as the dominating terms of the numerator and the denominator cancel out
(Tierney and Kadane, 1986); in the standard case, normalizing reduces the error rate from
O.n−1

d / to O.n
−3=2
d /.

The discussion above of the asymptotic properties of π̃.θ|y/ applies almost directly to
π̃LA.xi|θ, y/: conditional on θ, π̃LA.xi|θ, y/ is a Laplace approximation of the posterior mar-
ginal density of xi, and the dimension of the corresponding integral is the dimension of x−i, i.e.
n−1.

4.2. Assessing the approximation error
Obviously, there is only one way to assess with certainty the approximation error of our ap-
proach, which is to run an MCMC sampler for an infinite time. However, we propose to use
the following two strategies to assess the approximation error, which should be reasonable in
most situations.

Our first strategy is to verify the overall approximation π̃G.x|θ, y/, for each θk that is used
in the integration. We do this by computing pD.θ/ (24) as discussed in Section 4.1, but we can
also use that expression (3) can be rewritten as

π.θ|y/

π̃.θ|y/
∝|QÅ.θ/|1=2

∫
exp[− 1

2 .x −xÅ.θ//TQÅ.θ/.x −xÅ.θ//+ r.x;θ, y/] dx

=Eπ̃G [exp{r.x;θ, y/}],

where the constant of proportionality is quite involved and not needed in the following dis-
cussion. Further, xÅ.θ/ and QÅ.θ/ are the mean and precision of Gaussian distribution π̃G,
r.x;θ, y/=Σi hi.xi/, and hi.xi/ is gi.xi/ minus its Taylor expansion up to order 2 around xÅ

i .θ/;
see expressions (9) and (10). If, for each θk, pD.θ/ is small compared with nd , and the empirical
quantiles of the random variable r.x;θ, y/ are in absolute value significantly smaller than nd ,
then we have strong confidence that the Gaussian approximation is adequate. The empirical
quantiles of r.x;θ, y/ are found by sampling (e.g. 1000) independent realizations from π̃G.

Our second strategy is based on the simple idea of comparing elements of a sequence of
increasingly accurate approximations. In our case, this sequence consists of the Gaussian approx-
imation (4), followed by the simplified Laplace approximation (22), then by the Laplace approx-
imation (12). Specifically we compute the integrated marginal (5) on the basis of both the
Gaussian approximation and the simplified Laplace approximation, and compute their sym-
metric Kullback–Leibler divergence (SKLD). If the divergence is small then both approxi-
mations are considered as acceptable. Otherwise, compute equation (5) by using the Laplace
approximation (12) and compute the divergence with that based on the simplified Laplace
approximation. Again, if the divergence is small, simplified Laplace and Laplace approxima-
tions appear to be acceptable; otherwise, the Laplace approximation is our best estimate but the
label ‘problematic’ should be attached to the approximation to warn the user. (This last option
has not yet happened to us.)
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To assess the error due to the numerical integration (5), we can compare the SKLD between
the posterior marginals that are obtained with a standard and those obtained with a higher
resolution. Such an approach is standard in numerical integration; we do not pursue this issue
here.

5. Examples

This section provides examples of applications of the INLA approach, with comparisons with
results that were obtained from intensive MCMC runs. The computations were performed on
a single-processor 2.1-GHz laptop using the inla program (Martino and Rue, 2008) which is
an easy-to-use interface to our GMRFLib library written in C (Rue and Held (2005), appendix).
(We shall comment on speed-up strategies and parallel implementation in Section 6.5 and
Section 7.) We start with some simulated examples with fixed θ in Section 5.1, to verify the
(simplified) Laplace approximation for xi|θ, y. We continue with a generalized linear mixed
model for longitudinal data in Section 5.2, a stochastic volatility model applied to exchange
rate data in Section 5.3 and a spatial semiparametric regression model for disease mapping in
Section 5.4. The dimensions become really large in Section 5.5, in which we analyse some data
by using a spatial log-Gaussian Cox process.

5.1. Simulated examples
We start by illustrating the various approximations of π.xi|θ, y/ in two quite challenging exam-
ples. The first model is based on a first-order auto-regressive latent field with unknown mean,

ft −μ|μ, f1, . . . , ft−1 ∼N{φ.ft−1 −μ/, σ2}, t =2, . . . , 50, .25/

and μ∼N .0, 1/, φ= 0:85, var.ft −μ|μ/ = 1 and f1 −μ∼N .0, 1/. In this example ηt = ft ; see
equation (1). As our observations we take

yt −ηt|.η, μ/∼Student t3,

yt|.η, μ/∼Bernoulli{logit−1.ηt/},

for t = 1, . . . , 50, in experiment 1 and 2 respectively. Note that the Student t3-distribution is
symmetric so we need to use the full numerator in the simplified Laplace approximations as
described in Section 3.2.3.

To create the observations in each experiment, we sampled first .fT, μ/T from the prior, and
then simulated the observations. We computed π̃.ft|θ, y/ for t =1, . . . , 50 and π̃.μ|θ, y/ by using
the simplified Laplace approximation. We located the ‘worst node’, i.e. the node with maxi-
mum SKLD between the Gaussian and the simplified Laplace approximations. This process
was repeated 100 times. Fig. 2 provides the results for the ‘worst of the worst nodes’, i.e. the
node that maximizes our SKLD criterion among all the nodes of the 100 generated sample.
Figs 2(a), 2(c) and 2(e) display the results for experiment 1 with Student t3-data, and Figs 2(b),
2(d) and 2(f) display the results for experiment 2 with Bernoulli data. Figs 2(a) and 2(b) display
f (full curves) and the observed data (circles). In Fig. 2(a) the selected node is marked with a
vertical line and full dot. In Fig. 2(b) the node with maximum SKLD is μ and hence is not
shown. Figs 2(c) and 2(d) display the approximated marginals for the node with maximum
SKLD in the standardized scale (16). The dotted curve is the Gaussian approximation, the
broken curve is the simplified Laplace and the full curve is the Laplace approximation. In both
cases, the simplified Laplace and the Laplace approximation are very close to each other. The
SKLD between the Gaussian approximation and the simplified Laplace approximation is 0.20
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Fig. 2. (a), (b) True latent Gaussian field ( ), observed Student t3-data and Bernoulli data (ı), (c),
(d) approximate marginal for a selected node by using various approximations (. . . . . . ., Gaussian; – – –,
simplified Laplace; , Laplace) and (e), (f) comparison of samples from a long MCMC chain with the
marginal computed with the simplified Laplace approximation
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(Fig. 2(c)) and 0.05 (Fig. 2(d)). The SKLD between the simplified Laplace approximation and
the Laplace approximation is 0.001 (Fig. 2(c)) and 0.0004 (Fig. 2(d)). Figs 2(e) and 2(f) show the
simplified Laplace approximation with a histogram based on 10000 (near) independent samples
from π.f , μ|θ, y/. The fit is excellent.

The great advantage of the Laplace approximations is the high accuracy and low computa-
tional cost. In both examples, we computed all the approximations (for each experiment) in less
than 0.08 s, whereas the MCMC samples required about 25 s.

The results that are shown in this example are quite typical and are not limited to simple
time series models like expression (25). The Laplace approximation only ‘sees’ the log-likeli-
hood model and then uses some of the other nodes to compute the correction to the Gaussian
approximation. Hence, the form of the log-likelihood is more important than the form of the
covariance for the latent field.

5.2. A generalized linear mixed model for longitudinal data
Generalized linear (mixed) models form a large class of latent Gaussian models. We consider
the Epil example of the OpenBUGS (Thomas et al., 2006) manual, volume I, which is based on
model III of Breslow and Clayton (1993), section 6.2, and data from Thall and Vail (1990).

The data come from a clinical trial of 59 epileptic patients. Each patient i is randomized to
a new drug (Trti = 1) or a placebo (Trti = 0), in addition to the standard chemotherapy. The
observations for each patient yi1, . . . , yi4, are the number of seizures during the 2 weeks before
each of the four clinic visits. The covariates are age (Age), the baseline seizure counts (Base) and
an indicator variable for the fourth clinic visit (V4). The linear predictor is

ηij =β0 +βBase log.Baselinej=4/+βTrt Trtj +βTrt×Base Trtj × log.Baselinej=4/+βAge Agej

+βV4V4j + "i +νij, i=1, . . . , 59, j =1, . . . , 4,

using centred covariates. The observations are conditionally independent Poisson variables with
mean exp.ηij/. Overdispersion in the Poisson distribution is modelled by using individual ran-
dom effects "i and subject by visit random effects νij. We use the same priors as in the OpenBUGS
manual: "i ∼IID N .0, 1=τ"/, νij ∼IID N .0, 1=τν/, τ", τν ∼Γ.0:001, 0:001/, and all the β·s are as-
signed N .0, 1002/ priors. In this example our latent field x is of dimension n=301 and consists
of {ηij}, {"i}, β0, βBase, βTrt, βTrt×Base, βAge and βV4. The hyperparameters are θ= .τ", τν/T.

We computed the approximate posterior marginals for the latent field by using both Gaussians
and simplified Laplace approximations. The node where SKLD between these two marginals is
maximum, is β0. The SKLD is 0.23. The two approximated marginals for β0 are displayed in
Fig. 3(a). The simplified Laplace (full curve) approximation does correct the Gaussian approx-
imation (broken curve) in the mean, and the correction for skewness is minor. The simplified
Laplace approximation gives accurate results, as shown in Fig. 3(a) where a histogram from a
long MCMC run using OpenBUGS is overlaid. Fig. 3(b) displays the posterior marginal for τ"

found by integrating out τν from π̃.θ|y/; again, we find no errors.
We validated the approximations at the modal value θÅ. The effective number of parameters

(24) was 121.1, which corresponds to about two samples for each parameter. A 95% interval for
the remainder r.x;θÅ, y/=nd is [−0:01, 0:024], using 1000 independent samples. Computing the
(true) Laplace approximation for the posterior marginal of β0 gives a negligible SKLD com-
pared with the simplified Laplace approximation, thus indicating that the simplified Laplace
approximation is adequate. The computational cost for obtaining all the latent posterior margi-
nals was about 1.5 s in total. Although OpenBUGS can provide approximate answers in minutes,
we had to run it for hours to provide accurate posterior marginals.
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Fig. 3. Posterior marginal for (a) β0 ( , simplified Laplace approximation; - - - - - - -, Gaussian approxi-
mation) and (b) τ" ( , after integrating out τν ) for the example in Section 5.2: the histograms result from
a long MCMC run using OpenBUGS

5.3. Stochastic volatility models
Stochastic volatility models are frequently used to analyse financial time series. Fig. 4(a) displays
the logarithm of the nd =945 daily difference of the pound–dollar exchange rate from October
1st, 1981, to June 28th, 1985. This data set has been analysed by Durbin and Koopman (2000),
among others. There has been much interest in developing efficient MCMC methods for such
models, e.g. Shephard and Pitt (1997) and Chib et al. (2002).

The observations are taken to be

yt|ηt ∼N{0, exp.ηt/}, t =1, . . . , nd: .26/

The linear predictor consists of two terms, ηt =μ+ft , where ft is a first-order auto-regressive
Gaussian process

ft|f1, . . . , ft−1, τ , φ∼N .φft−1, 1=τ /, |φ|< 1,

and μ is a Gaussian mean value. In this example, x = .μ, η1, . . . , ηT /T and θ= .φ, τ /T. The log-
likelihood (with respect to ηt) is quite far from being Gaussian and is non-symmetric. There is
some evidence that financial data have heavier tails than the Gaussian distribution, so a Student
tν-distribution with unknown degrees of freedom can be substituted for the Gaussian distribu-
tion in expression (26); see Chib et al. (2002). We consider this modified model at the end of this
example.

We use the following priors: τ ∼Γ.1, 0:1/, φ′ ∼N .3, 1/, where φ=2 exp.φ′/={1+exp.φ′/}−1,
and μ∼N .0, 1/. We display the results for the Laplace approximation of the posterior marginals
of the two hyperparameters and μ, but based on only the first 50 observations in Figs 4(b)–4(d),
as using the full data set makes the approximation problem easier. The full curve in Fig. 4(d) is
the marginal that was found by using simplified Laplace approximations and the broken curve
uses Gaussian approximations, but in this case there are little differences (the SKLD is 0.05).
The histograms are constructed from the output of a long MCMC run using OpenBUGS. The
approximations that were computed are very precise and no deviance (in any node) can be
detected. The results that were obtained by using the full data set are similar but the marginals
are narrower (not shown).
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dom assuming Student tν -distributed observations and (f) 0:025, 0:5 and 0.975 posterior quantiles for ηt
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Following the discussion in Section 1.6, we also used this set of n=50 observations to compare
INLA with the EP algorithm of Zoeter and Heskes (2005) (with a slightly different parameteriza-
tion of the model and other priors owing to constraints in their code). The latter was considerably
less accurate (e.g. the posterior mean of φ is shifted 1 standard deviation to the right) and more
expensive; the running time was about 40 min for the MATLAB (http://www.mathworks.
com/) code of Zoeter and Heskes (2005) to compare with 0.3 s for our approach.

We now extend the model to allow for Student tν-distributed observations, where we scale
the Student tν-distribution to have unit variance for all ν > 2. We assign an N .2:08, 1/ prior
to ν ′ where ν = 2 + exp.ν ′/. The number of hyperparameters is now 3. Fig. 4(e) displays the
approximate posterior marginal for the degrees of freedom and Fig. 4(f) displays the 0.025-,
0.5- and 0.975-quantiles of ηt . Also in this case, we do not find any error in the approximations,
which was verified on using a subset of the full data (not shown). The marginal for the degrees
of freedom suggests that the extension to a Student tν-distribution is not needed in this case, but
see Section 6.2 for a more formal comparison of these two models. For the latent auto-regressive
process, there is little difference between the Gaussian approximation and the simplified Laplace
approximation for both models. The average SKLD was about 0.007 in both cases.

We validated the approximations by using all the n=945 observations at the modal value θÅ.
The effective number of parameters (27) was about 63, which is small compared with nd . A 95%
interval for the remainder r.x;θÅ, y/=nd is [−0:002, 0:004], using 1000 independent samples.
The computational cost for obtaining all the posterior marginals (using expression (26)) for the
latent field was about 11 s.

5.4. Disease mapping of cancer incidence data
In this example we consider a spatial model for mapping cancer incidence where the stage of the
disease at the time of diagnosis is known. The class of ‘disease mapping’ models is often latent
Gaussians; see for example Besag et al. (1991), Wakefield et al. (2000) and Held et al. (2005) for
an introduction.

The data are binary incidence cases of cervical cancer from the former East German Republic
from 1979 (Knorr-Held et al., 2002). The data are stratified by district and age group. Each of
the nd =6990 cases are classified into premalignant yi =1 or malignant yi =0. Denote by di and
ai the district and age group for case i=1, . . . , 6990. There are 216 districts and 15 age groups
(15–19, 20–24, . . . , >84 years). We follow Rue and Held (2005), section 4.3.5, and use a logistic
binary regression model:

logit.pi/=ηi =μ+f .a/
ai

+f
.s/
di

+f
.u/
di

,

where f .a/ is a smooth effect of the age group, f .s/ is a smooth spatial field and f .u/ are district
random effects. More specifically, f .a/ follows an intrinsic second-order random-walk model
(Rue and Held (2005), chapter 3) with precision κ.a/,

π.f .a/|κ.a//∝ .κ.a//.15−2/=2 exp
{

− κ.a/

2

15∑
j=3

.f
.a/
j −2f

.a/
j−1 +f

.a/
j−2/2

}
: .27/

The model for the spatial term f .s/ is defined conditionally, as

f
.s/
i |f .s/

−i , κ.s/ ∼N
(

1
ni

∑
j∈@i

f
.s/
j ,

1
niκ.s/

)

where @i is the set of neighbour districts to district i, namely those ni districts which share a
common border with district i; see Rue and Held (2005), section 3.3.2, for further detail on this
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model. The district random effects are independent zero-mean Gaussians with precision κ.u/.
We put a zero-mean constraint on both the age and the spatial effects and assign independent
Γ.1, 0:01/ priors to the three hyperparameters .κ.a/, κ.s/, κ.u//T, and an N .0, 0:1/ prior to μ.
The dimension of the latent field x is 216×15+1=3241.

The results are displayed in Fig. 5. Fig. 5(a) displays the posterior marginal for the node with
the largest SKLD between the approximations by using the simplified Laplace (full curve) and
Gaussian (broken curve) approximations. The SKLD is 0.058. Overlaid is the histogram that
was found from a long MCMC run using the block MCMC algorithm with auxiliary variables
that was described in Rue and Held (2005), section 4.3.5; the fit is perfect. Fig. 5(b) displays the
effect of the age groups, where the full curve interpolates the posterior median and the broken
curves display the 0.025- and 0.975-quantiles. The quantiles that were obtained from a long
MCMC run are shown by dots; again the fit is very good. Fig. 5(c) displays the median of the
smooth spatial component, where the grey scale goes from 0.2 (white) to 5 (black). (The shaded
region is Berlin.)

We validated the approximations at the modal value θÅ. The effective number of parame-
ters (24) was about 101, which is small compared with nd . A 95% interval for the remainder
r.x;θÅ, y/=nd is [−0:001, 0:001], using 1000 independent samples. The computational cost for
obtaining all the posterior marginals for the latent field was about 34 s.

5.5. Log-Gaussian Cox process
Log-Gaussian Cox processes are a flexible class of models that have been successfully used for
modelling spatial or spatiotemporal point processes; see for example Møller et al. (1998), Brix
and Møller (2001), Brix and Diggle (2001) and Møller and Waagepetersen (2003). We illustrate
in this section how log-Gaussian Cox process models can be analysed by using our approach
for approximate inference.

A log-Gaussian Cox process is a hierarchical Poisson process: Y in W ⊂Rd is a Poisson point
process with a random-intensity function λ.ξ/= exp{Z.ξ/}, where Z.ξ/ is a Gaussian field at
ξ∈ Rd . In this way, the dependence in the point pattern is modelled through a common latent
Gaussian variable Z.·/. In the analysis of a log-Gaussian Cox process, it is common to discretize
the observation window W. Divide W into N disjoint cells {wi} at ξi each with area |wi|. Let yi

be the number of occurrences of the realized point pattern within wi and let y = .y1, . . . , yN/T.
Let ηi be the random variable Z.ξi/. Clearly π.y|η/=Πi π.yi|ηi/ and yi|ηi is Poisson distributed
with mean |wi| exp.ηi/.

