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are simulated, one for each density gk in the ladder. Bach chain moves on its own but with
occasional Qipping of states between chains, with a Metropolis accept-reject Tule similar ¢,
that in simulated tempezing. At convergence, the simulations from chain O represent drawsg
from the target distribution.

Other auxiliary variabie methods have been developed that are tailored to particular
structures of multivariate distributions. For example, highly correlated variables such a5
arise in spatial statistics can be simulated using multigrid sampling, in which computations
are done alternately on the original scale and on coarser scales that do not capture the locg)
details of the target distribution but allow faster movement between stales.

Particle filtering, weighting, and genetic algorithms

Particle filtering describes a class of simulation algorithms involving parallel chains, in which
existing chains are periodically tested and allowed to die, live, or splif, with the rule get
up so that chains in lower-probability areas of the posterior distribution are more likely to
die and those in higher-probabiiity areas are more likely ta split. The idea is that a large
mimber of chains can explore the parameter space, with the birth/desth/splitting steps
allowing the ensemble of chains to more rapidly converge o the target distribution. The
probabilities of the different steps are set up 80 that the stationary distribution of the entire
process is the posterior distribution of interest.

A related idea is weighting, in which a simulation is performed that converges to a spec-
ified but wrong distribution, g(0), and then the final draws are weighted by p(Bly)/g{f). In
more sophisticated implementations, this reweighting can be done throughout the simula-
tion process. It can sometimes be difficuls or expensive to sample from p(6ly} and faster to
work with a good approximation g if available. Weighting can be combined with particle
filtering by using the weights in the die/live/split probabilities.

Genetic algorithms are similar to particle filtering in having multiple chains that can
live or die, but with the elaboration that the updating algorithms themselves can change
{‘mutate’) and combine (‘sexual reproduction’). Many of these ideas are borrowed from
the npumerical analysis literature on optimization but can also be effective in a posterior
simulation setting in which the goal is to copverge $o a distribution rather than to a single
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" mentum é\ggi_@ased on rules imitating the behavior of position the steps can move rapidly

o 1

An inherent inefficiency in the Gibbs sampi;r and Metropolis algorithm is their random walk

b havior o6 {lustrated in Figures 11.1 and 11.2 on pages 276 and 277, the simulations
can take a long time zigging and zagging while moving through the target distribution.

Reparameterization and efficient JUmping rules can improve the situation {see Sections 2.1

afid 12.2), but for ‘complicated models this }OE@_IIandQEI} ‘walk behavior remains, especially

for high-dimensional target distributions.
Humiltonion Monte Carlo (HMC) borrows an idea from physics to suppress the iocal

—ssidom walk behavior in the Metropolis algorithm, thus allowing it to move much more
rapidly through thej:g;_g@@istriﬁﬁ%@pn. For each component G,.in the tagget_sP?_:r_;é'; Hamilto-"

nian Monte Carlo adds a ‘m&iﬁéﬁfugﬁgvﬁibl_é ;. Both § and ¢ are then updated together

i a new Metropolis algorithm, in which the jumping distribution for f is determined largely

by B ¥ ng ¢h iteration of HMC proceeds via several steps, during which the position 8 nd mo-

“where possible through the space of § and even can turn corners in parameter gpace t0

preserve the total ‘energy’ of the trajectory. Hamiltonien Monte Carlois also called ﬁgbﬂ'd
Monte Carlo because it combines MCMC and deterministic V@fn_qg@fc}pp)gpﬁe_@gés. o
"the posterior density p{0ly) (which, as usual, needs only be computed up
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iltiplicative constant) is aﬂgmented by an, independent distribution p(gb) on the
o lfhus defining a joint distribution, p(8, gb]y) = p(¢)p(fly). We simulate from the
;1but10n put we are only interested in the simulations of 8; the vector ¢ is thus
liary vanable, mtroduced only to enable ‘the algorithm to move faster through the™
ter space.-
Jition to the posterior density (which, as usual, needs to be computed only up
Sitiplicative constant), HMC also requires the gradlent of the log-posterior density.
tice the gradlent must be computed analytmal’[f}, numer;g@LQﬁerMOn requlres
¥ function evaluations to be computationally effective. If # has d dimensions, th;s
dlogp(tly (dlogp(ﬂly) ..., dlozp(ely)