We apply model (28) to the tropical rainforest data that were studied by Waagepetersen (2007).
These data come from a 50-ha permanent tree plot which was established in 1980 in the tropical
moist forest of Barro Colorado Island in central Panama. Censuses have been carried out every
fifth year from 1980 to 2005, where all free-standing woody stems at least 10 mm diameter at
breast height were identified, tagged and mapped. In total, over 350000 individual trees species
have been censused over 25 years. We shall be looking at the tree species Beilschmiedia pendula
Lauraceae by using data that were collected from the first four census periods. The positions of
the 3605 trees are displayed in Fig. 6(a). Sources of variation explaining the locations include
the elevation and the norm of the gradient. There may be clustering or aggregation due to un-
observed covariates or seed dispersal. The unobserved covariates can be either spatially struc-
tured or unstructured. This suggests the model

ηi =β0 +βAlt Altitudei +βGrad Gradienti +f
.s/
i +f

.u/
i , .28/

where f .s/ represents the spatial component and f .u/ is an unstructured term. An alternative
would be to use a semiparametric model for the effect of the covariates similar to expression (27).
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Fig. 5. Results for the cancer incidence example: (a) posterior marginal for f .a/
3 by using simplified Laplace

approximations ( ), Gaussian approximations (- - - - - - -) and samples from a long MCMC run ( ); (b) pos-
terior median ( ) and 0.025- and 0.975-quantiles (- - - - - - -) of the age–class effect and results obtained
from a long MCMC run (�); (c) posterior median of the (smooth) spatial effect

We start by dividing the area of interest into a 200 × 100 regular lattice, where each square
pixel of the lattice represents 25 m2. This makes nd = 20000. The scaled and centred versions
of the altitude and norm of the gradient are shown in Figs 6(b) and 6(c) respectively. For the
spatial structured term, we use a second-order polynomial intrinsic GMRF (see Rue and Held
(2005), section 3.4.2), with following full conditionals in the interior (with obvious notation)
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(b) altitude and (c) norm of the gradient
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The precision κ.s/ is unknown. The full conditionals are constructed to mimic the thin plate
spline. There are some corrections to expression (29) near the boundary, which can be found by
using the stencils in Terzopoulos (1988). We impose a sum-to-zero constraint on the spatial term
due to β0. The unstructured terms f .u/ are independent N .0, κ.u//, vague Γ.1:0, 0:001/ priors
are assigned to κ.s/ and κ.u/, and independent N .0, 103/ priors to β0, βAlt and βGrad. The latent
field is x = .ηT, .f .s//T, β0, βAlt, βGrad/T) with dimension 40003, and θ = .log.κ.s//, log.κ.u///

with dimension 2.
We computed the approximation for 20003 posterior marginals f .s/, β0, βAlt and βGrad, using

the simplified Laplace approximation. The results are displayed in Fig. 7. Fig. 7(a) displays the
estimated posterior mean of the spatial component, where we have indicated by using contours
those nodes where the SKLD between the marginal computed with the Gaussian approxima-
tion and that computed with the simplified Laplace approximation exceeds 0.25. These nodes
are potential candidates for further investigation, so we computed their posteriors by using the
Laplace approximation also; the results agreed well with those obtained from the simplified
Laplace approximation. As an example, we display in Fig. 7(b) the marginals for the ‘worst
case’ which is node (61, 73) with an SKLD of 0.50: Gaussian (broken curve), simplified Laplace
(full curve) and Laplace approximations (chain curve). Note that the approximations become
more close as we improve the approximations. Figs 7(c)–7(e) display the posterior marginals
computed with the Gaussian approximations (broken curve) and that computed with the sim-
plified Laplace approximations (full curve) for β0, βAlt and βGrad. The difference is mostly due
to a horizontal shift, a characteristic that is valid for all the other nodes for this example.

This task required about 4 h of computing owing to the high dimension and the number of
computed posterior marginals. The total cost can be reduced to about 10 min if only using the
Gaussian approximation (4). To validate the approximations, we computed pD.θÅ/≈1714 and
estimated a 95% interval for the remainder r.x;θÅ, y/=nd as [0:004, 0:01], using 1000 indepen-
dent samples. Varying θ gave similar results. There are no indications that the approximation
does not work well in this case. Owing to the size of the GMRF, the comparisons with results
from long MCMC runs were performed on a cruder grid and the conditional marginals in the
spatial field for fixed values of θ, both with excellent results. We used the one-block MCMC
sampler that was described in Rue and Held (2005), section 4.4.2.

6. Extensions

Although this paper focuses on posterior marginals, INLA makes it possible to compute
routinely other quantities as well. This section discusses some of these extensions.

6.1. Approximating posterior marginals for xS
A natural extension is to consider not only posterior marginals for xi but also for a subset
xS ={xi : i∈S}. S can be small, say from 2 to 5, but sometimes larger sets are required. Although
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the Laplace approximation (12) can still be applied, replacing xi with xS , and x−i with x−S , the
practicalities become more involved. We tentatively recommend, unless extreme accuracy is
required, the following approach for which the joint marginal for (near) any subset is directly
available. To fix ideas, let S ={i, j} where i∼ j, and keep θ fixed. Let Fi and Fj be the (approx-
imated) cumulative distribution functions of xi|θ, y and xj|θ, y. From the Gaussian approxi-
mation π̃G.x|θ, y/ we know the Gaussian marginal distribution for xi, xj|θ, y. We have usually
observed in our experiments that the correction in the mean (21) is far more important than the
correction for skewness. Since correcting the mean in a Gaussian distribution does not alter the
correlations, we suggest approximating xi, xj|θ, y by using the Gaussian copula and the margi-
nals Fi and Fj. The benefit of this approach is that the marginals are kept unchanged and the
construction is purely explicit. A simple choice is to use Gaussian marginals but with the mean
correction {γ

.1/
i }; see expression (21). Extending this approach to larger sets S is immediate,

although the resulting accuracy may possibly decrease with the size of S.

6.2. Approximating the marginal likelihood
The marginal likelihood π.y/ is a useful quantity for comparing models, as Bayes factors are
defined as ratios of marginal likelihoods of two competing models. It is evident from expression
(3) that the natural approximation to the marginal likelihood is the normalizing constant of
π̃.θ|y/,

π̃.y/=
∫

π.θ, x, y/

π̃G.x|θ, y/

∣∣∣∣
x=xÅ.θ/

dθ: .30/

where π.θ, x, y/=π.θ/π.x|θ/π.y|x, θ/. An alternative, cruder, estimate of the marginal likeli-
hood is obtained by assuming that θ|y is Gaussian; then equation (30) turns into some known
constant times |H|−1=2, where H is the Hessian matrix in Section 3.1; see Kass and Vaidyana-
than (1992). Our approximation (30) does not require this assumption, since we treat π̃.θ|y/

in a ‘non-parametric’ way. This allows for taking into account the departure from Gaussianity
which, for instance, appears clearly in Fig. 4. Friel and Rue (2007) used a similar expression to
formula (30) to approximate the marginal likelihood in a different context.

As an example, let us reconsider the stochastic volatility example in Section 5.3. Using expres-
sion (30), the log-marginal-likelihoods were computed to be −924:0 and −924:8 for the Gaussian
and Student tν observational model respectively. The cruder approximation by Kass and
Vaidyanathan (1992) gave similar results: −924:0 and −924:7. There is no evidence that a
Student tν observational model is required for these data.

As pointed out by a referee, this method could fail if the posterior marginal π.θ|y/ is mul-
timodal (if not detected), but this is not specific to the evaluation of the marginal likelihood
but applies to our general approach. Fortunately, latent Gaussian models generate unimodal
posterior distributions in most cases.

6.3. Predictive measures
Predictive measures can be used both to validate and to compare models (Gelfand, 1996; Gel-
man et al., 2004), and as a device to detect possible outliers or surprising observations (Pettit,
1990). One usually looks at the predictive density for the observed yi based on all the other
observations, i.e. π.yi|y−i/. We now explain how to approximate this quantity simply, without
reanalysing the model. First, note that removing yi from the data set affects the marginals of xi

and θ as follows:
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π.xi|y−i, θ/∝ π.xi|y, θ/

π.yi|xi, θ/
,

π.θ|y−i/∝ π.θ|y/

π.yi|y−i, θ/

where a one-dimensional integral is required to compute

π.yi|y−i, θ/=
∫

π.yi|xi, θ/π.xi|y−i, θ/dxi:

The effect of θ can then be integrated out from π.yi|y−i, θ/, in the same way as equation
(5). Unusually small values of π.yi|y−i/ indicate surprising observations, but what is meant
by ‘small’ must be calibrated with the level of xi. Pettit (1990) suggested calibrating with the
maximum value of π.·|y−i/, but an alternative is to compute the probability integral transform
PITi = Prob.ynew

i � yi|y−i/ by using the same device as above. (See also Gneiting and Raftery
(2007) for a discussion of other alternatives.) An unusually small or large PITi (assuming con-
tinuous observations) indicates a possibly surprising observation which may require further
attention. Furthermore, if the histogram of the PITis is too far from a uniform distribution, the
model can be questioned (Czado et al., 2007).

As an example, let us reconsider the stochastic volatility example of Section 5.3. The Gaussian
observational model indicates that three of the observations are surprising, i.e. PITi is close to
1 for i=331, 651, 862. These observations are less surprising under the Student tν observation
model: i.e. the same PITis are then about (1–5)×10−4.

6.4. Deviance information criteria
The DIC (Spiegelhalter et al., 2002) is a popular information criterion that was designed for
hierarchical models, and (in most cases) is well defined for improper priors. Its main application
is Bayesian model selection, but it also provides a notion of the effective number of parameters,
which we have used already; see approximation (24). In our context, the deviance is

D.x, θ/=−2
∑
i∈I

log{π.yi|xi, θ/}+ constant:

DIC is defined as two times the mean of the deviance minus the deviance of the mean. The
effective number of parameters is the mean of the deviance minus the deviance of the mean, for
which expression (24) is a good approximation. The mean of the deviance can be computed in
two steps: first, compute the conditional mean conditioned on θ by using univariate numeri-
cal integration for each i ∈I; second, integrate out θ with respect to π.θ|y/. The deviance of
the mean requires the posterior mean of each xi, i ∈I, which is computed from the posterior
marginals of xis. Regarding the hyperparameters, we prefer to use the posterior mode θÅ, as the
posterior marginal for θ can be severely skewed.

As an illustration, let us reconsider the example in Section 5.4. The effect of the age group
was modelled as a smooth curve (7), but Fig. 4(b) seems to indicate that a linear effect may be
sufficient. However, this alternative model increases DIC by 33, so we reject it.

6.5. Moderate number of hyperparameters
Integrating out the hyperparameters as described in Section 3.1 can be quite expensive if the
number of hyperparameters, m, is not small but moderate, say, in the range 6–12. Using, for
example, δz = 1 and δπ = 2:5, the integration scheme that was proposed in Section 3.1 will
require, if θ|y is Gaussian, O.5m/ evaluation points. Even if we restrict ourselves to three eval-
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uation points in each dimension, the cost O.3m/ is still exponential in m. In this section we
discuss an alternative approach which reduces the computational cost dramatically for high m,
at the expense of accuracy with respect to the numerical integration over π̃.θ|y/. The aim is to
be able to provide useful results even when the number of hyperparameters is so large that the
more direct approach in Section 3.1 is unfeasible.

Although many hyperparameters make the integration more difficult, often increasing the
number of hyperparameters increases also the variability and the regularity, and makes the
integrand increasingly Gaussian. Meaningful results can be obtained even using an extreme
choice akin to empirical Bayes, i.e. using only the modal configuration to integrate over π.θ|y/.
This ‘plug-in’ approach will obviously underestimate variability, but it will provide reasonable
results provided that the uncertainty in the latent field is not dominated by the uncertainty in
the hyperparameters.

An intermediate approach between full numerical integration and the plug-in approach is
now described. We consider the integration problem as a design problem where we lay out some
‘points’ in an m-dimensional space. On the basis of the measured response, we estimate the
response surface at each point. As a first approximation, we can consider only response surfaces
of second order and use a classical quadratic design like the central composite design (CCD)
(Box and Wilson, 1951). A CCD contains an embedded factorial or fractional factorial design
with centre points augmented with a group of 2m + 1 ‘star points’ which allow for estimating
the curvature. For m=5, the design points are chosen (up to an arbitrary scaling) as

.1, 1, 1, 1, 1, 1/, .−1, 1, 1, 1, −1/, .1, −1, 1, 1, −1/, .−1, −1, 1, 1, 1/,

.1, 1, −1, 1, −1/, .−1, 1, −1, 1, 1/, .1, −1, −1, 1, 1/, .−1, −1, −1, 1, −1/,

.1, 1, 1, −1, −1/, .−1, 1, 1, −1, 1/, .1, −1, 1, −1, 1/, .−1, −1, 1, −1, −1/,

.1, 1, −1, −1, 1/, .−1, 1, −1, −1, −1/, .1, −1, −1, −1, −1/, .−1, −1, −1, −1, 1/:

They are all on the surface of the m-dimensional sphere with radius
√

m. The star points consist
of 2m points along each axis at distance ±√

m and the central point at the origin. For m = 5
this makes np = 27 points in total, which is small compared with 55 = 3125 or 35 = 243. The
number of design points is 8 for m = 3, 16 for m = 4 and m = 5, 32 for m = 6, 64 for m = 7 and
m= 8, 128 for m= 9, 10, 11, and 256 from m=12–17; see Sanchez and Sanchez (2005) for how
to compute such designs. For all designs, there are additional 2m+1 star points. To determine
the integration weights Δk in equation (5) and the scaling of the points, assume for simplicity
that θ|y is standard Gaussian. We require that the integral of 1 equals 1, and that the integral
of θTθ equals m. This gives the integration weight for the points on the sphere with radius
f0

√
m

Δ=
[
.np −1/.f 2

0 −1/

{
1:0+ exp

(
− mf 2

0

2

)}]−1

where f0 > 1 is any constant. The integration weight for the central point is 1− .np −1/Δ.
The CCD integration scheme seems to provide useful results in all the cases that we have

considered so far. For all the examples in Section 5, as well as other models with higher dimen-
sion of θ (Martino, 2007; Martino and Rue, 2008), the CCD scheme speeds computations up
significantly while leaving the results nearly unchanged. There are cases where the integration
of θ must be done more accurately, but these can be detected by comparing the results that
are obtained by using the empirical Bayes and the CCD approach. For these cases, the CCD
integration seems to provide results that are halfway between the empirical and the full Bayesian
approaches.
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7. Discussion

We have presented a new approach to approximate posterior marginals in latent Gaussian
models, based on INLAs. The results that were obtained are very encouraging: we obtain prac-
tically exact results over a wide range of commonly used latent Gaussian models. We also
provide tools for assessing the approximation error, which can detect cases where the approxi-
mation bias is non-negligible; we note, however, that this seems to happen only in pathological
cases.

We are aware that our work goes against a general trend of favouring ‘exact’ Monte Carlo
methods over non-random approximations, as advocated for instance by Beskos et al. (2006) in
the context of diffusions. Our point, however, is that, in the specific case of latent Gaussian mod-
els, the orders of magnitude that are involved in the computational cost of both approaches are
such that this idealistic point of view is simply untenable for these models. As we said already,
our approach provides precise estimates in seconds and minutes, even for models involving
thousands of variables, in situations where any MCMC computation typically takes hours or
even days.

The advantages of our approach are not only computational. It also allows for greater auto-
mation and parallel implementation. The core of the computational machinery is based on
sparse matrix algorithms, which automatically adapt to any kind of latent field, e.g. one dimen-
sional, two dimensional, three dimensional and so on. All the examples that were considered in
this paper were computed by using the same general code, with essentially no tuning. In practice,
INLA can be used almost as a black box to analyse latent Gaussian models. A prototype of
such a program, inla, is already available (Martino and Rue, 2008) and all the latent Gaussian
models in Section 5 were specified and analysed by using this program. inla is built on the
GMRFLib library (Rue and Held (2005), appendix), which is open source and available from
the first author’s Web page. (An interface to the inla program from R (R Development Core
Team, 2007) is soon to come.) With respect to parallel implementation, we take advantage of
the fact that we compute the approximation of xi|θ, y independently for all i for fixed θ. Both
the inla program and GMRFLib use the OpenMP (see http://www.openmp.org) to speed
up the computations for shared memory machines (i.e. multicore processors); however, we have
not focused on these computational issues and speed-ups in this paper. Parallel computing is
particularly important for spatial or spatiotemporal latent Gaussian models, but also smaller
models enjoy good speed-ups.

The main disadvantage of the INLA approach is that its computational cost is exponential
with respect to the number of hyperparameters m. In most applications m is small, but appli-
cations where m goes up to 10 do exist. This problem may be less severe than it appears at
first glance: the CCD approach seems promising and provides reasonable results when m is not
small, in the case where the user does not want to take an empirical Bayes approach and will
not wait for a full Bayesian analysis.

It is our view that the prospects of this work are more important than this work itself. Near
instant inference will make latent Gaussian models more applicable, useful and appealing for
the end user, who has no time or patience to wait for the results of an MCMC algorithm, notably
if he or she must analyse many different data sets with the same model. It also makes it possible
to use latent Gaussian models as baseline models, even in cases where non-Gaussian models are
more appropriate. The ability to validate assumptions easily like a linear or smooth effect of a
covariate is important, and our approach also gives access to Bayes factors, various predictive
measures and the DIC, which are useful tools to compare models and to challenge the model
under study.
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Appendix A: Variational Bayes methods for latent Gaussian models: an example

We consider a simple latent Gaussian model that is defined by

θ ∼Γ.a, b/,

x|θ ∼N
(

0,
1
θ

R−1

)
,

y|x, θ ∼N
(

x,
1
κ

I
)

where κ is a fixed hyperparameter. Standard calculations lead to x|θ, y ∼N {
m.θ/, Q.θ/−1

}
where m.θ/=

κQ.θ/−1y, Q.θ/=θR +κI and

π.θ|y/∝ θa+n=2−1

|Q.θ/|1=2 exp
{

−bθ + κ2

2
yT Q.θ/−1y

}
:

When κ→ 0, π.θ|y/→Γ.θ; a, b/ but, in general, π.θ|y/ is not a gamma density. The Laplace approxima-
tion for θ|y is exact since y is conditionally Gaussian. We now derive the VB approximation q.x, θ/ of
π.θ, x|y/ under the assumption that q.x, θ/ minimizes the Kullback–Leibler contrast of π.x, θ|y/ relatively
to q.x, θ/, constrained to q.x, θ/ = qx.x/qθ.θ/. The solution is obtained iteratively (see for example Beal
(2003)):

q.t+1/
x .x/∝ exp[E

q
.t/
θ .θ/

log{π.x, y|θ/}],

q
.t+1/
θ .θ/∝π.θ/ exp[E

q
.t/
x .x/

log{π.x, y|θ/}]:

For our model, this gives q.t+1/
x .x/=N .x; mt+1, Q−1

t+1/ where mt+1 =κQ−1
t+1y, Qt+1 =R.a+n=2/=bt +κI and

q
.t+1/
θ .θ/ is a Γ.θ; a + n=2, bt+1/ density with bt+1 = b + 1

2 {mT
t+1Rmt+1 + tr.RQ−1

t+1/}. The limit b∞ of bt is
defined implicitly by the equation

b∞ =b+ 1
2
κ2yT

(
a+n=2

b∞
R +κI

)−1

R
(

a+n=2
b∞

R +κI
)−1

y + 1
2

tr
{(

a+n=2
b∞

I +κR−1

)−1 }
,

which is not tractable. However, when κ → 0, this transforms into b∞ = b + nb∞={2.a + n=2/}; hence
limκ→0.b∞/=b.a+n=2/=a. This means that, for data that are not very informative, the posterior marginal
for θ is close to a Γ.a, b/ density, whereas the VB approximation is a Γ{a+n=2, b.a+n=2/=a} density. The
expectations agree, but the variance ratio is O.n/. Numerical experiments confirmed these findings; for
most reasonable values of κ, the variance that is estimated by VB methods is significantly smaller than the
true posterior variance of θ. For non-Gaussian data we obtained similar empirical results.

Appendix B: Fitting the skew normal distribution

We explain here how to fit the skew normal distribution (23) to an expansion of the form

log {π.x/}= constant− 1
2

x2 +γ.1/x+ 1
6
γ.3/x3 + . . .: .31/

To second order, equation (31) is Gaussian with mean γ.1/ and variance 1. The mean and the variance of
the skew normal distribution are ξ +ωδ

√
.2=π/ and ω2.1−2δ2=π/ respectively, where δ =a=

√
.1+a2/. We
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keep these fixed to γ.1/ and 1 respectively but adjust a so that the third derivative at the mode in distribution
(23) equals γ.3/. This gives three equations to determine .ξ, ω, a/. The modal configuration is not available
analytically, but a series expansion of the log-skew-normal density around x= ξ gives

xÅ = a

ω

√
.2π/+2 ξ.a=ω/

π +2.a=ω/2
+higher order terms:

We now compute the third derivative of the log-density of the skew normal distribution at xÅ. To obtain
an analytical (and computationally fast) fit, we expand this third-order derivative with respect to a=ω:

.4−π/
√

2
π3=2

( a

ω

)3
+higher order terms .32/

and impose that expression (32) equals γ.3/. This gives explicit formulae for the three parameters of the
skewed normal distribution.
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Discussion on the paper by Rue, Martino and Chopin

Gareth Roberts (University of Warwick, Coventry)
The authors are to be congratulated on a thought-provoking and challenging contribution, which is the
culmination of an impressive body of work on analytic approximation alternatives to Markov chain Monte
Carlo (MCMC) methods in Bayesian computation. The ease and speed of implementation are appealing
and the empirical results seem impressive. The idea of focusing on large generic families of problems with
characteristic posterior distributions seems to me to be very sensible. Furthermore, the availability of R
software will greatly assist the assimilation of this methodology into statistical practice.

I particularly support the view that MCMC methods need to be challenged and improved, and the exis-
tence of alternative methodologies can only serve to encourage the development of improved methods,
based on both analytic approximations and Monte Carlo methods.

Some asymptotics
I shall make some remarks on the general problem of simulating in high dimensional space, with a view to
shedding some light on the reasons why the authors’ methodology is so rapid in comparison with off-the-
shelf MCMC methods, and to explain how some MCMC methods can improve considerably on standard
MCMC methods, though fail to approach the efficiency of the authors’ approach. The theory supporting
the attachments below can be found, for example, in Roberts and Rosenthal (2001).

Therefore consider the generic problem of simulating, approximating or calculating moments in n-
dimensional space. The computational complexity of the methods that are proposed in the paper can be
as good as O.n/. How does this compare with MCMC algorithms?

Computational complexity of implementing one iteration of an MCMC sampler is at least O.n/. How-
ever, it is also necessary to consider the mixing time of MCMC sampling. It is now well established that
for random-walk Metropolis methods (suitably optimized) the best that we can hope for is O.n/. Actually
the situation could be considerably worse for strongly dependent distributions or where algorithms are not
scaled appropriately. However, this is a realistic goal for common statistical applications. This makes the
most optimistic prediction of overall computing cost for the MCMC approach to be O.n2/. Therefore this
explains why the methods in the paper are computationally much less demanding than standard MCMC
approaches.

Can Markov chain Monte Carlo methods do better?
There are simple modifications of random-walk Metropolis methods which greatly enhance their perfor-
mance. I shall concentrate on perhaps the simplest. The Metropolis-adjusted Langevin algorithm MALA
(Besag, 1994; Roberts and Tweedie, 1996a) uses proposals something like

Y ∼N[Xt + ∇log{π.Xt /}h2=2, h2]
where π is the target density.

Implementation of MALA is typically O.n/ and its mixing time (suitably optimized) is n1=3, making an
overall cost of the order n4=3.

The following example is taken from Christensen et al. (2006) and Möller et al. (1998). The data consist
of the locations of 126 Scots pine saplings in a Finnish forest (Fig. 8). The observed point pattern modelled
as a Poisson point process X with intensity
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Fig. 8. Scots pine saplings: (a) locations of trees; (b) estimated intensity E{Λ.s/jx}
Λ.s/= exp{Y.s/},

where Y.·/={Y.s/|s∈R2} is a Gaussian process with mean E{Y.s/}=μ and covariance

cov{Y.s/, Y.s′/}=σ2 exp.−‖s− s′‖β/:

The latent Gaussian (prior) process is discretized on a 64 × 64 regular grid.
In this example, updating the latent field requires MALA updates since random-walk Metropolis meth-

ods are prohibitively slow in mixing. Here we compare the performance of the algorithm for three different
starting values. The starting values expressed in terms of Y (which must be transformed to starting values
for Γ) are

(a) Yi,j =μ for i, j =1, . . . , 64,
(b) a random starting value, simulated from the prior Y ∼N.μ, Σ/, and
(c) a starting value near the posterior mode. Let Yi,j solve the equation 0=xi,j −exp.Yi,j/− .Yi,j −β/=σ2.

In all three cases we use the scaling l2=40961=3 =0:16 where l=1:6 is derived by using ‘optimal scaling’
criteria; see for example Roberts and Rosenthal (2007) (Fig. 9).

The instability of MALA algorithms in their transient phase is well known; see Roberts and Tweedie
(1996b) and Christensen et al. (2005). However, there is an improved methodology which is robust to bad
starting values. Now, using the scaling, l2=40961=2 =0:034 (Fig. 10).
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Fig. 9. Scots pine saplings—trace plots log.γ jx/ when using the scaling 0.16: (a) starting value I; (b) starting
value II; (c) starting value III
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Fig. 10. Scots pine saplings—trace plots log.γ jx/ when using the scaling 0.34: (a) starting value I; (b)
starting value II; (c) starting value III

Stability of these methods to poor starting values therefore requires care. One would expect similar prob-
lems to afflict all competing numerical methods, and it would be interesting to find out whether similar
issues affect the methods that were introduced in the paper.

Further thoughts about asymptotics
Section 4.1 looks at several asymptotic regimes. For the type of problems that are considered in the
paper, it is important to consider a number of different regimes. For MCMC, ‘outfill’ asymptotics where
nd=n = O.1/, methods typically achieve the best possible rates for convergence times above (subject to
some kind of no phase transition problem). However, for MCMC, ‘infill’ asymptotics where nd=n=O.1/,
methods are typically much worse. Do the same issues aflict the methods of this paper in another form,
for instance instability due to almost singularity of covariance matrices?

Finally I add a remark about errors in MCMC analysis. The paper alludes to the fact that Monte Carlo
methodology (with T iterations) has error O.T −1=2/. Actually MCMC implementational methodology
typically relies on this in its empirical assessment of Monte Carlo error. It is important to recognize that
for MCMC methods the truth can be much worse than that, and there are innocuous looking situations
where

√
n–central limit theorems fail; see for example Roberts and Rosenthal (2007). Here, we just give

an informal statement of the main result in Roberts and Rosenthal (2007).

Theorem 1 (Roberts and Rosenthal, 2007). For reversible Markov chains, the following are equivalent:

(a) the chain is variance bounding (essentially the same as geometrically ergodic);
(b) for all functions f such that Eπ{f 2.X/}<∝ a

√
N–central limit theorem holds:

lim
N→∞

[
N1=2

{
N−1

N∑
t=1

f.Xt/−π.f /

}]
→N.0, σ2

f /:

Conclusions
MCMC methods can work well on problems that are described in the paper, i.e. the computational gap can
be reduced (but not removed completely), but this requires careful algorithm construction. (Perhaps there
is a role here for adaptive MCMC methods.) The authors’ work offers an appealing and rapid approxima-
tion which provides a pragmatic alternative to full posterior exploration. I think it is imperative that we
learn more about the accuracy of the approximations that are used in the paper; in particular, how this
is affected by the data. However, it is clear that this is exciting and stimulating work. I am therefore very
pleased to be able to propose the vote of thanks to the authors for their work.

Christian P. Robert (Université Paris Dauphine and Centre de Recherche en Economie et Statistique,
Malakoff )
Rue, Martino and Chopin are to be congratulated on their impressive and wide-ranging attempt at over-
coming the difficulties in handling latent Gaussian structures. In time series as well as spatial problems, the
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explosion in the dimension of the latent variable is indeed a stumbling block for Markov chain Monte Carlo
(MCMC) implementations and convergence, and recent solutions all resort to approximations of sorts
whose effect has not always been completely assessed (see, for example, Polson et al. (2008)). The double
Laplace approximation that is proposed by the authors is therefore an interesting and competing alternative
in these areas.

Nonetheless, as much as I respect the other major contributions to (Bayesian) statistics, mathematics,
and other branches of science, of my fellow Norman, Pierre Simon de Laplace, and despite earlier uses
in Bayesian statistics (Tierney et al., 1989), I have always (Robert, 1992, 1994) been wary of Laplace’s
approximation because

(a) it is not parameterization invariant,
(b) it requires some analytic computation or/and some black box numerical differentiation, while being

based on a standard second-order Taylor approximation to the log-density, and
(c) it misses a clean evaluation of the associated error.

In the present paper the amount of recourse to this approximation is particularly intense since both
π.x|θ, y/ and π.xi|θ, x−i, y/ are approximated by multilevel (nested) Laplace approximations. I, however,
contend that a less radical interpretation of approximation (3) as a proposal could lead to a manageable
MCMC implementation, at least in some settings.

My first reservation is that the calibration of those Laplace approximations seems to require a high
level of expertise that conflicts with the off-the-shelf features that are advertised in the final section of
the paper. Designing the approximation then represents an overwhelming portion of the analysis time,
whereas computation indeed becomes close to instantaneous, unless one abandons the analytical deriva-
tion for a numerical version that is difficult to trust entirely. After reading the paper, I certainly feel less
than confident in implementing this type of approximation, although I did not try to use the generic open
source software that has been carefully developed by Rue and Martino. Attempting to apply this approach
to the standard stochastic volatility model using our own programming thus took us quite a while, even
though it produces decent approximations to the marginal π.θ|y/, as Casarin and Robert will discuss here
later. I am, however, wondering whether or not approximation (3) is a proper density for any and every
model, since it is written as |Q.θ/|1=2|Q.θ/+diag{c.θ/}|−1=2 π{xÅ.θ/, θ, y}, where the dependence of both
xÅ and c on θ is quite obscure.

My second reservation is that, although the pseudomarginal (3) seems to be an acceptably man-
ageable version of the marginal posterior of θ, the additional Laplace approximations in the deriva-
tion of the marginals of the xis do not appear as crucial or necessary. Indeed, once approximation
(3) is available as a (numerical) approximation to π.θ|y/, given that θ has a limited number of com-
ponents, as hinted at on several occurrences in the paper, a regular MCMC strategy targeted at this
distribution is likely to work. This would result in a much smaller cost than the discretization underly-
ing Fig. 1 (which cannot resist the curse of dimensionality, unless cruder approximations as in Section
6.5 are used, but at a cost in accuracy). Once simulations of the θs are available, simulations of the
xs can also be produced by using the Gaussian approximation as a proposal and the true target as a
Metropolis–Hastings correction. (It is thus possible to envision the whole simulation of the pair (θ, x).)
Indeed, the derivation of π̃.xi|θ, y/ is extremely complex and thus difficult to assess. In particular,
the construction is partly numeric and must be repeated for a large number of θs, even though I under-
stand that this does not induce high computing costs. Given that the π̃.xi|θ, y/s are averaged over
several values of θ, it somehow is delicate to become convinced that this complex construction is worth-
while, when compared with an original Gaussian approximation coupled with an MCMC simulation.
Simulating a single xi or the whole vector x from the Gaussian approximation has the same precision (in
xi); therefore the dimension of x cannot be advanced as having a negative effect on the convergence of the
MCMC algorithm. Furthermore, a single run of the chain produces approximations for all xis.

My last reservation is that the error resulting from this approximation is not, despite the authors’ efforts,
properly assessed. We can check on the simpler examples that the error resulting from one of the schemes
is indeed minimal but the O.n−1

d / error rates do little for my reassurance as

(a) they involve the sample size, even though we are dealing with a fixed sample, and not a computa-
tional effort that seems to be restricted to the size of the grid in the θ-space, and

(b) they do not calibrate the error resulting from the Bayesian inference based on this approximation.

Using and comparing different approximations that are all based on the same principle (Laplace’s!) does
not provide a clear indicator of the performances of those approximations. Furthermore, resorting to the



Discussion on the Paper by Rue, Martino and Chopin 357

measure of effective dimension of Spiegelhalter et al. (2002) does not bring additional validation to the
approximation.

A minor side remark is that, from a Bayesian point of view, I find rather annoying that latent variables
and parameters or hyperparameters with Gaussian priors are mixed together in x (as in the stochastic
volatility example) and that θ coalesces all left-overs without paying any attention to the model hierarchy
(as in Section 1.3 with θ1 versus θ2). Of course, this does not impact the sampling performances of the
method, but it still feels awkward. In addition, this may push towards a preference for Gaussian priors,
since, the more (hyper)parameters with Gaussian priors, the smaller m and the less costly the numerical
integration step.

Given the potential advances resulting from (as well as the challenges that are posed by) this paper,
both in terms of modelling and of numerical approximation, I am unreservedly glad to second the vote of
thanks.

The vote of thanks was passed by acclamation.

Peter J. Diggle (Lancaster University)
The rediscovery of Markov chain Monte Carlo (MCMC) methods in the 1980s has had a profound effect
on statistical practice, enabling the apparently routine fitting of complex models to experimental and
observational data. The benefits of this are obvious, but they come at a price.

The authors of this paper raise one often-voiced concern with MCMC methods, namely that model fit-
ting can take hours, or even days, of computing time. I discount this objection when the model in question
is not in doubt—waiting days for the answer seems unexceptionable when data may have taken months
or years to collect—but it carries some force at an exploratory stage, when many competing models may
need to be fitted and their results compared.

Another familiar concern is the difficulty of asessing convergence of MCMC algorithms. This seems to
me a more important problem, and one that is fundamentally insoluble in complete generality unless and
until exact algorithms can be found for a usefully wide class of models. Until then, I see a fundamental
distinction between MCMC and direct Monte Carlo methods of inference, namely that, for the latter,
convergence is not an issue; hence the assessment of Monte Carlo error is straightforward by using
elementary methods applied to independent simulations from the target distribution.

Finally, there is an ever-present danger that the ability to fit overcomplicated models to sparse data sets
will encourage people to do precisely that. And, within the Bayesian paradigm at least, a flat likelihood is
no bar to inference and the fact that apparently innocuous prior specifications can be highly informative
in some dimensions of the multivariate posterior distribution can easily go unnoticed.

For all these reasons and more, reliable alternatives to MCMC methods would be of enormous value,
and I consider this paper to be a very important development.

I would like to be able to use the authors’ methods for geostatistical prediction. In this context X repre-
sents an unobserved, spatially continuous stochastic process and a common requirement is to be able to
draw samples from the predictive distribution of one or more non-linear functionals of X , e.g. its maximum
value over a spatial domain of interest. The authors mention in Section 6.1 the possiblity of extending
their methods to enable evaluation of the joint predictive distribution for multiple elements of X , but they
warn us that the accuracy of their methods ‘may possibly decrease’ as the dimensionality of X increases.
Do they have any more tangible results on this issue?

Leonhard Held and Andrea Riebler (University of Zurich)
In a wide-ranging paper, Besag et al. (1995) saw Markov chain Monte Carlo (MCMC) methods as ‘putting
probability back into statistics’. The authors of the paper discussed tonight are to be congratulated on
bringing ‘numerics back into statistics’. Their work proposes important extensions on numerical approx-
imations to posterior distributions (Tierney and Kadane, 1986). The accuracy and computational speed
of the integrated nested Laplace approximation (INLA), as illustrated in the examples, is remarkable
and—without doubt—INLA will replace MCMC sampling in routine applications of structured additive
regression models.

One advantage of MCMC methods is that functions of high dimensional posterior distributions can be
estimated easily. For example, Besag et al. (1995), section 6.3, proposed an algorithm to compute simulta-
neous credible bands, a useful tool for Bayesian data analysis (Held, 2004). Such bands would address the
question whether a linear age group effect is plausible in example 5.4. Similarly, there is often interest in
the posterior ranking of a large number of random effects (Goldstein and Spiegelhalter, 1996). In Section
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6.1, Rue and his colleagues consider approximations of multivariate marginal distributions of small size.
For up to what number of parameters can we compute simultaneous credible bands and posterior ranks
with INLA?

Going back to example 5.4, the question arises where exactly INLA adjusts for the sum-to-zero con-
straint on f .a/ and f .s/. Martino and Rue (2008) mention a small positive scalar c to be added to the diagonal
of the precision matrix of the unconstrained model to ensure positive definiteness. Does this include an
additional approximation error depending on c? A similar problem occurs in MCMC sampling (Knorr-
Held and Rue (2002), page 608); however, a Metropolis–Hastings step automatically corrects for c, so the
algorithm remains valid exactly.

An exciting feature of INLA is the ease with which the marginal likelihood and cross-validated prob-
ability integral transform values can be calculated. There is a large literature on how to estimate these
quantities through MCMC methods; however, some of the estimates proposed have unduly large Monte
Carlo error. A multivariate extension of the probability integral transform value, the Box (1980) density
ordinate transform has recently been suggested by Gneiting et al. (2008) as

1−P{π.YS |y−S/�π.yS |y−S/},

where yS ={yi : i∈S} and YS is the associated random vector with density π.yS |y−S/. We would be interested
to learn from the authors whether this quantity can be computed via INLA for moderate dimension of S.

Finally we are wondering whether a sequential version of INLA can be developed for dynamic models
with non-Gaussian observations to improve the accuracy of the extended Kalman filter and smoother
(Fahrmeir, 1992).

Adam M. Johansen (University of Warwick, Coventry)
I congratulate the authors on this interesting and thought-provoking paper which presents a potentially
widely applicable and practically important contribution to the field of Bayesian inference. It has been
clear from the outset, even to Monte Carlo specialists, that whenever it is possible to avoid the use of
Monte Carlo methods it is desirable to do so (Trotter and Tukey, 1956). This paper expands the class of
problems which can be addressed without recourse to such techniques.

I have two comments.

(a) An exciting aspect of this work is the impressive performance which is obtained when p=nd ∼1. In
their setting, Shen and McCullagh (1995) suggested that a Laplace approximation can be expected
to be reliable (asymptotically) if p is o.n

1=3
d / and that peculiar characteristics of individual problems

must be exploited outside this regime. The integrated nested Laplace approximation (INLA) can
clearly perform well here. Further investigation seems warranted: a clear theoretical characterization
would provide confidence in the robustness of the INLA approach; additionally, INLA may provide
some insight into what properties are required for Laplace approximation techniques to be justified
in this type of problem, perhaps using novel arguments, and this may be more generally important.

(b) Hidden Markov models, such as the stochastic volatility model of Section 5.3, in which an un-
observed, discrete time Markov process {Xn} is imperfectly observed through a second process
{Yn} such that, conditional on Xn, Yn is independent of the remainder of X and Y , are common
in time series analysis. A small number of unknown parameters are often present. It is challenging
to design good Markov chain Monte Carlo algorithms to perform inference in such models. Infer-
ence for these models is often restricted to the estimation of low dimensional marginals, often using
sequential Monte Carlo (Doucet et al., 2001) methods. Sometimes this choice is due to a requirement
that computation can be performed in an ‘on-line’ fashion (and one might ask whether it is possible
to develop ‘sequential’ versions of INLA); in other cases it is simply an efficient computational tech-
nique—see, for example, Gaetan and Grigoletto (2004). Smoothing (the problem of estimating the
marginal posterior distribution of Xk, k � t, given y1:t / as well as parameter estimation as touched
on in Section 5.3 (which is non-trivial with sequential Monte Carlo methods and computationally
intensive with Markov chain Monte Carlo methods) are of considerable interest. Existing analytic
techniques are very limited: this seems to be a natural application for INLA.

Sujit K. Sahu (University of Southampton)
In this very impressive and stimulating paper it is nice to see the triumph of integrated nested Laplace
approximations for making Bayesian inference. The paper develops easy-to-implement and ready-to-use
software routines for approximations as alternatives to Markov chain Monte Carlo (MCMC) methods
for many relatively low dimensional Bayesian inference problems. Thus, these methods have the potential
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to provide an independent check for the MCMC code written for at least a simple version of the more
complex general problem. However, the conditional independence assumption of the latent Gaussian field
in Section 1.3 seems to limit the use of the methods in many space–time data modelling problems. The
following example shows that it may be possible to relax the assumption.

Suppose that

Y|x, θ∼N.Zθ+x, Q−1
y|x/

where Z is the design matrix and Q−1
y|x is a known covariance matrix. Assume further that the latent field

x follows the multivariate normal distribution with zero mean and precision matrix Qx. A flat prior on θ
completes the model specification. As in Section 1.3, we have

π.x, θ|y/∝ exp[− 1
2 {xTQxx + .y −Zθ−x/TQy|x.y −Zθ−x/}]

= exp[− 1
2 {xT.Qy|x +Qx/x −2xTQy|x.y −Zθ/+ .y −Zθ/TQy|x.y −Zθ/}]:

From this we see that

x|θ∼N{.Qy|x +Qx/−1Qy|x.y −Zθ/, .Qy|x +Qx/−1}:

Thus, there is no need to obtain a Gaussian approximation, and we have

xÅ.θ/= .Qy|x +Qx/−1Qy|x.y −Zθ/:

Because of this exact result π̃.x|θ, y/ at x = xÅ.θ/ will be free of θ and according to equation (3) of the
paper

π̃.θ|y/∝ exp[− 1
2 .y −Zθ/T{Qy|x −Qy|x.Qy|x +Qx/−1Qy|x}.y −Zθ/],

which implies that

π̃.θ|y/=N{.ZTAZ/−1ZTAy, .ZTAZ/−1} .33/

where

A =Qy|x −Qy|x.Qy|x +Qx/−1Qy|x,

again requiring no approximations.
The marginal model here is given by

Y|θ∼N.Zθ, Q−1
y =Q−1

y|x +Q−1
x /,

with the exact posterior distribution given by

π.θ|y/=N{.ZTQyZ/−1ZTQy, .ZTQyZ/−1}: .34/

The nested approximation π̃.θ|y/ in equation (33) and the exact marginalization π̃.θ|y/ in equation (34)
are in fact identical since it can be shown that A=Qy. Thus we see that the proposed nested approximation
method, INLA, works even for spatially coloured covariance matrices for the random field as well as the
data. Thus, is it possible to relax the conditional independence assumption in general? In practice, however,
being a spatially coloured matrix, Qx will depend on several unknown parameters describing smoothness
and rate of spatial decay. It is likely that Gaussian approximations for the posterior distributions of those
parameters will be more challenging, since MCMC sampling algorithms often behave very poorly owing
to weak identifiability; see for example Sahu et al. (2007).