a9

LY EFFICIENT MG

10VEs on itg OWD by
cept-reject e simg]
a chain 0 Tepresey; |

~Inm

are tailored i D
related variables g,
&, i which Compty

do not Captul-e thE
€en states.

i . For most of the models we consider in

ok th;s vector is easy to deternnne analytically and then program. When writing

, We recommend also rogramming the gradient numemca,ﬂy
: parallel chaing, i huggmg the program progr g -

- split, with the il
ution are more h_ke
The idea ig that 5"
th/ death/sphttmg
arget distribugiog
listribution of thee

-
="

° gradients. ents, 1f the two subroutines do not retui"ﬁ" 'i‘&e‘flﬁica,l results to several decimal

alto give ¢ a multivariate normal distribution (recall that ¢ has the same dimension £V

hat th mean 0 and covariance set to a prespecified ‘mass matrix’ M (so called | by a.nalo_gy W é?o
,hi ;O;)J VETges fo & Sp ; physmal ‘model of Hamiltonian dynamics). To keep it simple, we commonly use a :

°0 by 2(Bly)/g(0 nal'ﬁa:évs__ﬂlé,tm, M. ¥ so, the components of ¢ are independent, with ¢; ~ N(0, M;;) —
throughout the simy

ch dimension § = 1,...,d. It can be useful for M to roughly scale with the inverse
iance matrix of the postenor distribution, (var{#ly))~*, but the algorithm works in
as5e; better scahng of M will merely make HMC more « eﬁment

om p(By) and faster

The three steps of an HM C' itevation
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ior remains, especially:

yna.nucs This update involves L ‘leapfrog steps’ (to be defined in a moment), each
“scaled By a factor e Ina leapfmg step, both 8 and ¢ are changed, each in relation to the
. other, The L leapfrog steps proceed as follows:

Repeat the followmg steps L tones:

{a.) Use the gradient (the vector derivative) of the log-posterior density of 8 to make a
_half-giep of ¢
Sem——

i to suppress the local 1 dlogp(6|y)

1
t to move much moré . GG+ g€ . . Pimie T
target space, Hamilto- - Mo
4 U & -
then updated together b) Use the ¢ x?fﬂnv?ptum vector ¢ to update the * pos1t1'gﬁ_ vector §: f)
7 is deterrained largely 0« 8+ eM 1.

1 the position and me- 7
teps can move rapidly ' .' Agam M is the mass matnx the covariance. Of_\the momentum chstnbutlon P(fﬁ) I,f
n parameter space t¢ ) . AL
lo is also called hybrid -
n methods. o
mly be computed up” .

mto M, which can itself be set by the user? The reason is that it can-be convenient
n tunmg~the algorithm & to alter € whlle keepmg M ﬁxed )
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(c) Again use the gradient of 6 to half-update ¢:

1_dlogp(6iy)
¢+ ¢+ 5€ @

Fxcept at the first and last step, updates (c) and (a) above can be performed together,
Yalfstep of ¢, then alternates L — 1 full steps of the

The stepping thus starts with a
um vector ¢, and concludes with a half-step of ¢.