Roberto Casarin and Christian P. Robert (Université Paris Dauphine)
To evaluate the effect of the Gaussian approximation on the marginal posterior on θ, we consider here a
slightly different albeit standard stochastic volatility model

x, y|θ∼ σ−T−1

√
.1−ρ2/

exp
(

−1
2

[
x2

0

1−ρ2
+

T∑
t=1

.xt −ρxt−1/
2 +

T∑
t=0

{
y2

t exp.−xt/σ
−2 +xt

}])
:

(The difference from the authors’ expression is that the variance of the xts is set to 1 and that we use the
notations ρ instead of φ and σ2 instead of exp(μ).) If we look at the second-order approximation of the
non-linear term, we have
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y2
t exp.−xt/σ

−2 +xt ≈y2
t exp.−xÅ

t /σ−2 +xÅ
t + y2

t exp.−xÅ
t /

2σ2
.xt −xÅ

t /2 =1+xÅ
t + 1

2
.xt −xÅ

t /2

where xÅ
t = log.y2

t , σ2/. A Gaussian approximation to the stochastic volatility model is thus

x|y, θ∼|Q.θ/|−1=2 exp
[
−1

2

{
x2

0

1−ρ2
+

T∑
t=1

.xt −ρxt−1/
2 + 1

2

T∑
t=0

σ−2.xt −xÅ
t /2

}]
,

where the Gaussian precision matrix Q.θ/−1 has 3=2+ρ2 on its diagonal, −ρ on its first subdiagonal and
sup-diagonals, and 0 elsewhere. Therefore the approximation (3) of the marginal posterior of θ is equal to

π̃.θ|y/∝ π.x, θ|y/

πG.x|θ, y/

∝ σ−T−1|Q.θ/|1=2

√
.1−ρ2/

exp
[
−1

2

T∑
t=0

{
y2

t exp.−xt/σ
−2 +xt − 1

2
.xt −xÅ

t /2

}]
π.θ/,

for a specific plug-in value of x.
Using for this plug-in value the mode (and mean) xM of the Gaussian approximation, as it is readily

available, in contrast with the mode of the full conditional of x given y and θ as suggested by the authors,
we obtain a straightforward recurrence relation on the components of xM

−.ρxM
t+1 −ρxM

t /+xM
t −ρxM

t−1 + 1
2 .xM

t −xÅ
t /=0,

with appropriate modifications for t =0, T . We thus obtain the recurrence (t> 0)

xM
t =αtx

M
t−1 +βt ,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αT =2ρ=3,

βT =xÅ
T =3,

αt = ρ

3=2+ρ2 −ραt+1
,

βt = ρβt+1 +xÅ
t =2

3=2+ρ2 −ραt+1
, 1� t<T ,

and

xM
0 = ρβ1 +xÅ

t =2

.1−ρ2/−1 +ρ2 −α1ρ+ 1
2

:

This choice of xM as a plug-in value for the approximation to π.θ|y/ gives quite accurate results, when
compared with the ‘true’ likelihood that is obtained by a regular (and unrealistic) importance sampling
approximation. Fig. 11 shows the correspondence between both approximations, indicating that the Gauss-
ian approximation (3) can be used as a good proxy to the true marginal.

Jean-Michel Marin (Université Montpellier 2 and Centre de Recherche en Economie et Statistique,
Malakoff ), Roberto Casarin (University of Brescia) and Christian P. Robert (Université Paris Dauphine and
Centre de Recherche en Economie et Statistique, Malakoff )
The authors state that for a given computational cost the use of Markov chain Monte Carlo (MCMC)
sampling for the latent Gaussian models rarely makes sense in practice. We wish to argue against this
point: MCMC sampling, when combined with other Monte Carlo techniques, can still be an efficient
methodology.

To assess this point, we consider the same univariate stochastic volatility model as that studied by the
authors in Section 5.3. We assume that μ=0, β2 =1=τ and f0 ∼N{0, β2=.1−φ2/}. For θ= .φ, β2/, we use
a uniform prior distribution on Θ= [0, 1]× [0, 1].

We combine sequential Monte Carlo and Metropolis–Hastings (MH) algorithms. Using standard par-
ticle filters, we generate a weighted random sample of size N :SN

t ={zi
t , wi

t}N
i=1 where zi

t = .f0, f1, . . . , ft , θ/i.
This weighted random sample is targeting πt .zt |yt / where yt = .y1, . . . , yt/ is the observed process. At time
t, given SN

t−1, we obtain a new set SN
t by applying sequentially a propagation and a self-avoiding MH step.
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Fig. 11. Comparison of an importance sampling approximation (with 103 simulations) to the likelihood of a
stochastic volatility model (a)–(c) with the approximation based on the Gaussian approximation of Rue and
his colleagues and (d)–(f) when centred at xM, the mode of the Gaussian approximation: this likelihood is
associated with (a), (d) 25 simulated values with σ D0:1 and ρD0:9, (b), (e) 50 simulated values with σ D0:1
and ρD�0:3 and (c), (f) 20 simulated values with σ D0:1 and ρD�0:9
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Fig. 12. Illustrative example (N D 10 particles) of the effect of (a) ξt .α D 10�4; , π.φ j β2/; - - - - - - -,
πR.φ j β2/, ξ D 10�1; . . . . . . ., πR.φ j β2/, ξ D 10�2; � - � - �, πR.φ j β2/, ξ D 10�3/ and (b) αt .ξ D 10�2; ,
π.φ j β2/, αD1; – – –, πR.φ j β2/, αD10�2; . . . . . . ., πR.φ j β2/, αD10�3; � - � - �, πR.φ j β2/, αD10�4/ on the
density log{πR

t .φ j β2/}

The self-avoiding MH step is applied particlewise to the particle set considered as a whole, Zt =
.z1

t , . . . , zN
t / and is targeting the modified N-product of the posterior

πR
t .Zt |yt /∝

N∏
k=1

πt .zk
t |yt /

{
αt + .1−αt / exp

(
− ∑

j �=k

ξt

‖zk
t − zj

t ‖2

)}

(Mengersen and Robert, 2003). The second term in the product forces the particles to explore the posterior.
Fig. 12 presents the way that this term acts on a part of the posterior distribution. Increasing ξt induces
a heavier mass reduction in correspondence to the simulated values. Increasing αt reduces the repulsion.
After the move step from zi

t to z̃ i
t , the weights are updated as follows:

w̃i
t ∝wi

t

πR
i, t .z̃

i
t |yt /

πt .z̃
i
t |yt /

πt .z̃
i
t |yt /

πR
i, t .z̃

i
t |yt /

with

πR
k, t .z

k
t |yt /∝πt .zk

t |yt /

{
αt + .1−αt / exp

(
− ∑

j �=k

ξt

‖zk
t − zj

t ‖2

)}
:

Fig. 13 relates to the exploration of the parameter space and shows that a strong repulsion factor, when
compared with a weaker repulsion, causes a higher number of the particles to explore the tails of πt .θ|yt /:

In contrast with the two-step deterministic procedure that is described in the paper, a Monte Carlo
hybrid algorithm can thus address simultaneously the estimation and the parameter space exploration
problems. The algorithm proposed produces samples from a sequence of distributions and is thus suitable
for on-line applications. Particularly welcome would be a future extension of the Laplace approximation
framework in the context of sequential inference problems.

Sylvia Richardson (Imperial College London) and Arnoldo Frigessi (University of Oslo)
Given the identity

π.θ|y/= π.y|x, θ/π.x|θ/π.θ/{1=π.y/}
exp[− 1

2 xTQx +∑
i

log{π.yi|xi, θ/}].1=Zθ,y/

the strategy in this paper is to produce an approximating model for which the normalizing function is
easy to compute as the square-root determinant of Q plus a diagonal matrix. Alternative approaches have
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(a) (b)

(c) (d)

Fig. 13. Level sets πt.θ jyt/ at (a), (b) time t D 26 and (c), (d) time t D 50, approximated by a Monte Carlo
integration of .f0,. . . ,ft/ (we generated .y1,. . . , y50/ with φ D 0:9 and β2 D 0:1; the factors ξt and αt can be
adapted over iterations to address both exploration and estimation issues): �, particle set .N D500/ after the
self-avoiding move, with (a), (c) αt D0:95 and ξt D0:01 and (b), (d) αt D0:1 and ξt D0:1

aimed at approximating the partition function Zθ,y directly, starting with Geyer and Thompson (1992).
Have the authors given any thought to understanding the link between the two types of approximation?

Given π̃G.x|θ, y/ and π̃.θ|y/ as defined in approximation (3), define π̃.x, θ|y/ ∝ π̃G.x|θ, y/ π̃.θ|y/ and
rewrite this as

π̃.x, θ|y/∝ L̃.y|θ, x/π.x|θ/π.θ/:

In this form, the approximation that is used by the authors is equivalent to an implicit approximation
L̃.y|θ, x/ for the likelihood term of the original model. Could the authors work out which approximate
likelihood is used for some examples? Since all parameters retain their original interpretation, could we
simply use this approximate (non-Gaussian) model and forget the original model?

The emphasis is put on evaluating marginal posterior distributions in latent Gaussian models in a range
of examples with few hyperparameters. You have demonstrated that the method that you propose is com-
putationally efficient, very accurate and beneficial in this respect in comparison with alternative standard
implementations of Markov chain Monte Carlo (MCMC) algorithms. The generic nature of your computa-
tional approach is less obvious. MCMC sampling is (much) easier to implement and extend; for example,
if we wanted to depart from the latent Gaussian Markov random field, the integrated nested Laplace
approximation (INLA) involves complex numerical optimization and programming, and users will mostly
rely on existing software, rather than develop their own extensions. INLA requires the user to bring his
model into the form of equation (1). This might not be easy, and reparameterization may be necessary,
whereas MCMC methods would work with the natural parameterization. We have also experienced some
difficulties with using INLA with 3000 latent variables, which could indicate that the optimization requires
much random-access memory storage.

One crucial benefit of MCMC algorithms is their capacity to compute easily any joint posterior distri-
bution for parameters of interest. In Section 6.1, you discussed the possibility of obtaining bivariate (and
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low dimensional multivariate) posterior distributions by using INLA-generated posterior marginals and
a copula-like approximation for the joint distribution. If this works well, this would be an important step
towards embedding INLA within more general hierarchical structures and to retain inferential flexibility
that is typical of MCMC outputs.

Omiros Papaspiliopoulos (Universitat Pompeu Fabra, Barcelona)
I congratulate the authors for an excellent paper. Contrary to what is hinted in Section 7 I think that the
paper shares certain principles with Beskos et al. (2006) by devising efficient computational methods for a
particular class of models as opposed to appealing to generic Monte Carlo methods. The efficiency comes
at the cost of it not being straightforward to use the methodology outside the class.

I have two comments on the methodology: first on the use of the ratio identity for the marginal likelihood

p.y|θ/= p.y, x|θ/

p.x|y, θ/
.35/

as opposed to the integral identity

p.y|θ/=
∫

p.y|x|θ/ p.x|θ/ dx: .36/

Equation (36) has been intensively used in conjunction with importance sampling. Here the authors
approximate with a Gaussian density the denominator and use equation (35) to approximate p.y|θ/ ‘semi-
parametrically’. It is interesting to understand the full potential of equation (35). In some cases it can be
used for the exact computation of p.y|θ/, although this is not obvious from equation (36). An example
is the so-called Matérn hard core process (Matérn, 1986), which is obtained as a thinning of an initial
Poisson marked point process. A point of the process is selected if its mark is larger than all marks in a
radius of range δ >0. Here x∪y are the original marked points, y are the selected points and θ are intensity
parameters.

An alternative use of equation (35) was proposed in Beskos et al. (2006) for the simultaneous unbiased
estimation of p.y|θ/. Suppose that we can simulate from p.x|y, θ/ by using rejection sampling with proposal
q.x|y/; hence

sup
x

{
p.y, x|θ/

q.x|y/

}
=K.y, θ/<∞:

Then we have the identity

p.y|θ/=K.y, θ/α.y, θ/

where α.y, θ/ is the acceptance probability of the algorithm and can be estimated unbiasedly with simu-
lations. In Beskos et al. (2006) the simulation was performed without even computing p.y, x|θ/ by using
retrospective sampling techniques.

My second comment relates to the application of the proposed methodology to sequential estimation.
Suppose concretely that we deal with state space models with Gaussian state dynamics and data y1:T (the
stochastic volatility example that the authors consider is such an instance). The approach of the paper
directly covers the problem of computing p.y1:T |θ/. Suppose instead that we wish to compute p.y1:t |θ/, as
t varies from 1 to T. It seems to me that in general the Laplace approximation would require a compu-
tational cost of order T 2 to achieve this. I would generally be very interested in the authors’ perspectives
on how the integrated nested Laplace approximation fits in with problems in estimation of state space
models.

The following contributions were received in writing after the meeting.

Philos Kjersti Aas (Norwegian Computing Center, Oslo)
I congratulate the authors on presenting us with a most excellent and interesting paper. I am most inter-
ested in the possibilities that integrated nested Laplace approximations (INLAs) may open in this field
of financial econometrics. Volatility in financial time series is mainly analysed through two classes of
models; generalized auto-regressive conditional heteroscedastic (GARCH) models (Bollerslev, 1986) and
stochastic volatility (SV) models (Taylor, 1982). Whereas GARCH models are relatively straightforward
to estimate by using maximum likelihood techniques, the likelihood function in SV models does not have
a closed form, Hence, they require more complex inferential and computational tools. Much attention
has been devoted to the development of efficient Markov chain Monte Carlo (MCMC) algorithms for SV
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models; see for example Shephard and Pitt (1997) and Chib et al. (2002). However, the latent field and
strong correlation structures which are often found in SV models make even well-constructed MCMC
algorithms slow and their convergence dubious to assure. Hence, even though SV models in general are
recognized to be more flexible than GARCH models (Kim et al., 1998), the latter are still by far the most
popular in terms of real life applications.

It is my opinion that the INLA approach that is suggested by Rue and his colleagues may help SV
models to exit the academic world and to reach the financial industry. The most basic SV model can be
written as

rt = exp.ht=2/"t , .37/

ht =ν +φ.ht−1 −ν/+σηt , .38/

where rt and ht are the logarithmic return and log-variance at time t respectively, "t and ηt are independent
and identically distributed N.0, 1/ and ν, φ and σ are parameters to be estimated. Hence, this model belongs
to the class of latent Gaussian models, for which Rue and his colleagues have shown that MCMC calcu-
lations can be substituted by accurate deterministic approximations. One may therefore obtain accurate
approximations for the posterior marginals of the latent log-variances as well as of the model parameters
in a fraction of the time that is used by well-designed MCMC algorithms.

In financial applications, a Gaussian distribution for "t usually is too restrictive. Using the INLA
framework, the Gaussian distribution may be replaced by heavy-tailed and skew distributions like the
Student or the normal inverse Gaussian distribution (Barndorff-Nielsen, 1997) without any additional
computational cost. Another feature that is often observed for financial data is that volatility responds
asymmetrically to positive and negative return shocks (so-called leverage effects). Leverage effects may
be incorporated in SV models by letting the noise terms "t and ηt be correlated (Harvey and Shep-
hard, 1996). Does the INLA approach allow for performing approximate inference even for this kind
of model?

Sudipto Banerjee (University of Minnesota, Minneapolis)
I congratulate the authors for a fine paper on Bayesian computation for a very general class of models.
The integrated nested Laplace approximations (INLAs) that are developed here can potentially abate the
computational concerns that are associated most conspicuously with Bayesian methods. The benefits of
these ‘fast and accurate’ approximations will be more pronounced for non-Gaussian likelihoods, where
marginalization of the latent effects does not render easily tractable distributions and Markov chain Monte
Carlo sampling suffers from high auto-correlations and slow convergence.

However, the conditional independence assumption of the latent effects considerably restricts its scope.
The INLA uses conditional independence to achieve a sparse Q.θ/ in expression (9), which is crucial in
speeding up computations. Yet, this assumption precludes several more challenging Bayesian models. In
particular, I am dubious about the effectiveness of the INLA with the spatial and spatiotemporal mod-
els that are alluded to in part (c) of Section 1.2—especially for high dimensional spatial models. Here
the random effects often arise as realizations of a Gaussian process with a correlation function and, in
general, the Markovian dependence is lost. Relaxing the assumption of conditional independence would
significantly detract from the computational benefits of the INLA and π.x/ will now need to be approxi-
mated by a Gaussian Markov random field. Such approximations have been explored elsewhere (Rue and
Tjelmeland, 2002; Rue and Held, 2005), but this approach is best suited for spatial locations on a regular
grid. With irregular locations, realignment to a grid or a torus is required, which is done by an algorithm,
possibly introducing unquantifiable errors in precision. Adapting these approaches to richer hierarchical
spatial models is potentially problematic.

Another brief remark: the INLA does not deliver posterior samples. The power of Bayesian analysis lies
in the vast array of model assessment and model choice techniques facilitated by sampling-based inference.
For instance, the posterior samples from θ will immediately yield the posterior of g.θ/ for a function g.·/.
Although the authors have discussed computing posterior predictive distributions and model choice mea-
sures such as the deviance information criterion, these (and many others) may not be as easily obtained
as from Markov chain Monte Carlo sampling.

Finally, the GMRFLib C libraries have been useful to me in my research and I welcome the proposal to
translate this technology into an R package. This will considerably enhance its accessibility to researchers
in diverse fields and only then will the INLA be put to its true test.
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George Casella (University of Florida, Gainesville)
It was a pleasure to hear the presentation of the authors, and I join in congratulating them for a stimulating
paper and a new approach to the problem. In this discussion I would like to point out one fact about the
approximation that should be noted. The approximation in equation (3) starts from the fact that, from
the calculus of probabilities (Bayes’s rule),

π.θ|y/= π.x, θ, y/

π.x|θ, y/π.y/
,

but ignores the factor π.y/, which the authors call the normalizing constant. Hence, approximation (3)
suffers from both an approximation error (due to the Laplace approximation) and the error from ignor-
ing π.y/, the marginal distribution of y. Conditions under which the error in the Laplace approximation
will improve, as discussed by the authors in Section 4, will not fix the normalizing constant, which can
only be taken care of by renormalization. As an example, consider a very special case of equation (l)
where

Y ∼N.X, σ2I/,
X∼N.1θ, r2I/,
θ ∼N.0, δ2/,

where Y and X are p-dimensional vectors, 1 is a vector of 1s and θ is a scalar. In this case all approximations
are exact, and the correct π.x|y/, using equation (5) exactly, is

π.x|y/=N

(
x;

τ 2

σ2 + τ 2
A−1Y ,

τ 2σ2

σ2 + τ 2
A−1

)
,

with A= I − δ2σ211′={.σ2 + τ 2/.pδ2 + τ 2/}. However, if equation (5) is used with the approximation (3),
we obtain an expression for π̃.x|y/, the approximation, to be

π̃.x|y/=N

(
x;

τ 2

σ2 + τ 2
A−1Y ,

σ2τ 2

σ2 + τ 2
A−1

)
N

{
Y ; 0, σ2

(
I − τ 2

σ2 + τ 2
A−1

)−1 }
:

Thus, without renormalization there is potential for large errors, even if the Laplace approximation is
accurate, so equation (5) should never be used without normalization. The authors, of course, know this,
as it is discussed in Section 4.1. Moreover, in implementing the approximation in Section 3.2.1, they explic-
itly normalize (see the discussion after expression (17)), and in the implementation in Section 3.2.2 there
is implicit normalization.

However, this discussion highlights another difference between the Markov chain Monte Carlo ap-
proach and the approximation approach. The more computationally intensive Markov chain Monte
Carlo approach will often circumvent the calculation of the normalizing constant. But this must always be
done in using the approximation, and computation of the normalizing constant can sometimes, in itself,
be a difficult task.

Nikolaos Demiris (Medical Research Council Biostatistics Unit, Cambridge)
The authors are to be congratulated for an excellent paper that could enable the routine use of this wide
class of models among practitioners. I have two questions that the authors may be able to shed some light
on. From a practical perspective, interest often focuses on, possibly non-linear, functions (or function-
als) of the parameters θ and/or x. Inference for such functions is typically trivial in a simulation-based
approach such as Markov chain Monte Carlo sampling. Matters do not appear as straightforward in the
new approach, and some generic guidance to the functions that may or may not be covered with methods
based on integrated nested Laplace approximations would be particularly valuable. From a theoretical
viewpoint, I wonder whether the authors considered a non-Bayesian likelihood-based approach based on
their methods. The formula π.θ|y/=π.θ, x|y/=π.x|θ, y/ may also be written as π.y|θ/=π.y, x|θ/=π.x|θ, y/.
In view of the similarity between Laplace approximations and the pÅ-formula (Barndorff-Nielsen, 1983),
it appears that there may be some scope for further exploration of this issue.

Richard Everitt (University of Bristol)
The authors are to be congratulated on their work for two reasons: firstly, for the interesting technical
approach and, secondly, for highlighting why Monte Carlo methods should not always be the first resort



Discussion on the Paper by Rue, Martino and Chopin 367

when tackling complex inference problems. As is mentioned in the paper, the use of an approximation to
the true posterior has received much attention in machine learning but is largely out of favour in statistics.
Although the theoretical guarantees regarding the Markov chain Monte Carlo errors are appealing, for
practical applications there is certainly a place for approximation-based methods. Even if Monte Carlo
algorithms are truly the only viable approaches, it seems likely that approximation-based methods could
be used to improve the efficiency of these algorithms.

An important aspect of the integrated nested Laplace approximation approach is its generality. The
ability to obtain accurate results easily for a wide variety of models is important in itself, but the fact
that this can be achieved with minimal tuning is highly significant. The design time that is involved in an
inference method is frequently overlooked but makes a large difference to the user of a technique.

As noted in the paper, the clear limitation of the method as it stands is in cases where the dimen-
sionality of the hyperparameters is high. Do the authors believe that there is any scope to tackle this
problem through making assumptions about the distributions or conditional independences of the hyper-
parameters?

It is interesting that in the discussion the authors mention the parallel implementation of the algorithm.
Given the recent shift towards parallel computing in home and office computers (using either multicore
processors or graphics cards) it seems that parallel implementation of algorithms is an important topic in
computational statistics and should receive more attention than it does at present.

I look forward to seeing this method used to tackle applications in signal and image processing.

Ludwig Fahrmeir (Ludwig-Maximilians-Universität, Munich) and Thomas Kneib (Georg-August-
Universität, Göttingen, and Ludwig-Maximilians-Universität, Munich)
Our first comment relates to intrinsic Gaussian Markov random field (GMRF) priors. Whereas the pre-
cision matrix Q is assumed to be non-singular in Sections 1 and 2, examples 5.4 and 5.5 employ intrinsic
GMRF priors with singular Q. The difference between singular and regular prior precision may be ignor-
able for model estimation, but proper latent Gaussian models seem to be necessary to guarantee that
marginal likelihoods and Bayes factors are well defined in Section 6.2. In contrast, the predictive measure
(Section 6.3) and the deviance information criterion (Section 6.2) only require propriety of the posterior
which, under regularity conditions, can be guaranteed for a wide range of structured additive regres-
sion models even when considering partially improper priors (Fahrmeir and Kneib, 2009). Generally the
question arises, which situations require regular precision matrices Q?

The authors compare variants of the integrated nested Laplace approximation (INLA) procedure with
fully Bayesian inference based on Markov chain Monte Carlo sampling. The simplest variant of INLA
seems to be closely related to mixed-model-based inference which is based on Laplace approximations
and restricted maximum likelihood estimation for smoothing parameters. Mixed-model-based inference
in semiparametric regression has gained much attention in recent years, so it would be interesting to con-
trast it with the INLA procedure. Whereas Ruppert et al. (2003) or Kauermann (2005) took a frequentist
perspective on mixed-model-based inference, it can also be interpreted as an empirical Bayes approach
(Fahrmeir et al., 2004; Kneib and Fahrmeir, 2006, 2007).

Our final comment relates to the extensibility of the INLA procedure. The general framework in Sec-
tions 1.3, 2.1 and 2.2 suggests that there is only one stage in the model hierarchy involving GMRFs.
However, models with more than one latent Gaussian hierarchy may be of interest when local adaptivity
of the smoothing parameter will be achieved (see for example Lang et al. (2002), Lang and Brezger (2004),
Baladandayuthapani et al. (2005) and Crainiceanu et al. (2007) for adaptive regression function smooth-
ing or Brezger et al. (2007) for adaptive surface smoothing). In random-walk smoothing, the variance
could itself be assumed to follow a random-walk prior. Recently, Krivobokova et al. (2008) proposed an
approach based on Laplace approximations for locally adaptive penalized spline estimation. Although
presented in the spirit of penalized likelihood estimation, we speculate that their Laplace approximations
could successfully be improved by adapting the INLA approach.

Marco A. R. Ferreira (University of Missouri, Columbia)
I congratulate Professor Rue and his colleagues for their important contribution to the development of fast
and accurate computations for the analysis of latent Gaussian models. In addition, I applaud the authors
for making available on the Internet open source software for the implementation of their methods.

Their methodology makes use of two properties that are usually valid for latent Gaussian models:
first, the latent Gaussian process is a Markov random field; second, the hyperparameters vector is
low dimensional. In addition, the methodology implicitly assumes that the mode of the full conditional
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distribution for x for a given θ and the mode of the approximate marginal posterior for θ are unique. As
these assumptions are satisfied by many of the latent Gaussian models that are currently used in practice,
their methodology will bring substantial savings in terms of computational time for end-users.

However, I wonder what happens when the posterior distribution has multiple modes. In that case,
quasi-Newton methods will find only one local mode; then all the computations will be based on that
specific local mode. More critically, most likely the proposed method for assessing the approximation
error will not be able to detect the inadequacy of the analysis: the simplified Laplace and the Laplace
approximations based on the same specific local mode will probably have small symmetric Kullback–
Leibler divergence. Thus, to assess how appropriate is the use of their method in a specific problem, it
seems extremely important to verify the uniqueness of the posterior mode. Nevertheless, this is usually a
daunting task for most highly complex latent Gaussian models.

Montserrat Fuentes (North Carolina State University, Raleigh)
I congratulate Rue, Martino and Chopin for bringing forward new critical approaches to perform approx-
imate Bayesian inference for latent Gaussian models. My comments focus on some of the limitations of
the proposed Laplace approximation methods in the context of making Bayesian inference for spatial
or spatiotemporal data. Nowadays, statisticians are frequently involved in the spatial analysis of huge
data sets. One of the main challenges when analysing continuous spatial processes and making Bayesian
spatial inference is calculating the likelihood function of the covariance parameters. For large data sets,
calculating the determinants that we have in the likelihood function can often be infeasible. Spectral meth-
ods could be used to approximate the likelihood and to obtain the maximum likelihood estimates of the
covariance parameters (e.g. Fuentes (2007)). Stein et al. (2004) proposed another spatial likelihood approx-
imation method to reduce the computation of Vecchia’s (1988) approach and to improve the efficiency of
the estimated covariance parameters. Banerjee et al. (2008) have introduced some methodology for rank
reduction. One of the main constraints of the elegant methods proposed by the authors is that they rely
on having the maximum likelihood estimates of the covariance or correlation parameters. Therefore, in
most practical settings when working with large continuous spatial processes, their approach could not be
implemented unless it is combined with some other approximation approach (like those mentioned above)
to obtain those maximum likelihood estimates.

In a spatial setting, often the observations are spatially correlated even after conditioning on a latent
spatial process. In those situations, the residual correlation can be introduced via a spatial (or spatiotem-
poral) copula approach. For instance, if the interest is in spatial extremes a generalized Pareto distribution
could be used such that the parameters of this distribution vary according to a latent Gaussian spatial
model capturing spatial dependence. However, it is likely that there is spatial dependence which is un-
explained by the latent spatial specifications for the distribution parameters. In these common situations
with observations that are not independent given the spatially varying parameters, if the number of obser-
vations is large, then the Laplace approximations would not facilitate the inference, because the main
computational challenge is due to the copula and the large covariance matrices in the likelihood function.
A spectral approximation to the likelihood of the spatial correlation parameters would again facilitate the
computational burden.

The Laplace approximation would not work well in situations where a good representative of the prob-
ability mass is not a local maximum, which could be easily the case in spatial settings with complex non-
stationary patterns.

Alan Gelfand (Duke University, Durham)
The authors are to be congratulated on a valuable contribution for Bayesian computation. This work shows
the full maturation of effort that Rue and his colleagues have expended for nearly a decade. Over time has
come an increased appreciation of the subtleties that arise in posterior inference for hierarchical models
along with associated computational tricks to best effect approximation at various places. However, a
less sophisticated user will struggle to appreciate quantitatively when more sophisticated approximations
are needed, much less to assess their value for any particular application. Unless the authors’ technology
becomes a ‘black box’, I am sceptical of its widespread usage.

I was struck by the underlying presumption of a conditionally independent hierarchical model specifi-
cation. It reminded me that, arguably, this setting was the most successful application of Laplace approxi-
mation in the 1980s (see, for example, Kass and Steffey (1989)). It also reminded me of the need to build a
new approximation for each posterior of interest as well as the need for high dimensional posterior mode
evaluation, both of which are still part of the authors’ new technology.
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My main point, as one who now works primarily with space and space–time data, is that I believe that
the authors’ approximate inference strategy will still suffer some of the problems that plague Markov chain
Monte Carlo (MCMC) methods in fitting customary models for such data. Following the authors’ setting,
suppose a spatiotemporal process yielding a conceptual binary observation at an arbitrary location and
time. As a first comment, conditional independence may be unsuitable here since even a latent Gaussian
process model yielding smooth realizations for the binary probabilities need not reveal spatial pattern in
the realized binary outcomes. But, suppose that we seek to learn about the parameters of the covariance
function of the Gaussian process as well as to infer about the binary probabilities over space and time. It is
well known that the variance of the Gaussian process model and the space and time decay parameters are
weakly identified. Hence, MCMC implementations struggle. But these parameters fall into the authors’ θ
and I would be concerned about how well π̃.θ|y/ works in this case. The key issue here is prior specification,
with very informative priors needed for some parameters. On attending to this, we have found (Banerjee
et al., 2008) that MCMC sampling with a predictive process approximation, introducing a small amount
of white noise, handles these models very effectively and is essentially off the shelf.

Andrew Gelman (Columbia University, New York)
Statisticians often discuss the virtues of simple models and procedures for extracting a simple signal from
messy noise. But in my own applied research I constantly find myself in the opposite situation: fitting mod-
els that are simpler than I would like—models that clearly miss important features—because of limitations
of computing speed and memory.

But, after decades of Moore’s law, it is only fair to describe these as limitations on our computational
procedures. I routinely want to fit models that cannot be fitted by using existing software, even though I
know that a sufficiently simple algorithm must be out there to fit it using much less than the capabilities
of a modern desktop computer.

Examples include hierarchical models for parallel time series (e.g. trends in public opinion in each of
50 states, or models for stochastically aligning tree ring data) and varying-intercept, varying-slope logistic
regressions (in which case a covariance matrix needs to be modelled for the group level structure).

When fitting such models I lurch between various approximate methods based on point estimates and
full Gibbs–Metropolis steps which can be slow if not guided well. These two approaches meet in the middle:
approximations can be iteratively adjusted, leading ultimately to a Gibbs-like stochastic procedure, and
Markov chain Monte Carlo (MCMC) sampling becomes more efficient when guided by approximations
that have been tailored to the problem at hand.

I welcome the paper under discussion because it provides a more general way to construct these approx-
imations. I suspect that, in addition to being a competitor to Gibbs and Metropolis algorithms, this
approach ultimately can be used to make these stochastic algorithms more efficient.

As the authors note, a challenge remains with problems with many hyperparameters. It might help to
model the hyperparameters explicitly with a hierarchical model rather than to consider them as uncon-
strained in some potentially large space.

I conclude with some history. 20 years ago, importance sampling was commonly viewed as an exact
method, with MCMC sampling as a sometimes necessary but unfortunate approximation. For example,
it was sometimes proposed to start a computation with MCMC sampling and then to finish with impor-
tance sampling to obtain an exact result. Eventually, though, statisticians realized that actually existing
importance sampling is not exact but can instead be viewed as just another iterative simulation method,
and one that has no particular advantages over the Metropolis algorithm or other more clearly iterative
approaches (Gelman, 1991). As noted by Rue and his colleagues, now MCMC sampling is often perceived
to be ‘exact’, but in practice it is not.

John Haslett, Michael Salter-Townshend and Nial Friel (Trinity College Dublin)
With the assistance of Håvard Rue, we have been using integrated nested Laplace approximations (INLAs)
in inverting a multivariate non-parametric regression, i.e. given training data data ={.yi, ci/; i = 1, . . . n}
we study the distribution of c given ynew; in our application, c is two dimensional. With INLAs, it is now
possible to do fast, rather general, Bayesian, multivariate, non-parametric regression without Markov
chain Monte Carlo (MCMC) methods. Further, by an extension of their identities in Section 6.3, it is now
possible to do fast inverse cross-validation. For example, if y is multivariate—and there are cases within
the applied literature where dim.y/> 50—then model evaluation in the inverse sense is more natural. The
MCMC difficulties that were addressed in Haslett et al. (2006) and Bhattacharya and Haslett (2007)—in
particular those of model evaluation—can now be completely circumvented.
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The simplest case is as follows. A univariate count y is related to c via the density π{y; θy, x.c/} to a
smooth latent scalar function x.c/ itself modelled as a stochastic process, with smoothness parameters θy;
in fact y and x.c/ can be multivariate. One simple version leads to

π.c|ynew, data/≈k π.c/

∫
x.c/

π{ynew|x.c/; θ}π{x.c/|data; θ}dx.c/

where k is a normalizing constant. With Rue and his colleagues, we model x.c/ as an a priori Gaussian
Markov random field on a finite lattice C; invoking the INLA, x.c/ is approximately Gaussian a posteriori,
and, using the simplest of their approximations, π{x.c/|data}≈πG.θ̂/, the parameter here denoting .μ̂, τ̂ /
the mean and variance of πG.·/ evaluated at the mode. The evaluation of the integral by quadrature is fast
and adequately accurate. Since C is finite, we can normalize by evaluating the right-hand side for all c∈C.

It is possible to go further with INLA, for fast approximate cross-validation within the given data is
now possible, i.e. we can evaluate π.c|yi, data−i/ and compare with the known ci for every i. But, as we
require for each i evaluation at all c, the updates in Section 6.3 no longer suffice. However, approximate fast
updates .μ̂−i, τ̂−i/ are available, in the same spirit of the rank 1 constraint in their equation (8); see Salter-
Townshend (2008) for details. A very powerful Bayesian tool is thus available without MCMC methods.

One limitation is the dimensionality of C. When C is two dimensional on, for example, a 50-lattice, the
GMRFLib routines are more than adequately fast. But even for a 30×30×30 three-dimensional lattice we
encounter problems. What might the authors recommend?

Tom Heskes and Botond Cseke (Radboud University, Nijmegen)
The authors are to be congratulated for a very interesting and stimulating paper. For the special case of
sparse Gaussian processes with a small number of hyperparameters, the authors provide an automated
procedure for approximate inference, producing very accurate results, which is orders of magnitude faster
than Markov chain Monte Carlo methods.

We deeply appreciate the authors’ efforts to relate their own approach to the deterministic approxima-
tions that have been developed in the machine learning literature. Following up on that, we shall attempt
to shed some light on the link to expectation–propagation (EP) and discuss whether it could be used as
an alternative to the Laplace approximation.

Computing posterior marginals for θ
The authors essentially apply numerical integration with the ‘standard’ Laplace approximation to evaluate
the posterior marginal at the grid points, which they claim to be sufficiently accurate. This is somewhat
contrary to the observations in Kuss and Rasmussen (2005) (see Fig. 5), where the marginal likelihood
that was obtained by using the Laplace approximation seriously deviates from the truth. EP here does a
much better job. See Minka (2001) for other comparisons between the Laplace approximation and EP
and Seeger (2008) for an example of a Gaussian process model on which EP can still be applied but where
Laplace approximation fails.

Slightly changing its standard implementation, EP can exploit the sparsity of the precision matrix in
much the same way as the Laplace approximation. The computational bottleneck then also becomes the
computation of the Cholesky decomposition and the marginal variances (see Section 2.1). We implemented
EP for the stochastic volatility example in Section 5.3 and obtained results that were indistinguishable from
a Laplace implementation with roughly the same computational complexity.

Computing posterior marginals for the latent variables xi

For accurate approximations of the posterior marginals for the latent variables the authors have to go
beyond the Gaussian approximation that they used for computing the posterior marginals for the hyper-
parameters. A full nested Laplace approximation is (way) too expensive, as would be a full nested EP
approximation, and the authors introduce several clever tricks to obtain faster approximations thereof.
Although it is not clear to us how generally applicable these approximations are, this appears to be the
most important contribution of the paper. It is fair to say that (to the best of our knowledge) there are no
deterministic approximations in the machine learning literature that even attempt to reach the same level of
accuracy. A recent interpretation of EP as a series expansion (Opper et al., 2009) may be turned into an
alternative approach.

Nils Lid Hjort (University of Oslo) and D. M. Titterington (University of Glasgow)
The authors are to be congratulated for what promises to be a very influential contribution to practical
Bayesian analysis. The methodology is very well thought out and the examples are convincing. Of course,
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there are many models involving latent variables that do not fit the Gaussian framework that is considered
in this paper, so exploration of approximations such as variational Bayes (VB) methods and expectation–
propagation is still appropriate. As mentioned in Section 1.6, VB methods tend to underestimate posterior
variance, and experience in references such as Wang and Titterington (2005) is that the VB posterior
distribution is typically ‘similar’ to that corresponding to complete-data analysis. Indeed, for the scenario
that is considered in Appendix A, if x were known, then

θ|x ∼Γ.a+n=2, b+xTRx=2/:

If now we note that E.xTRx/=n=θ, assume as in the paper that the data are not very informative and, for a
rough-and-ready calculation, substitute θ by the mean a=b of a Γ.a, b/ distribution, then the complete-data
posterior distribution becomes the same as the VB approximation that is stated in the paper.

Although not noted at the time, this tie-up between the VB approximation and the complete-data result
is manifest in the numerical illustration of a mixture of two known densities in Humphreys and Tittering-
ton (2000). The best of the approximate methods that were illustrated there was the so-called probabilistic
editor, a recursive method based on matching first and second moments; see for example section 6.2.1
of Titterington et al. (1985). Again in hindsight, the corresponding empirical posterior variance can be
seen to be very close to that from the gold standard Gibbs sampler. In fact, the probabilistic editor can
be regarded as a recursive version of expectation–propagation. Similar empirical results are available in
Stephens (1997) and Minka (2001) and, much more recently, we have exploited this link to establish that,
at least for this and some other simple mixture problems, expectation–propagation gets the posterior
variance right, asymptotically.

Finally, we have two questions. First, is there any hope of a version of the authors’ approach that at some
level handles scenarios, like mixtures, in which the latent variables are anything but Gaussian? Secondly,
we wish to point to the ‘model builder’ methodology and software that was developed by Skaug and
Fournier (2002) and others, which make it possible to fit quite general non-Gaussian hierarchical models
with latent variables, also using Laplace approximations. Are there connections to the present paper, and
are there classes of models where both approaches may be used?