parameter vector 0 and the moment

This algorithm (called a ‘leapfrog’ because of the splitting of the momentum updates
into half steps) is_a discrete approximation. to physical Hamiltonian dynamics in which
both position.and momentum evolve in continuous Ge. o T
In the limi of e near mero, the leapfrog algorithm preserves the joint density (8, biy).
We will nc?t‘g‘ﬁé*fﬁé’fféat?ﬁﬁf Eéf:‘e_‘i‘é“sié‘eﬁe---intmtian":"'Sﬁisphae---tﬁ’e‘“aﬁfféﬁ”v’aﬁe of 8
is at a flat area of the posterior. Then 2 i"gd%(my) will be zero, and in step 2 above, the

momentum will remain constant. Thus the leapfrog steps will skate along in #-space with
constant velocity. Now suppose the algorithm moves toward an area of low posterior

density. ‘Then éﬂf}ﬂﬂ will be negative in this direction, thus in step 2 inducing a
ireciion of movement. As the leapfrog steps continue

to move imto an area of lower density in §-space, t+he momentum continues £o decrease.
The decrease in log p(Bly) is matched (in the limit &€ =50, éxactly 50) by "8 decrease
in the ‘kinetic energy,’ logp(¢). And if sterations continie to mMOVe in the direction

of decreasing density, the leapfrog steps will slow to zero and then back down or curve

around the dip. Now consider the algorithm heading in a direction in which the posterior

density is increasing. Then 5‘-!—1‘1%%@”—')- will be positive in that direction, leading in step 2

to an increase in omentum in that direction. As log p(fly) increases, log p{¢)} increases
correspondingly until the trajectory eventually moves past of around the mode and then

gtarts to slow down.
For finite €, the joint density p(0, ¢ly) does not remain entively constant during the
leapfrog steps but it will vazy only. - slowly. jié_igjmall. For reasons we do not discuss
here, the leapfrog imegrator-iaas the pleasant propeﬁ—yqthat combining I steps of error )
does not produce L error, because the dynamics of the algorithm tend to send the erroms
weaving back and forth around the exact value that would be obtained by 2 contimuoeus
integration. Keeping the discretization error low is important because of the nexi part
of the HMC algorithrm, the accept, Jreject step.
3. Tabel 88~1, ¢*~7 as the value of the parameter and mornentum vectors at the start of the

leapfrog process and g%, ¢* as the value after the L steps. In the accept-reject step, We
SV e R T

decrease in the momentum in the d

= -gompute
p(6*ly)p(¢")
P A T , (12.3)
p(6y)p(# ) A
4. Set
ot — % _{J_w,ith probability min{r, 1) .
i f J e 9“}1 o otherwise. i

{ ;
Strictly speaking it would be necessary to set B
é in itself, and it gets immediately updated at the beginning of the next iteration
step 1 above), 80 there is no n{—:lad to keep track of _it__gﬁ@g the accept Jreject step.

ations until approximate conver
for

as well, but since we do not ¢are aboub
(see

g with amy other MCMC algorithm, we repeat these iter
gence, as assessed by R being near 1 and\__thg/e,ff_a&tiﬁ@ﬂS,@E{LPLQ__SJZQNb_*iiﬂgglalg@_91199-%5

21 quantifies o fitores; se Secton 11
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B  HMC can be tuned in three places: (i) the probability distribution for the momentur
" yariables ¢ (Whlch in our melementa.tlon requires specifying the chagonal elements of a

FAAMILTONIAN MONTE CARLO ' ” a0

 Restricted parameters and areas of zero posterior density

HMC is designed o work with all—pomtwe ‘target densities. If at any point during an

steration the algorithm reaches a point of zero posterior ¢ densﬂ:y (for example, 1f the steps
o below zerc. when updating.a parameter that isrestricted$o-be-positive), we stop the

stepplng and give up, spending another iteration at the previous vaiue of 4. The Tesulting

algonthm preserves dets_.ﬂed balance and stays in the positive zone.

~An alternative is ‘Pouricmg, where again the algonthm checks that the density is positive

after each step and, if not, changes the sign of the momentum to return to the direction in -

«hich it came. This again preserves detailed balance and is typicaily more efficient than
simply Tejecting the iteration, for example with a hard boundary for a parameter that is
restricted to be positive.