Jim Hodges (University of Minnesota, Minneapolis)
Faster computing methods are always good news, and I congratulate the authors on a brave, interesting
body of work. I have a big concern here, however: the authors’ approach appears to require unimodal
posteriors, and the authors seem to think that, in the relevant set of problems, multimodal posteriors are
so rare that they can be ignored. Specifically, they say in Section 1.5, ‘For most real problems and data sets,
the conditional posterior of x is typically well behaved and looks “almost” Gaussian’ and, again, in Section
6.2, ‘Fortunately, latent Gaussian models generate unimodal posterior distributions in most cases’. They
present no evidence to support this sanguine view, because no such evidence exists. The only systematic
evidence that I know of is Liu and Hodges (2003), which showed that, in the simplest possible case, the bal-
anced one-way random-effects model, the joint marginal posterior of the two variances becomes bimodal
quite readily. Moreover, since the restricted likelihood is always unimodal in this problem, the bimodality
arises entirely because of the prior, which suggests that the prior can create bimodality in any problem.
Further examples of bimodal posteriors for simple models and real data sets include a two-level normal
errors model (Wakefield, 1998) and a conditional auto-regressive model with two classes of neighbour
relations (Reich et al., 2007). And these are just from my own work; there is no reason to think that I am
a magnet for freak problems.

I would argue, therefore, that the authors need to take multimodality more seriously. Perhaps they can
handle multimodality with a modest extension of their method, which would be good news indeed, but,
until they show that they can detect bimodality reliably and then work their approximation in spite of it,
they really need to tone down the sales pitch.

Borus Jungbacker and Siem Jan Koopman (VU University Amsterdam)
We congratulate the authors for an interesting paper. Their main proposal is to rely on Laplace approx-
imations for the observation density π.y|x; θ/, with respect to both the latent process, represented by x,
and the parameters that drive the latent processes (which are sometimes referred to as hyperparameters),
represented by θ. Although it is not recognized by the authors, likelihood-based methods have been intro-
duced in the time series literature in papers such as Shephard and Pitt (1997) and Durbin and Koopman
(1997). They used approximating Gaussian models based on Laplace approximations similar to those



372 Discussion on the paper by Rue, Martino and Chopin

which are described in Section 2.2. The generality of this approach for the inference of θ is made evident
in Jungbacker and Koopman (2007).

The authors’ proposal is closely related to the importance sampling approach in which the likelihood
function is evaluated by Monte Carlo integration. The Monte Carlo likelihood function is given by

l̂.θ/= l̃G.θ/M−1
M∑

i=1
w.x.i//, w.x/= π.y|x; θ/

π̃G.y|x; θ/
,

for some integer M , where l̃G.y/ is the likelihood function of the approximating Gaussian model and x.i/ is
simulated from the importance density π̃G.x|y; θ/. The approximating model and the importance density
are both related to the same Laplace approximation of π.x|y; θ/. It was proposed by Durbin and Koopman
(2000) to initialize the numerical maximization of l̂.θ/ with respect to θ, by taking starting values θ = θ̃
where θ̃ is obtained from the maximization of l̃G.θ/ w. x̂/ where x̂ represents the value of x at the mode of
π.x|y; θ/. This suggestion is equivalent to step (a) in Section 3.1, in which simulations are avoided and full
reliance is given to the location of the mode x̂. The remaining steps (b)–(d) can be regarded as a numerical
approximation of the Bayesian approach that was advocated in Durbin and Koopman (2000) and not
based on Markov chain Monte Carlo sampling.

Many different inference procedures have been developed for the stochastic volatility model and they are
usually quite successful. It would, however, be more convincing when the methods are also successful for
a stochastic volatility model with leverage. It requires (negative) correlation between the standard normal
sequences "t and ηt in the model

yt = exp. 1
2 ht/ "t , ht+1 =μ+φht +σηηt , t =1, . . . , T ,

where μ, 0 < φ < 1 and ση > 0 are fixed unknown coefficients; see Jungbacker and Koopman (2007) for
further details concerning estimation based on Laplace approximations.

Andrew Lawson (Medical University of South Carolina, Charleston)
The authors are to be commended on a very interesting and innovative paper. There is a need for alterna-
tives to sometimes time-consuming Markov chain Monte Carlo (MCMC) sampling for posterior sampling.
Although the authors provide several convincing examples of the efficiency of the approach, I have a gen-
eral concern about the flexibility of the approach and the need for tuning. In the disease mapping example
(5.4) the authors assume particular priors, such as N(0,0.01) for an intercept, whereas in other examples
they use diffuse Gaussian priors for regression parameters. The authors also always use gamma priors for
precisions. There are issues arising from these choices.

(a) Are the informative priors needed, for the disease mapping example? In which case what effect does
this have on the modelling approach?

(b) A more general question is how sensitive is the approximation to changes in prior distribution and
how easy is it to implement these changes? For example, if I chose not to use gamma priors for
precisions and used the half-Cauchy priors of Gelman (2006) what would the effect be?

(c) It would also be interesting to find out how well posterior functionals can be computed (e.g., in the
disease mapping example, Pr.pi > 0:5//. I would guess that there could be a greater problem where
tail probabilities are important and shifts of probability mass are found.

(d) Is the computation of the deviance information criterion more stable than under MCMC sampling?,
i.e. can you obtain negative pDs?

Currently WinBUGS easily implements prior specification changes and can model spatial data with con-
volution models (to convergence in a reasonably small number of seconds).

Finally I take issue with two statements:

(a) ‘Despite all these developments, MCMC sampling remains painfully slow from the end-user point
of view’.

(b) In the analysis of a log-Gaussian Cox process, it is common to discretize the observation window. . .’
(Section 5.5).

In relation to the first of these, for a wide range of models MCMC sampling is reasonably fast (try
the WinBUGS examples on line!). In relation to the second: although this is convenient for the authors’
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purpose, I do not think that this is common practice at all. It would usually be more usual to analyse the
point locations as a point process.

I guess that implementing the integrated nested Laplace approximations approach for any given model
and flexibly changing that model would not be easy (without easy-to-use software that is graphical user
interface based, which is not currently available). Hence WinBUGS will remain the package of choice for
its ease (even though MCMC sampling might be painfully slow in some complex cases).

Youngjo Lee (Seoul National University)
In the Bayesian approach, simulation techniques such as Markov chain Monte Carlo sampling have been
often used. Likelihood is informative as well. To reduce the computational burden the authors propose
to use the Laplace approximation to various marginal posterior distributions π.θi|y/, π.xi|y/ etc. Here if
we take π.θ/=1 we have h-likelihood and we (Lee and Nelder, 1996, 2001a) proposed to use the Laplace
approximation to the marginal likelihood∫

π.x|θ/
∏
i∈I

π.yi|xi, θ/ dx:

We (Lee and Nelder, 2001a) showed that the form that is used in Laplace approximation is identical to the
Cox and Reid (1987) adjusted profile likelihood to eliminate fixed parameters. Thus, we can use this form
for the Laplace approximation to eliminate both fixed and random parameters simultaneously, by elimi-
nating fixed parameters by conditioning on their maximum likelihood estimators and random parameters
by integration. This allows various adjusted profile h-likelihoods (APHLs), e.g. the generalization of the
restricted maximum likelihood estimators (Lee and Nelder, 2001a). Consider the Epil example in Section
5.2. Fig. 14 shows various marginal posteriors from OpenBUGS and corresponding APHLs. They show
almost identical plots for both random and fixed effects. However, plots for dispersion components can
be different because the authors’ inverse gamma prior is informative. This leads to biases when the prior is
not right, e.g. when dispersion parameters are not random but fixed unknowns (Jang et al., 2007). APHL
could be used for sensitivity analysis of the choice of priors. If the marginal posterior is somewhat different
from the corresponding APHL the prior could be informative.

Finn Lindgren (Lund University)
A point that may not be apparent from the paper is the usefulness of the integrated nested Laplace approx-
imation (lNLA) method in the context of latent spatial Gaussian or geostatistical models. Such models
are often specified in terms of covariance models (Diggle and Ribeiro, 2006), but computationally efficient
Gaussian Markov random-field (GMRF) alternatives exist (Rue and Held, 2005). The INLA approach
promises to be an invaluable tool for practical inference for these types of GMRF models, with a wide
range of applications, e.g. in environmetrics and epidemiology. Previously, numerical optimization has
been used (Rue and Tjelmeland, 2002) to find GMRF models approximating given covariance models.
However, recent advances (Lindgren and Rue, 2007) in methods for obtaining explicit expressions for the
precision matrix can be combined with the INLA approach, fully exploiting the efficiency of sparse matrix
calculations and direct approximation of the posterior distributions.
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Spatial random fields on Rd with Matérn covariance functions

cov{x.s/, x.s + t/}∝ .κ‖t‖/ν Kν.κ‖t‖/, ν, κ> 0,

where Kν is the modified Bessel function of the second kind, are solutions to a fractional stochastic partial
differential equation (Whittle, 1954). The stochastic partial differential equation is

.β −Δ/α=2 x.s/=E.s/, β =κ2, α=ν +d=2�0,

where Δ is the Laplace operator and E.s/ is spatial Gaussian white noise. For integer values of α, an explicit
GMRF approximation can be derived (Lindgren and Rue, 2007) from a finite element construction with
local basis functions. For example, we can derive explicitly that, for a two-dimensional regular lattice, a
GMRF with precision matrix with elements from⎛

⎜⎜⎜⎜⎜⎝

b2

2ab −2bc 2ab

a2 −2ac c2 +2.a2 +b2/ −2ac a2

2ab −2bc 2ab

b2

⎞
⎟⎟⎟⎟⎟⎠, c=β +2.a+b/,

corresponds to an anisotropic Matérn covariance function with ν =1, and ranges
√

.8a=β/ and
√

.8b=β/.
The resulting covariance approximation is shown in Fig. 15.

Generalizations include construction of (possibly oscillating) fields on non-Euclidean manifolds, such
as geostatistical models on a globe, inclusion of non-homogeneous differential operators, specified either
directly, via spatial deformation (Sampson and Guttorp, 1992), or via covariates. If the extensions are
parameterized by using a few parameters, the INLA approach can be used for inference.
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William J. McCausland (University of Montreal)
I congratulate the authors on a paper which may be remembered as a key paper marking a transition away
from Markov chain Monte Carlo and importance sampling methods. To me, the most obvious and pressing
need is a more convincing way to assess approximation error. The authors assess error by comparing two
similar approximations of the target distribution with each other; it seems that respective approximations
of the target distribution have unknown properties. I hope that the authors or others can find stronger
results sanctioning the use of integrated nested Laplace approximations.

I shall also comment on the computational complexity of the simplified Laplace approximation
π̃SLA.xi|θ, y/. The cost of computing expression (22) for a given i ‘is the same order as the number of non-
zero elements of the Cholesky triangle’. The authors conjecture that the computational complexity of
doing this separately for all i is ‘close to the lower limit for any general algorithm’. Although this may
turn out to be true, I offer an example of a special case where similar approximations have lower order
cost. I believe that there is some promise for extension to more general latent Gaussian models.

In McCausland (2008), I consider models where the latent Gaussian vector .x1, . . . , xn/ has a band diag-
onal precision matrix with bandwidth 3. State space models with univariate states are important examples.
I first express the derivative of the logarithm of the integration factor c1.xi/ in

π.xi|θ, xi+1, . . . , xn, y/∝ c1.xi/π.yi|θ, xi/π.xi+1|θ, xi/

in terms of the function f.xi/ = E[xi−1|θ, xi, y]. A handful of first-order difference equations then give
coefficients of cubic approximations for all n of these functions, which leads to cubic approximations of
the log{π.xi|θ, xi+1, . . . , xn/}. This leads in turn to an O.n/ approximation of π.x|θ, y/ that is extremely
close for the example that is considered in the paper. Inspired by Rue, Martino and Chopin, I discovered
that a simple extension gives the derivative of log{c2.xi/}, where

π.xi|θ, y/∝ c2.xi/π.yi|θ, xi/,

in terms of E[xi−1|θ, xi, y] and E[xi+1|θ, xi, y]. The latter can be approximated in the same way as the
former, using the same difference equations and the time-reversed series. One can use these to compute
an approximation of all the π.xi|θ, y/ at cost O.n/.

C. McGrory (Queensland University of Technology, Brisbane), J. Marriott (Nottingham Trent University)
and A. N. Pettitt (Queensland University of Technology, Brisbane)
We very much enjoyed reading this paper and are very impressed by the computational speed which the
approximate methods enjoy, even for the large data set problem that is described in Section 5.5. We are
reminded of the early work on Bayesian computation that was carried out at Nottingham in the 1980s.
Naylor and Smith (1982) used iterative Gauss–Hermite quadrature to produce posterior expected values
for functions of the model parameters. This relies on the posterior density being approximated by a product
of a Gaussian density and a polynomial. They showed how the basic iterative Gauss–Hermite algorithm
could be applied to multiple integrals as a Cartesian product rule and subsequently incorporated spherical
quadrature in their Bayes4 software (Smith et al., 1987). The Bayes4 software routinely provides uni-
variate and bivariate posterior densities but there is an effective limit on the number of parameters at
about 12. Naylor et al. (2008) show how, in some circumstances, this number can be considerably extended;
nonetheless we note the contrast that this paper makes.

In the spatial models of Sections 5.4 and 5.5, the Gaussian Markov random field (GMRF) is chosen
to be the intrinsic second-order model which has the tendency to oversmooth. In an attempt to be less
smooth, Pettitt et al. (2002) introduced a full rank GMRF which could be used in the integrated nested
Laplace approximations context and we believe that this would be a worthwhile alternative to the intrinsic
GMRFs. A further attempt to be less smooth is to use an autologistic or Ising-type model for spatial
data with a hidden binary variable (e.g. McGrory et al. (2008)), whereas Weir and Pettitt (2000) used a
thresholded GMRF.

Another possibility (see Woolrich and Behrens (2006)) is to use a k-multivariate GMRF prior from
which a hidden k categorical variable can be approximated, to imitate a Potts model. This can be achieved
by introducing a prior distribution on the continuous weights vectors for the GMRF which results in a
posterior probability of membership of one of K discrete classes for each observation. We would like to
know whether or not the approximations of Section 3.2.2 would be sufficiently good to find good overall
approximations to the posteriors in this case.
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Debashis Mondal (University of Chicago)
To consolidate the ideas of this paper further, we indicate an empirical Bayes approach in which hyper-
parameters are estimated by using a set of empirical measurements and then posterior density of covariate
and underlying spatial effects are obtained by using the approximations described in Section 3.2, with-
out resorting to Markov chain Monte Carlo computations. Consider the longitudinal model discussed in
Section 5.2. Assume, for convenience,

β ∼N{0, τ−1
β .ZTZ/−1},

where Z forms the matrix of covariates. From the theoretical expected values of Yj,k.Yj,k −1/ and Yj,kYj,k′
for k �=k′, the moment estimate of τ−1

v is

log
{

1
177

59∑
j=1

3∑
k=1

Yj,k.Yj,k −1/

}
− log

(
1

177

59∑
j=1

∑
1�k<k′�3

Yj,kYj,k′

)
=0:1426:

We then minimize the sum of squares of deviances between the observed and the expected values of Yj,k to
obtain 0.8073 and 105.296 as respective estimates of τ−1

" and τ−1
β . With this knowledge of hyperparam-

eters, we can now advance calculations as outlined in Section 3.2. Although we sacrifice variability of
hyperparameters, the empirical Bayes procedure simplifies the computations.

In spatial mixed linear models on regular arrays, the precision parameters can be estimated by equat-
ing the theoretical variogram with the observed variogram at small lags. Once we obtain knowledge of
precision parameters, the marginal posterior means and variances for covariate and spatial effects can be
computed by using the results of Rue and Martino (2007). My on-going project extends the parametric
empirical Bayes estimation of precision parameters to Poisson and binomial spatial models. When the
latent Gaussian field has a non-singular Q, we can invoke equation (7) to evaluate marginal moments of
the observed data. However, when the latent Gaussian field is ‘first order’ intrinsic, differences of X rather
than X itself have proper distribution. Consider γi,j = 1

2 var.Xi −Xj/ to derive an extension of expression
(7) as

γi,j = 1
2L2

i, i

− 1
Li, i

∑
k>i

γk, iLk, i − 1
2L2

i, i

∑
k>i

∑
k′ �=k>i

γk,k′Lk, iLk′ , i, j> i, i=n−1, . . . , 1:

This can be used to evaluate γi,j to deduce empirical Bayes estimates of precision parameters after com-
puting appropriate expectations of empirical measurements.

The gain in the empirical Bayes approach can be taken to derive frequentist inference of spatial mod-
els, which is a long-standing difficult problem. In particular, estimation of precision parameters can be
done by moment (or variogram) expansions of marginal densities, and inference for random-treatment
and spatial effects can be based on conditional distributions or point predictors (e.g. best linear unbiased
predictors in mixed spatial models). Approximations in Section 3.2 can be used in computations of these
point predictors.

In practice, it is important to obtain marginal posterior means, variances and select number of quantiles
for covariate or spatial effects. We presume that the skew normal approximation in Section 3.2.3 provides
an efficient way to compute these quantities when the log-likelihood is skewed; how does this compare
with the general Gauss–Hermite quadrature formula (17)?

John Nelder (Imperial College London)
Since Lee and Nelder (1996) introduced the model class of hierarchical generalized linear models it has
been further extended (Lee and Nelder, 2001b, 2006). Random effects can appear in the linear predic-
tors not only for the mean but also for various variance components. With this new class heavy-tailed
distributions can be used for the various components of the model, allowing robust modelling against
misspecification of the distribution of random effects (Noh et al., 2005) and various data contaminations
(Noh and Lee, 2007a); it also allows modelling of abrupt changes (Yun and Lee, 2006) and modelling of
parametric Lévy processes for stochastic volatility in finance data (Castillo and Lee, 2008). The model
class (1) in this paper assumes normal random effects only in the linear predictor for the mean, but puts
priors on hyperparameters θ. For inferences about extended models we proposed to use h-likelihood and
introduced various adjusted profile h-likelihoods for inferences about various components of the model.
To approximate the necessary integration we have proposed to use the Laplace approximation and for non-
normal random effects the second-order Laplace approximation has been recommended (Lee and Nelder,
2001a, 2007b). With h-likelihood we can make inferences without inventing priors for hyperparameters.
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David Nott (National University of Singapore) and Robert Kohn (University of New South Wales, Sydney)
We congratulate Rue, Martino and Chopin on their paper which addresses the important issue of effective
computation for Bayesian inference. The authors demonstrate that the class of latent models that they
consider makes fast computations possible and provides important insights and solutions. The results will
be used by applied researchers and will also generate new research in Bayesian computation.

Our first comment concerns Section 6.1 where they suggest copula approximations for marginals of
subsets of x based on the univariate marginals. We have also recently developed some approximate Bayes-
ian computational methods using copulas, in particular for marginal likelihood computation in Bayesian
model comparison. The starting point for this is the so-called candidate’s formula, similar to expression
(3). Writing the set of all unknowns including any latent variables now as simply θ,

p.y/=p.θ/p.y|θ/=p.θ|y/,

which holds for any value of θ and clearly approximation of the posterior at a point allows approximation
of the marginal likelihood. A subset of the parameters could be handled non-parametrically as in the pres-
ent paper. Laplace approximation corresponds to use of a Gaussian approximation for p.θ|y/ evaluated
at the posterior mode. As an extension it is natural to approximate p.θ|y/ with a Gaussian copula and
this can be done both with and without simulation (Nott et al., 2008). Various extensions such as the use
of copulas with importance-sampling-based methods and the use of the t-copula instead of a Gaussian
copula are possible. It would be interesting to apply copula approximations to posterior distributions
based on methods for the current paper in models where those methods can be applied.

A second comment concerns the class of models that was considered. Although this class of models
is quite broad, the use of a Gaussian latent variable, a small number of hyperparameters and perhaps
most importantly the conditional independence assumptions for y given x are serious restrictions for
many applications. Future developments of the work that is described in Section 6.5 are important,
we feel, as are methods for combining the approximations that are proposed with simulation-based
methods.

J. T. Ormerod and M. P. Wand (University of Wollongong)
We concur with the authors that good analytic approximations, as an accurate alternative to Markov
chain Monte Carlo methods, are worth pursuing. These early results on integrated nested Laplace approx-
imations are impressive and we look forward to seeing how this methodology progresses. In particular
we are interested in the advertised interface from R and eventually in giving integrated nested Laplace
approximations a ‘test drive’.

Our recent research has involved work in variational approximation for similar models. Most of the
discussion in Section 1.6 pertains to a particular version of variational approximation where q.x, θ/ =
qx.x/ qθ.θ/. The phrase ‘the variational Bayes approach is not without potential problems’ and subsequent
discussion actually correspond to this one type of variational approximation, even though q.x, θ/ can be
constrained in other ways. Indeed, some variational approximations, such as those developed in Jaakkola
and Jordan (2000), do not involve Kullback–Leibler contrast. Lastly, the name ‘variational Bayes’ gives
the impression of variational approximation being specific to Bayesian approaches, which is not so.

Recently, we have explored some other approaches to variational approximations that exhibit improved
accuracy in our test examples. One approach involves applying the Jaakkola and Jordan (2000) tangent
transform idea in a gridwise fashion (Ormerod, 2008; Ormerod and Wand, 2008). Another takes the Kull-
back–Leibler contrast route but restricts q to be in a parametric family, such as the Gaussian distribution.
We close with some details on the latter approach, which we call Gaussian variational approximation, for
frequentist Poisson mixed models with a single variance component:

yij|ui
ind∼ Poisson{exp.βTxij +ui/}, ui

ind∼ N.0, σ2/, 1� j �ni, 1� i�m: .39/

The log-likelihood of .β, σ2/ is

l.β, σ2/=
m∑

i=1

ni∑
j=1

{yij.β
Txij/− log.yij !/}− m

2
log.2πσ2/

+
m∑

i=1
log

[∫ ∞

−∞
exp

{
ni∑

j=1
yiju− exp.βTxij +u/− u2

2σ2

}
du

]
:
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Table 1. Estimates and approximate 95% confidence intervals
for Gaussian variational approximation corresponding to the
example in Section 5.2 with the νij -term omitted†

Parameter Gaussian variational Exact
approximation

β0 1.924 (1.767, 2.081) 1.924 (1.766, 2.082)
βBase 0.165 (−0.128, 0.458) 0.165 (−0.128, 0.459)
βTrt 0.842 (0.013, 1.671) 0.842 (0.014, 1.673)
βBT −0.366 (−0.805, 0.072) −0.366 (−1.806, 0.073)
βAge −0.328 (−1.072, 0.416) −0.328 (1.074, 0.418)
βv4 0.236 (0.138, 0.333) 0.236 (0.138, 0.333)
τ"

−1=2 0.580 (0.466, 0.723) 0.581 (0.461, 0.700)

†Exact answers (obtained via adaptive Gauss–Hermite quadrature
are given for comparison.

A variational approach to handling the m intractable integrals is to multiply the integrand by the quotient
of the N.μi, λi/ density function with itself and to invoke Jensen’s inequality:

log

[∫ ∞

−∞
exp

{
ni∑

j=1
yiju− exp.βTxij +u/− u2

2σ2

}
exp{−.u−μi/

2=2λi}=
√

.2πλi/

exp{−.u−μi/2=2λi}=
√

.2πλi/
du

]

�EU∼N.μi ,λi/

[{
ni∑

j=1
yijU − exp.βTxij +U/− U2

2σ2

}
+ .U −μi/

2

2λi

+ 1
2

log.2πλi/

]
:

After simplification we obtain the following lower bound on l.β, σ2/:

l.β, σ2, μ, λ/=
m∑

i=1

ni∑
j=1

{yij βTxij − log.yij !/}+ m

2
{1− log.σ2/}

+
m∑

i=1

ni∑
j=1

{
yijμi − exp

(
βTxij +μi + 1

2
λi

)}
+ 1

2

m∑
i=1

{
log.λi/− μ2

i +λi

σ2

}

for all values of the variational parameters μ= .μ1, . . . , μm/ and λ= .λ1, . . . , λm/. Maximizing over these
parameters narrows the gap between l.β, σ2, μ, λ/ and l.β, σ2/ and so sensible estimators of the model
parameters are

.β̂, σ̂2/= .β, σ2/component of arg max
β,σ2,μ,λ

{l.β, σ2, μ, λ/}:

Table 1 conveys excellent performance of Gaussian variational approximation when expression (39) is
applied to the data that were used in Section 5.2. Early theoretical exploration looks promising.

Carl Edward Rasmussen (University of Cambridge)
I congratulate Professor Rue and his colleagues for their contribution to developing efficient analytic
approximation methods for a wide and practically important class of models.

I am concerned, however, about the extent to which the shortcomings of the Laplace approximation
may have been treated too lightly when advocating it as a generally applicable tool. The Achilles heel
of the Laplace approximation is expansion around the mode of the distribution. In high dimensions, for
non-Gaussian, non-symmetric posterior distributions, the mode may not be typical of the distribution;
for a skew distribution the majority of the mass may lie far to one side of the mode. This is true even
for unimodal, log-concave and otherwise fairly harmless distributions. As the Laplace approximation is
symmetric around the mode, this may seriously hamper its accuracy.

Gaussian latent variable models with a logistic likelihood is an example in point which has been stud-
ied carefully in the machine learning community, where it is known as Gaussian process classification
(Rasmussen and Williams, 2006). Careful comparisons between the Laplace approximation and other
analytical approximations as well as a Markov chain Monte Carlo gold standard (Kuss and Rasmussen,
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2005) document exactly this widespread failure mode. The expectation–propagation (EP) method (Minka,
2001) is an alternative analytical approximation method which does not suffer from this problem, as it is
based on (approximate) matching of marginal moments. The EP approximation is found to be in close
agreement with Markov chain Monte Carlo results and much more accurate than the Laplace approxima-
tion in the difficult cases where the posterior deviates significantly from Gaussianity, in terms of both the
quality of approximation to the marginal likelihood and the predictive distribution for test cases.

Kuss and Rasmussen (2005) focused on conditional distributions given the hyperparameters, but the
same numerical method suggested by Rue and his colleagues can also be used with EP to treat hy-
perparameters. Although a simple implementation of both methods scales cubically with the number
of latent variables, comparable implementations of both algorithms (available at www.gaussianpro
cess.org/gpml) show that the Laplace approximation is typically about 10 times faster than EP (and
not 8000 times faster as implied in Section 5.4). Additionally, both methods can be sparsified to achieve
a further speed-up. Whereas the Laplace approximation clearly has its merits, an exclusive reliance on it
would appear hazardous.

R. A. Rigby (London Metropolitan University)
I congratulate the authors for their general approach and also for their computational achievements.

A key equation in the paper is the approximation that is used for the marginal posterior of the hyper-
parameters θ given by equation (3).

The denominator in equation (3), π̃G.x|θ, y/, is a Gaussian approximation to π.x|θ, y/ centred at the
posterior mode xÅ.θ/ with precision matrix DÅ.θ/=Q+diag(c) derived from the curvature at the mode.
Equation (3) is evaluated by the authors at x =xÅ.θ/, giving

π̃.θ|y/= π{xÅ.θ/, θ, y}
|DÅ.θ/=2π|1=2

:

This Laplace approximation is equivalent to the formula that was used for inference about hyperparame-
ters θ by Lee and Nelder (1996), equation (4.6), in their hierarchical generalized linear models and, among
others, by Rigby and Stasinopoulos (2005), equation (12), in their generalized additive models for location,
scale and shape.

Matthias Seeger (University of Saarbrücken)
As a machine learning researcher, I welcome the publication of this paper, and the discussion that it
might initiate. Bayesian statisticians restrict themselves to a single approved approximate inference meth-
odology: Markov chain Monte Carlo (MCMC) sampling. For smooth generalized linear models with
provably unimodal (log-concave) posteriors, but strong couplings, there are solid arguments that, on a
reasonable time horizon, random sampling should be less accurate in general than deterministic approxi-
mations. Modern statistics supports decision making in new fields of science and engineering, where high
dimensional, complex models are used under time constraints. I agree with the authors that the argument
of accuracy after reasonable time cannot be taken lightly: in many applications, well served by rigorous
Bayesian statistical analysis, it is more important than vanishing error in the limit.

The authors could have presented the considerable amount of work done on variational approxi-
mate inference in machine learning, information theory and statistical physics over the last 15 years a
little more carefully; Section 1.6 seems somewhat dismissive though uninformed. Variational (mean field)
Bayes methods tend to underestimate variances, but their comment about expectation–propagation seems
ill informed. I am not convinced that their own method should fare consistently better, when compared
on an equal footing (their second-order Gaussian approximation at the conditional mode being replaced
by expectation–propagation or variational Bayes methods), and they do not present a comparison. In my
experience, each of the major deterministic approximations comes with strengths and weaknesses, as does
MCMC sampling. The technique presented here seems no exception. For example, sparse linear models,
which are of substantial interest right now, are latent Gaussian models, but the second-order Gaussian
approximation at the posterior mode is not well defined. A good Gaussian approximation can be found by
expectation–propagation or other variational approximations. Also, for provably skew posteriors (logistic
regression), it seems suboptimal to place a Gaussian approximation at the mode.

For many posteriors, MCMC sampling is still the only useful option. Often easy to implement, it can
be overly slow, and it is very difficult to use properly for non-experts. For some models, deterministic
approximations are nowadays used in many statistics applications and deserve attention in the field. Most
concepts that they rely on are grounded in statistics and probability, and they can be analysed by similar
mathematics to point estimation techniques. A wider interest among statisticians may help their properties
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to become better understood, so that practitioners can use them with the confidence that is required for
sound statistical analysis.

D. P. Simpson (Queensland University of Technology, Brisbane)
The analysis and implementation of integrated nested Laplace approximations described in this paper is
grounded in the fast, exact Cholesky algorithms for sampling from a Gaussian Markov random field intro-
duced by Rue (2001). However, as integrated nested Laplace approximation is an approximate method,
further computational savings may possibly be made through the judicious use of inexact methods. This
comment will focus on the computation of Gaussian approximations described in Section 2.2 and carry
through the formulation of integrated nested Laplace approximation in Section 3 in the obvious way.

Two key computations, the mode and the marginal variances, are required to determine the Gaussian
approximation to π.x/. The computation of the mode requires the solution of the sequence of linear
systems

{Q+diag.c.i//}μ.i+1/ = c.i/:

These systems can be solved quickly and inexactly by the preconditioned conjugate gradient method (Saad,
2003).

Consider the mth step of an orthogonal tridiagonalization

{Q+diag.cÅ/}Vm =VmTm +Em

which can be performed by using the symmetric Lanczos algorithm with a random starting vector (Saad,
2003; Stewart, 2001). This leads to the approximation to the marginal variances

{Q+diag.cÅ/}−1 ≈VmT−1
m VT

m:

For reasonable values of m, this approximation has two correct digits! These values can be refined by apply-
ing the preconditioned conjugate gradient to 1T

i {Q+diag.cÅ/}−11i. This refinement can be performed in
parallel. We note that a similar procedure does not lead to an efficient method for approximating the mode.

The computational saving can be demonstrated by considering the simple binomial regression model

yi|xi ∼Bin{n, logit−1
.xi/},

x ∼MVN.0, 5Q/,

where Q is a second-order random walk on a 50×50 grid. The data were generated from the surface
z = sin.3x/ cos.7y/ + cos.7x/ sin.4y/. All computations were performed by using MATLAB 7.4 on a
2.3-GHz Macintosh Book Pro with 2 Gbytes of random-access memory. When the reduced model was
run with m = 20, there was a saving of over a second compared with the exact Gaussian approximation
(1.785 s compared with 2.867 s), and

max
1�i�n

|σ2
i − σ̃2

i |=0:0189:

We note that, as m increases, the error in the marginal variances (Fig. 16) does not decay quickly. This
validates our assertion that this approximation requires only relatively small values of m.

Hans J. Skaug (University of Bergen)
I congratulate the authors on an innovative paper on the use of Laplace-type approximations in modern
Bayesian modelling. Apart from the computational techniques, I find the proposal that is made to assess
the accuracy of the Laplace approximation by using asymptotics in terms of pD.θ/=nd to be very prom-
ising. However, the interpretation of pD as the effective dimension of x can be misleading in the current
context. As the authors point out, for non-informative data we have pD = 0, without this meaning that
the dimension of x is 0 in any sense. It is more appropriate to think of .n−pD/=n= tr{Q.θ/QÅ.θ/−1}=n
as the relative influence of the prior on the posterior. When the (Gaussian) prior dominates, the Laplace
approximation becomes increasingly accurate.

My main comment is that several aspects of the computational machinery that is presented by Rue and
his colleagues could benefit from the use of a numerical technique known as automatic differentiation (AD)
(see Griewank (2000)). Simply put, AD is compiler-generated code for evaluating (numerically) the first-
and higher order derivatives of a mathematical function. The method outperforms finite difference-based
derivatives with respect to both accuracy and computational cost, and also differs from symbolic differ-
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Fig. 16. Maximum error in the marginal variances for varying subspace sizes: there appears to be no benefit
in taking a large m

entiation. Skaug and Fournier (2006) argued that by evaluating QÅ using AD the Laplace approximation
becomes ‘automatic’, relieving the statistician of the burden of calculating second-order derivatives. Fur-
ther, they presented a formula for the gradient with respect to θ of π̃.θ|y/, involving up to third-order
derivatives, that would be useful under (a) in Section 3.1 as well. We may view the authors’ framework as
a back-bone, where the user only has to specify a few parametric components: π.θ/, Q.θ/ and π.yi|xi, θ/,
or more generally π.y|x, θ/. By the use of AD one could obtain a system that is automatic from a user’s
perspective, almost to the same extent as with BUGS. The benefit would be a fast, flexible and easy-to-use
system for doing Bayesian analysis in models with Gaussian latent variables.

I. L. Solis-Trapala (Lancaster University)
We propose a procedure to conduct likelihood-based inference based on the marginal density of the
observational variables y. The idea, in tune with the authors’ strategy, is to explore specific features of
the models under consideration to reduce the computational effort without compromising accuracy. A
potentially useful procedure to achieve this is to implement the method of maximization by parts that was
proposed by Song et al. (2005).

The maximization-by-parts procedure involves the decomposition of the log-likelihood function into
two components,

l.θ/= lw.θ/+ le.θ/,

where lw is chosen as a ‘working’ model so that its likelihood score equation is easy to solve, but the second
derivatives of le may be challenging. To find the maximum likelihood estimate of θ, the algorithm solves the
working score equation l̇w.θ1/=0 and then recursively solves l̇w.θk+1/=−l̇e.θ

k/, where l̇ denotes the vector
of first-order derivatives of l. The algorithm is attractive because, under certain conditions, its convergence
is relatively fast and stable with little loss of efficiency relative to using the full likelihood function.

Let θ2 denote the vector of parameters that index the conditional density of the observational variables
y={yi : i∈I} given a latent Gaussian prooess x′ with mean 0 and precision matrix Q.θ1/. Note that x′ does
not contain any parameters, in contrast with the latent process x that is defined by the authors. The target
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of inference is θ= .θ1, θ2/. Under the assumption of conditional independence of the variables {yi : i∈I}
given x′, the full likelihood function of θ is proportional to

π.y;θ/=
∫

π.x′;θ1/
∏
i∈I

π.yi|x′
i;θ2/dx′,

where π.x′;θ1/ is a multivariate Gaussian density function with mean 0 and precision matrix Q.θ1/.
To conduct likelihood inference by using maximization by parts we propose a working model, where we

assume that the variables {x′
i : i∈I} are marginally independent normal random variables; and the working

posterior density πw.x′|y;θ/ is Gaussian with mean and precision as derived in Section 2.2. Under this
choice for the working model, the log-likelihood function can be expressed as

l.θ; y/= log{πw.y;θ/}+ log
{∫

π.x′;θ/

πw.x′;θ/
πw.x′|y;θ/dx′

}
, .40/

where

πw.y;θ/≡
∫

πw.x′;θ/
∏
i∈I

π.yi|xi;θ2/dx′

and πw.x′;θ/ is a multivariate normal density with mean 0 and a diagonal covariance matrix. The first
component in equation (40) involves the evaluation of |I| one-dimensional integrals that can be computed
through Gaussian quadrature; and the integral in the second component, with the Gaussian working
model, can be easily evaluated by using Monte Carlo methods even when the dimension of x′ is large. The
properties of this procedure are under current investigation.

S. H. Sørbye, F. Godtliebsen and K. Hindberg (University of Tromsø), T. A. Øigård (Institute of Marine
Research, Tromsø, and Norwegian Centre for Telemedicine, Tromsø), V. Hadziavdic (Discover Petroleum,
Tromsø) and K. Thon (Norwegian Centre for Telemedicine, Tromsø)
First of all, we congratulate the authors on a very important paper that we believe will have a huge influ-
ence in many areas of statistics. The authors have an impressive list of potential applications for their new
methodology. In this discussion we shall add to their list.

Our focus is how to utilize the integrated nested Laplace approximation (INLA) approach within scale–
space analysis, where an observed process that evolves in time and/or space is studied as a function of both
location and scale. Scale–space ideas were introduced to non-parametric curve estimation by Chaudhuri
and Marron (1999), presenting the ‘SiZer’ methodology. The main idea of SiZer is to perform inference
for several scales or smoothing levels simultaneously, detecting and visualizing significant trends of the
true curve viewed at different resolutions. Originally, inference in SiZer was based on Gaussian distribu-
tional quantile assumptions or bootstrapping. Computational improvements based on extreme value and
asymptotic theory were developed in Hannig and Marron (2006).

For Gaussian observational models, the ideas of SiZer can be combined with fast and exact Bayesian
inference, utilizing the special conditional independence structure of Gaussian Markov random fields; see
Øigård et al. (2006) and Hadziavdic et al. (2008). By applying INLA, these ideas can be extended to non-
Gaussian observational models. One example is given in Sørbye et al. (2009), where the simplified Laplace
approximation was used to extend the ideas of SiZer to spectral density estimation. Applying an integrated
Wiener process as a prior, posterior marginals of both the true curve and its first derivative can be estimated
for different locations and scales. Tests for significant trends are then evaluated straightforwardly.

Scale–space methods might be rather computer intensive for large data sets. Applying INLA, fast Bayes-
ian inference can now be obtained for the wide class of latent Gaussian models. Compared with Markov
chain Monte Carlo alternatives, inference using INLA is also very accurate. Of special importance within
scale–space applications is the fact that INLA produces posterior marginal estimates having a relative
error, implying that tail probabilities are also estimated accurately. In comparison, Markov chain Monte
Carlo techniques would produce marginal estimates with absolute error.

A very nice feature of INLA is that the methodology is easily accessed by using the inla program that
is described in Martino and Rue (2008). Different regression models are easily specified, e.g. including
covariates, unstructured effects and linear constraints. Interesting scale–space applications could involve
for example image analysis and analysis of climate data sets.
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Ingelin Steinsland and Henrik Jensen (Norwegian University of Science and Technology, Trondheim)
First we thank the authors for their contributions and also for making the methodology easily available to
others through the integrated nested Laplace approximation (INLA) program (Martino and Rue, 2008).
Our interest is in quantitative genetics, and we have two comments:

(a) the INLA methodology can be used for the animal model;
(b) issues about non-Gaussian hyperparameters.

The animal model
For the full Bayesian single-trial and multitrial animal models see Steinsland and Jensen (2005) or Sorensen
and Gianola (2002). The model is also known as the additive genetic model and is used both in evolu-
tionary biology and in animal breeding. It assumes that animal i’s trait yi can be divided into a genetic
part (or inherited part) ui ∼N.0, σ2

u/ and an environmental part "i ∼N.0, σ2
" /. ui is the breeding value of

individual i. The breeding values in a population are assumed Gaussian with a dependence that is given by
the pedigree. This gives a Gaussian Markov random-field structure and computational benefits (Steinsland
and Jensen, 2005). Hence the animal model is a structured latent Gaussian model. This is also true when
the observed trait yi is non-Gaussian, e.g. binary with a logit link to the ‘latent trait’ ηi, ηi =ui + "i, and
observations yi = logit.ηi/.

The INLA methodology enables us to find the posterior breeding values of individual animals. This is
useful for choosing the best breeding animals, and also of interest when predicting response of selection.

Non-Gaussian hyperparameters
An important quantitative genetic parameter is the heritability h2 of a trait, how much of the phenotypic
(observed trait) variance in a population that can be explained by additive genetic effects:

h2 = σ2
u

σ2
" +σ2

u

:

This is a function of two non-Gaussian hyperparameters, and we need π.σ2
" , σ2

u|y/, which was found in
Steinsland and Jensen (2005).