Another way to handle bounded parameters is via transformation, for example taking the
;oganthm of a parameter constrained to be posmve or the logit for a pararheter constrained
to fall beween 0 and 1, or more complicated joint transformations for sets of parameters

that are constrained (for example, if §; <O <fzorifoy +on+oastog= 1), One must

then. work out the J acoblan of the transformatlon and use it to determme the Iog postenory

| Setting the tuning parameters

__covariance I matrix, that is, a scale parameter for each of the d dimensions of the parameter
" Yector), (11) the e scaling factor ¢ of the leapfrog steps, and (iif) the number of leapfrog steps
L pex 1teratlon

As with the Metropolis algorithm in general, these tuning parameters can be set ahead
of time, or they can be altered completely at random (mcategy which can sometimes be
helpful in keeping an algorithm from getting stuck), but one has to take care when altering
them given information from pre?ﬁu’g'—ifératmns Except in some special cases, adaptive
updating of the tuning parameters alters the algorithm so that it no longer converges o the
target distribution. So when we set the tuning parameters, we do so during the warm-up

penod that is, we start with some initial settings, then run HMC for a while, then reset

““the tun tuning parameters based on the iterations so far, then discard the esrly iterations that

were used for warm-up. This procedure can be repeated if necessary, ag long as s the saved
iterations use only simmulations after the last setting of the tuning parameters

How then to set the parameters that govern HMC?7 We start by setting the scale
parameters for the momentum variables to some crude estimate of the scale of the target
distribution. {One can also incorporate govariance information but here we will assume a
diagonal covarlance matmx so that all that is required is the vector of scales.) By default

g i

We then set the product A 1;0 L This roughly calibrates the HMC algorithm to the
‘radiug’ of the target distribution; Tion; that is, L steps, each of length ¢ times the already-chosen
scale of ¢, should roughly take e you from one side of the > distribution to.the other. A default
starting point could be e=0. 1, L= 10.

Finally, theory suggests that HMC is optimally cfficient when its acceptance rate is
«.2pproximately 65 65% (based on an analysis similar to that which finds an optimal 23% ac-
ceptance rate for the mu}tldlmensmnai Metropolis algonthm) The theory is based on all
now we recormnend a simple adaptation in which HMC is with its initial E&:tmgs and then
adapted if the average acceptance probability (as computed from the simulations so far) is

not close to 65% if the average acceptance probability is lower, then the leapfrog Jumps‘

pe——
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are too ambitious and you should lower € and correspondingly increase I (sg their product density at eact
remains 1). Conversely, if the average acceptance probability is much higher ;hal_r_l_'65%, then effectively but
e steps are too cautious and we recommend raising ¢ and lowering 7 (20t forgetting that detailed balan:
I, must be an integer). These rules do not solve all _problems;-and it should be.possible to Neither of 1
develop diagnostics to_sssoss the-efficiency-of HMC to-allow-for more effective adaptation pler is self-tuni

of the tuning parameters. has difficulties
feulties transi

adaptation ha

Varving the tunin ar&meters during the run
ving 97 i practica.l in hi

Asg with MCMC tuning more generally, any adaptation can go on during the warrs-up
period, but adaptation performed later on, during the simulations that will be used for
inference, can  cause the algorithm to converge to the wrong distribution. For example,
suppose we were to increase the step size ¢ after high-probability jumps and decrease € when
the acceptance probability is low. Such an adaptation seems appealing but would destroy
the detailed balance (that is, the property of the algorithm that the flow of probability mass

q&r&g;g:p_o_int A to B is the same as fI‘DMQMAJ_ for any points A and B in the posterior

Combining Hi

There are two
First, it can 1
or to speed ¢

distribution) that is used 56 prove that the posterior distribution of interest is the stationary vector ¢ "-cml (
distribution of the Markov chain. : C;HBSP?:H ling
 Completely random variation of € and L, however, catises no problems with convergence ihe POSLErior
- SR T we random this case, eve

and caii be uselul. If we randomly vary the tuning parameters (within specified ranges)
froma iteration to iteration while the simulation is rumning, the algorithm has a chance to
take long tours through the posterior distribution when possible and make short movements

be more effec
steps, altering

where the iherations are stuck in a cramped part of the space. The price for this variation 21; m;sdt gi?aj

__is some potential loss of optimality, as the algorithm will also take short steps where long uset
tours would be feasible and try for long steps where the space is too cramped for such jumps ) The_ secon
ing of discrets

to be accepted.
If some of the

o dicators for n
Locally adeptive HMC ) has a positiv¢

For difficult HMC problems, it would be desirable for the tuning parameters io vary as - -y~ EOE? g,%ifi},

the algorithm moves through the posterior distribution, with the mass matrix M scaling
.to the local curvature of the log density, the step size ¢ 'gngttiﬁg“s._fz—;aller in areas where
the curvature is high, snd the mumber of steps L being large enough for the trajectory
to move far through the posterior distribution without being so large that the algorithm -
circles around and around. To this end, researchers have developed extensions of HMC that 4 125 Ham

eters, then a
slice updates

.gﬂapﬁ_?‘?i@hggﬁ_lq%iqg __f;l@tailﬁﬁfﬁﬁéf@é:mThese algorithms are more complicated and can

require more computations per iteration but can converge more effectively for complicated . ~ We illustrate
Jistributions. We describe two such algorithms here but without giving the details. B testing expe
The no-U-turn sompler. In the no-U-turn sampler, the number of steps is determined ¢ Glbvt_’s sampl
o 2V I efficiert mov

“adaptively at each iteration. Instead of running for a ﬁxeé_nu}'nber of steps, L, the trajectory
in each iteration continues until it turns avound (more specifically, uiitil We reach a negative
value of the dot product between the momentum variable ¢ and the distance sraveled from

to understar
the algorithr

the position 4 at the start of the iteration}. This rule essentiaily sends the trajectory as far . Inorder
as it can go during that iteration. If such a ruie is applied alone, the simulations will nob fhapter 5) ¢
G Oy, .., 00

converge to the desired target distribution. The full no-U-turn sampler is more complicated,
going backward and forward along the trajectory in a way that satisfies detailed bg.lance‘

Gradients 0;

Along with this algorithm comes a procedure for adaptively setting the nass matrix M I density for ¢
and step size ¢; these _Pg,_r#ram@t,er&am‘_tune.cluéyrmgdthemaxm;upapha,sﬁ__and——the_g,h,eld fixed "} the normal

during the later jtrations which are kept for the purpose of posterior inference..
,R_i,am.tinnianﬂadgp_t@ion. Another approach to optimization is Riemann n adaptation, n

" which the mass matrix M is set to conform with the local curviiire of the Tog posterior
- [ e e T P
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density at each step. Again, the local adaptation allows the sampler to move much more

“fiectively but the steps of the algorithm need to become more complicated to maintain
detailed balance. Riemannian adaptation can be combined with the no-U-turn ‘sampler.

Neither of the above extensions solves all the problems with IIMC. The no-U-turn sam-

pler i is self- tumng and computa.’monally efficient but hke ordmary Hamﬁtoma,n Monte Carlo,

SO st T S

practlcal in hlgh dlmensmns

Combinang HMC with Gibbs sampling

There are two ways in which ideas of the Gibbs sampler it into Hamiltonian Monte Carlo.
Rizst, it can \IL make sense to partition variables into blocks, either to simplify computation
LISt ‘

or to speed convergence. Consider a hierarchical model with J groups, with parameter
vector 6 = (7, 7@ . 57 ), where each of the nl)’s is itself a vector of parameters
corresponding to the model for group § and ¢ is a vector of hyperparameters, and for which
the posterior distribution can be factored as, p(fly) o p(¢) H " (WD), In
this case, even if it is possible to update the entire vector at once using HMC, it may
be more effective—in computation speed or convergence—to cycle through J + 1 updating
steps, altering each n¥) and then ¢ during each cycle. This way we only have to work with
at most one of the likelihood factors, p(y?[n()), at each step. Parameter expansion can
_ be ﬁ‘é’é’_d‘_ﬁ‘d“facilitate quicker mixing through the joint distribution.