To obtain reasonable accuracy of the posterior heritability π.h2|y/, we have experienced that the number
of configurations of .σ2

" , σ2
u/ for which we need to calculate π.σ2

" , σ2
u|y/ is large and the computation time

increases rapidly.
Often it is of interest to consider several traits simultaneously. With only two traits we then have a

minimum of six non-Gaussian hyperparameters: the environmental and genetic variances of both traits
and the genetic and environmental correlations. The INLA methodology is valid for a small number (5 or
fewer) of non-Gaussian hyperparameters.

We find that the small number of non-Gaussian parameters is the most restrictive requirement of the
methodology. To loosen this restriction should be a topic for further research.

Jarno Vanhatalo and Aki Vehtari (Helsinki University of Technology, Espoo)
There are two major challenges in using latent Gaussian models:

(a) the inference is analytically intractable, which leads to a need for approximate inference schemes,
and

(b) the inference on the model requires inversion of the covariance matrix, which scales as O(n3/ as a
function of data size n.

Rue, Martino and Chopin tackle these problems in an elegant way and we are pleased to welcome their
paper.

In the paper, the solution for problem (b) relies on Markov random-field approximation for the latent
Gaussian field, where the conditional distribution of a latent variable depends only on a small number of
its neighbours. This leads to a sparse precision matrix, from which the authors can efficiently evaluate all
the marginal variances needed. The trade-off with this is that the prior is tied to a specified set of locations
rather than being defined in a spatially continuous way. This might be a problem, for example, in high
accuracy spatial data, which have large unpopulated areas. In such a case, it would be more desirable to
define the correlations through distance by using the covariance function. The covariance function also
gives more flexibility in defining the correlation structure and, for example, non-stationarity.

In Section 1.6 it is mentioned about expectation–propagation (EP) that ‘. . . it is not clear how to extend
this approach to fully Bayesian analysis’. However, the numerical integration scheme over hyperparameters
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θ that is presented in Sections 1.7 and 3.1 can also be applied for EP. Nickisch and Rasmussen (2008) have
shown that EP gives very accurate approximations for the marginal likelihood, which can be used to find
an approximation for the marginal posterior π.θ|y/∝π.y|θ/π.θ/. This, in turn, can be used to search the
values θk that are needed in equation (5) of the paper.

Kuss and Rasmussen (2005) showed that EP outperforms Gaussian approximation (or Laplace approx-
imation as it is called in their paper) in classification problems. In classification, the marginal posteriors
of latent values are highly skewed, for which reason Gaussian approximation at the posterior mode is not
effective. However, in our experiments, we have found that EP and a Gaussian approximation give the
same answer in disease mapping problems with Poisson count data and a Gaussian prior for the log-rel-
ative-risk. The reason for this is that the marginal posteriors of latent values are very close to Gaussian
in these models. With EP, it is attractive that it approximates the full posterior whereas integrated nested
Laplace approximation approximates only marginals. Thus, it would be interesting to compare EP and
integrated nested Laplace approximation in detail.

Christopher K. Wikle and Scott H. Holan (University of Missouri, Columbia)
We thank the authors for this timely paper describing a very useful and practical computational procedure.
We have a variety of experience with latent Gaussian models and agree that the computational issues can
be frustrating. The authors have done a very nice job of building on and improving the approach that was
described in Rue and Martino (2007). Although the approach that is presented here is fairly straightfor-
ward, its implementation from scratch would require significantly more effort than a similar Markov chain
Monte Carlo program (from scratch). However, our experience is that Markov chain Monte Carlo runs
for these models must be tailored to the given model and data set to gain the maximum efficiency. Thus,
the primary value of the methodology that is discussed here is that it provides a practical approach that
can be implemented in standard software packages. This, along with the interface to the inla program
for R, will probably lead to a much wider application of this very important and useful class of models by
subject-matter scientists and practitioners.

We feel that the two primary model assumptions concerning the latent Gaussian field (the Markov
random field and very small number of hyperparameters) are somewhat limiting for many real world prob-
lems of interest to statisticians in research collaborations with scientists. Indeed, from our perspective, the
simple low dimensional hyperparameter and Markov random-field assumptions for spatiotemporal mod-
els are fairly unrealistic for many physical and biological processes. Hierarchical models for such processes
are often significantly more complicated and require multiple levels of dependent processes and complicat-
ed process interactions. Nevertheless, we believe that the methods that are presented here provide a solid
foundation on which to base extensions and will surely lead to additional computational innovations that
will assist in providing efficient solutions to these problems as well.

Chris Williams (University of Edinburgh)
I congratulate Professor Rue and his colleagues for their line of work on deterministic approximation
methods for latent Gaussian models. In statistics Markov chain Monte Carlo approximations have been
prevalent but, as the authors point out, these approximations can be very expensive computationally, and
their goal is to popularize deterministic approximation methods. My comments focus mainly on work
from the machine learning literature, particularly the expectation–propagation (EP) method of Minka
(2001) (see also Opper and Winther (2000)) and how it relates to the current paper. I note that both EP and
mode finding for xÅ (as discussed in Section 2.2) are iterative algorithms, although EP is somewhat more
computationally expensive. I believe that EP is well behaved for latent Gaussian models with log-concave
likelihood.

Firstly, using EP we can obtain an approximation for π.xi|θ, y/ by combining the approximate Gaussian
‘cavity’ distribution for xi given the ys for all sites excluding yi, and the exact likelihood π.yi|xi/. It would
be interesting to know how this compares with the approximations that are used in Section 3.2.

Secondly, in the paper a Laplace approximation is used for π̃.y|θ/, as (implicitly) in equation (3). The
EP method also produces an approximation to this quantity. Kuss and Rasmussen (2005) have made a
nice comparison of the fidelity of these two approximations for a Gaussian process classification problem,
using ‘ground truth’ computed by the annealed importance sampling method (Neal, 2001). The results
show that the EP method provides a much more accurate approximation than the Laplace approximation.
This issue is also discussed in section 3.7 of Rasmussen and Williams (2006).

Finally, in Section 4.1 the authors discuss asymptotics for π̃.θ|y/. These can be somewhat complicated
when the model dimensionality n grows along with the number of observations nd . One attractive frame-
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work to study this issue is for Gaussian process models where essentially n is infinite for non-degenerate
covariance functions (but with summability conditions on the eigenvalues), but nd increases steadily. Here
θ indexes the parameters in the covariance function. In this case Stein (1999) contrasted the regimes of fixed
domain asymptotics (where one obtains increasingly dense observations within some region) with increas-
ing domain asymptotics (where the size of the observation region grows with nd). Increasing domain
asymptotics are a natural choice in a time series context but fixed domain asymptotics seem more natural
in spatial settings. For a discussion of the asymptotic theory here see Stein (1999), section 6.4.

The authors replied later, in writing, as follows.

We thank all the discussants for their insightful and supportive comments. Below we give our response
to the main issues that are raised in the discussion; for brevity, many of the more detailed questions are
unfortunately left unanswered. We would like to start with a general response before answering more in
detail.

We consider latent Gaussian models (LGMs) to be a very important class of models, and we think
that the unification into LGMs allows a unified approach for Bayesian inference and, possibly, also for
theoretical analysis.

Among all generic algorithms for LGMs, the performance of the (approximate or not) inference algo-
rithm is the main measure of success. By performance, we mean quality of the results compared with
the exact results, when used central processor unit time is accounted for. We consider the complexity
of implementation of the algorithm to be less important, as the algorithm is generic and then highly
reusable.

We consider the integrated nested Laplace approximation (INLA) approach to be a good candidate
for a generic algorithm for LGMs (under the assumptions that were stated earlier on) when the task is to
compute posterior marginals. The performance of INLAs for joint inference is still unclear.

Our INLA approach does not imply that further research on Markov chain Monte Carlo (MCMC)
methods is no longer needed; nor should it be seen as a competitor to MCMC methods. The overall goal is
to make Bayesian inference in a reliable and computationally efficient way; an issue which seems somewhat
neglected these days within the statistical community.

We now give a more detailed response.

The complexity of integrated nested Laplace approximations
Gelfand, Robert, Richardson and Frigessi express concerns about the complexity of INLAs. We agree that
our approach is complex to implement, but at least it provides Bayesians with their omelet while it is
still hot. (Haslett and his colleagues report that with INLAs they can finally taste the Bayesian omelet!)
Moreover, owing to the simple form of LGMs, much of the code is reusable and a generic implementation
of INLAs is already available. We do not understand the high level of expertise argument from the user’s
point of view, as our approach is essentially off the shelf as announced. An R interface is already available
and we invite Ormerod and Wand , and others, to give INLA a ‘test drive’; see also the supportive comment
by Banerjee, Ferreira, Haslett and his colleagues and Sørbye and her colleagues.

Comparison with Markov chain Monte Carlo methods
We agree with Diggle, Gelman, Roberts and Williams, who mention the high computational cost of MCMC
sampling in large dimensional problems and the general difficulty of assessing convergence of such algo-
rithms. (Assessment of convergence is difficult for the same reason that makes MCMC methods work.)
The high cost is especially prominent in situations where multiple models and priors must be considered.
Precise estimates, like those reported in the paper, require much computational effort even for simple mod-
els. Less precise estimates can be provided in shorter time; see Lawson. See also Roberts for an interesting
discussion on the theoretical limit of the performance of MCMC sampling with respect to the dimension
of the sampling space.

Everitt, Gelman and Robert suggest that some of our insights could be used to derive better MCMC
schemes, like using π̃.θ|y/ and π̃G.x|θ, y/ to define block sampling schemes. Such approaches are indeed
possible; see Rue et al. (2004) and Rue and Held (2005) for a discussion of these and related approaches
for LGMs in general, and the references that were mentioned by Jungbacker and Koopman for dynamic
models. Some insight from INLAs can be used to derive the following semi-MCMC scheme. Assume that
we want to infer some function g.x, θ/. For each configuration of θk (see Section 3.1), sample x.1/, x.2/, . . .
from π.x|θk, y/ by using for example the Gaussian or some improved approximation, and estimate the
conditional density from {g.x.k/, θk/}. Finally, integrate these densities over θk by using expression (5).
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The conditioning on θk will grossly simplify the MCMC algorithm as the strong dependence between θ
and x is broken, and the samples computed for each θk can be run in parallel. Like INLA, this scheme
assumes few hyperparameters and is not feasible otherwise.

As we argued earlier, the scope of MCMC-based inference for LGMs depends on the type of statistics
that we want to infer, so the effort of Marin and his colleagues must be seen in that context. As long as the
task is to obtain posterior marginals of {θk} and/or {xi}, the INLA seems to us superior as long as the
assumptions are valid.

Banerjee, Demiris, Diggle, Held and Riebler, and Nott and Kohn ask whether we can do joint inference
within the INLA framework, like computing joint credibility intervals (Held and Riebler) or infer maxi-
mum values (Diggle). (Although INLAs provide posterior marginals, it can be extended as discussed in
Section 6.1.) These issues will require more work; joint credibility intervals might be within reach as they
are known analytically for the Gaussian distribution, whereas maximum values are not. See also Nott and
Kohn for an interesting connection with their own research on a similar issue.

Gelfand is concerned about how well INLA behaves for weakly identified parameters; the accuracy of
the INLA approach depends on the quality of the Gaussian approximation, not whether some parameters
are weakly identified or not. Banerjee is concerned about the requirement that the latent field is a Gaussian
Markov random field with sparse precision matrix; but any Gaussian distribution will do at a potentially
higher computational cost. The new results of Lindgren (which we believe are very important) provide
explicit results about concerns that are raised by Banerjee and Gelfand.

Comparison with machine learning methods
Williams, Heskes and Cseke, Hjort and Titterington, Rasmussen, Seeger and Vanhatalo and Vehtari mention
interest in comparing the INLA approach with expectation–propagation (EP). In short, the idea in EP
is to fit a Gaussian distribution by matching the marginals instead of matching the mode and the curva-
ture at the mode. The INLA approach can obviously be modified by using other definitions of ‘Gaussian
approximation’ and we welcome any study of this kind!

A note to the reader: in the machine learning literature, the expression Laplace approximation is also
used for what we denote the Gaussian approximation π̃G.x|θ, y), which is unfortunately a source of confu-
sion. We reserve that expression for situations where the Gaussian distribution is used to marginalize out
some variables like expression (3).

EP requires more calculation than the Gaussian approximation as it is more iterative in nature. By using
sparsity (as noted by Heskes and Cseke and Rasmussen), these calculations can be speeded up. It is likely
that this sparse (matrix) variant of EP can deal with linear constraints at a slightly increasing cost. EP also
requires some adaptation to the likelihood under study; see Kuss and Rasmussen (2005). If these extra
efforts are required for difficult problems, so be it.

We believe that one reason for the comment by Heskes and Cseke about approximating π.xi|y/,

‘it is fair to say that there are no deterministic approximations in the machine learning literature that
even attempt to reach the same level of accuracy’,

is the repeated use of the Gaussian approximation. Instead of trying to approximate π.xi|θk, y/ directly like
EP, we repeatedly make use of the Gaussian approximation to π.x−i|xi, θk, y/ as a function of xi. This is
the underlying idea of the Laplace approximation, and it allows for improved accuracy using a sequence
of potentially lower quality approximations. In the context of binary classification that was discussed by
Kuss and Rasmussen (2005), we would like to illustrate this difference on a simple example that mimics
their Fig. 7. Let n=2, θ=∅ and

π.x|y/∝ exp

{
−1

2
xT

(
1 ρ

ρ 1

)−1

x

}
Φ.cy1x1/Φ.cy2x2/,

where Φ.·/ is the cumulative distribution function for a standard normal distribution and c is a scaling fac-
tor. Various marginals for x1 are plotted in Fig. 17(a) for y1 =y2 =−1, c=3 and ρ=0:8; the true marginal
(the full curve), the Gaussian approximation (the chain curve) and the Laplace approximation (the broken
curve). Although the Gaussian approximation is quite far off, its repeated use provides a good approxi-
mation. By increasing the constant c the skewness increases and the Laplace approximation becomes less
precise (narrower) but it is still better than Fig. 7a in Kuss and Rasmussen (2005). The repeated use of
simpler approximations is also evident in our suggestion (30) for approximating the marginal likelihood
with unknown hyperparameters. We believe that this approximation will improve on that used in Kuss and
Rasmussen (2005) and Kass and Vaidyanathan (1992).
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Fig. 17. (a) Posterior marginals for the binary classification example and (b) joint posterior marginal in the
multimodality example

We welcome the preview of the promising variational Bayes approach of Ormerod and Wand , and we
thank Hjort and Titterington for an interesting interpretation of variational Bayes methods as an approx-
imation of the complete-data likelihood.

Properties of Laplace approximations
We agree with Johansen, McCausland, Roberts, Robert and Williams, who call for a better asymptotic
assessment of the approximation error. This is a difficult issue, as it is always possible to consider the
model of interest as an element of a well-chosen sequence of models that ensures that the approximation
error vanishes as required, but it might not be very helpful to assess the error for the model of interest.
It might be somehow contradictory to formalize properly the good performance of our approximations
using asymptotic arguments, as the good performance seems directly related to how much the Gaussian
prior departs from Gaussianity when conditioned on the observations. We agree that more work in this
direction is welcome, even if our own attempts seem to suggest that this may be arduous. In connection
with this discussion, Roberts notes that the performance of MCMC methods is better under outfill than
infill asymptotics, whereas for the INLA approach we conjecture that it is the opposite for the approxima-
tion of π.xi|θk, y/: in the outfill regime, additional observations are added further away, thus preventing
the approximation error from vanishing to 0.

Robert recalls that the Laplace approximation is not parameterization invariant. Although this is true
in general, we note that INLA is invariant (up to numerical integration) to one-to-one transforms of θ and
invariant to linear transforms of the latent Gaussian x. Further, Robert finds it ‘rather annoying’ that a
hyperparameter can appear in the latent field, e.g. the mean of the auto-regressive process in the stochastic
volatility example. We can assure Robert that this is just a computational trick and that this particular
hyperparameter does not lose its interpretation of being a hyperparameter in any sense; sometimes it is
beneficial to separate the modelling and the inference steps.

Part of the inaccuracy that was reported by Casarin and Robert seems due to their use of the Taylor
series expansion around the fixed point xÅ

t = log.yt=σ
2/, which can be far off the modal configuration for

large |ρ|.
Fahrmeir and Kneib, Lee, Nelder, Rigby and Solis-Trapala rightly point out that Laplace approximations

are also used in frequentist contexts; see for example the references that are cited in their discussions. In
return, it may be possible to reuse some of our ideas in frequentist situations, as mentioned by Demiris.
Papaspiliopoulos nicely discusses a possible implication of what Besag (1989) denoted a ‘candidate’s for-
mula’, which is indeed curious!

Practical aspects and extensions
Ferreira and Hodges mention the issue of multimodality. In short, we cannot deal with multimodality of
π.x|θ, y/ but we can, to some extent, deal with multimodality (when the modes are sufficiently close) of
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π.θ|y/. To illustrate this issue, we have reanalysed model (5.1) in Hodges (1998); our approximation for
the joint marginal for the two log-precisions is displayed in Fig. 17(b). Our integration strategy will, with
some more conservative settings, detect also the other mode in this particular example. It might be useful
to modify the integration strategy to be aware of the events ‘increasing π̃G.θ|y/ with increasing distance
from the modal configuration’, as this is an indicator for a second mode. Since we explore π̃G.θ|y/ directly,
it is easier for INLA to detect multimodality than for an MCMC scheme where the exploration of θ also
depends on the current state of x.

We thank Simpson for his comments on approximate linear algebra which is also better suited for parallel
implementation; the approach for approximating the marginals is particularly interesting. Skaug suggests
the use of tools for automatic differentiation which will simplify the implementation.

We thank Aas, Haslett and his colleagues Lindgren, Mondal, Steinsland and Jensen, and Sørbye and her
colleagues for their supportive comments and their nice examples of application of our approach in their
respective fields.

We agree with Skaug’s alternative interpretation of pD.
We agree with Everitt, Fahrmeir and Kneib, Gelman, Steinsland and Jensen, and Wikle and Holan that

there are several applications where the number of hyperparameters is large(r), e.g. adaptive smoothing
as mentioned by Fahrmeir and Kneib. As Everitt and Gelman point out, adding structure through an
additional hierarchical level may be useful. Alternatively, one may use the extension that we propose in
Section 7 or, more expediently, one may ignore the uncertainty with respect to the hyperparameters θ,
by approximating π.θ|y/ by a Dirac mass centred at either the posterior mode of θ or some other esti-
mate; see Mondal for an example based on empirical Bayes methods. (Note that this approach removes
the exponential complexity of the integration!) In that respect, the posterior mode of π̃.θ|y/ can also be
obtained (for some models) by an (approximate) EM algorithm, where the expectation step involves the
Gaussian approximation π̃G.x|θ, y/. This can be an interesting alternative, since EM algorithms can be
quite efficient and are typically quite robust to bad starting points.

We agree with Papaspiliopoulos and Roberts on (quoting Roberts): it is by ‘focusing on large generic
families of problems with characteristic posterior distributions’ that we can provide approximations that
are both fast and accurate. Conversely, extending our approach to models that differ more or less markedly
from the class that we currently consider may be difficult, in particular for models (and situations) that were
mentioned by Fuentes, Hjort and Titterington and McGrory and her colleagues. We mention one possible
class of extensions, which seems to be within reach. Consider u∼f.u/, where u is univariate. Rewrite f.·/
as

f.u/= exp.− 1
2 u2 + [log{f.u/}+ 1

2 u2]/:

Using this alternative interpretation, a non-Gaussian u can be considered as a Gaussian variable observed
with a particular ‘likelihood’. Extensions of this idea are immediate. However, it will require that we
allow observation yi to depend on {xj : j ∈Si} (but still conditional independent), where card.Si/�1; an
extension that is also required for stochastic volatility models with leverage (see Aas, and Jungbacker and
Koopman). Although this is conceptually straightforward, our current implementation does not support
this. Related are also the concerns of Banerjee, Gelfand, Nott and Kohn and Sahu, that conditional inde-
pendence of the observations conditioned on .x, θ) is a strong assumption in several applications. It is
perhaps less strong than it might appear at first; see the example by Sahu.

Held and Riebler, Johansen and Papaspiliopoulos mention the possibility of extending INLA to sequen-
tial problems, where the size of the latent field grows linearly with time. Such an extension would surely
be of interest, as it could improve on approximations such as the extended Kalman filter which can be
interpreted as the sequential version of the simple Gaussian approximation.
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