j:}le_ﬁ__ ,Qmimay in which Glbbs sampler pI‘lnCIpleS can enter HMC is through thgﬂgp_@’gm

dicators for mixture compornents; or & parameter that follows a continuous dlstribution but
has a positive probability of being exactly zero), they can be e updated using Gibbs steps or,
nore generally, one-dimensional updates such as Metropolis_or slice sampling {see Section

12.3). The szmplest s.pproa,ch is to partition the space into discrete and continuous param-
‘eters, then alternate HMC updates on the continuou§ subspace and Glbbs Metmpohs or
shce updates on the discrete components.

12.5 Hamiltonian dynamics for a simple hierarchical model

- We illustrate the tuning of Hamiltonian Monte Carlo with the modei for the educational
testing experiments described in Chapter 5. HMC is not necessary in this problem—the
{zibbs sampler works just fine, especially after the parameter expansion which sllows more
efficient movement of the hierarchical variance parameter (see Section 12.1)—but it is helpful
“to understand the new algorithm in a simple example. Here we go through all the steps of
the algorithm. The code appears in Section C.4, starting on page 601.
In order not to overload our notation, we label the eight school effects (defined as §; in
-Chapter 5) a8 ay;; the full vector of parameters 8 then has d = 10-dimensicns, c:orrespondmg
Mo, ., o, Fo T

_Gradients. of the log posterior density. For HMC we need the gradients of the log posterior
denmty for each of the ten parameters a set of operations that are easily performed with
the normal distributions of this model:

dlog p(fly) ey —y;
d.Cl!j

B forj=1,...,

L
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dlog pfly) _ BT
du = 2
dlogp(ly) . _J (ko a;)?
dr T 73

_-As 5 debugging step we also compute the gradients numerically using finite differences of
i{).[}(}{)%ﬁon each component of §. Once we have checked that the two gradient routines yield
_identical results, we use the analytic gradient in the algorithm as it is faster to compute.

:/-“:‘: "

The mass matriz for the maomentum disiribution. As noted above, we wanl to scale the if ‘
it

mags matrix to Toughly match the posterior digtribution. That said, we typically only have
a%#\;égue"iaéé;—of the posterior scale before beginning our computation; thus this scaling is
primarily intended to forestall the problems that would arise if there are gross disparities

_in the scaling of different dimensions. In this case, after looking at the data in Table 5.2 we
assign a rough scale of 15 for each of the parameters in the model and crudely set the mass
matrix to Diag{15,...,15). -

Starting values. We run 4 chains of HMC with starting values drawn at random to crudely
_. maftch the scale of the parameter space, in this case following the idea above and drawing
the ten parameters in the ‘model f{g{]}}j{lﬁlﬁgggggn_@vﬂf(q,ﬂl52) distributions.

) 5!( Tuning ¢ and L. To give the algorithm more flexibility, we do not set € and L to fixed values.

“Instead we choose central values ¢g, [y and then at each step draw ¢ and L independently
from uniform distributions on (0, 2e) and [1, 2Lg], respectively (with the distribution for L
being discrete uniform, as L must be an integer). We have no reason to think this particular
jittering is ideal; it is just a simple way to vary the tuning parameters in a way that does
not interfere with convergence of the algorithm. Following the general advice given above,
we start by setting egLo = 1 and Ly = 10. We simulate 4 chains for 20 iterations just fo
check that the program runs without crashing.

We then do-some_experimentasion. We first run 4 chains for 100 iterations and see that

the inferences are reasonable (no extreme values, as can sometimes happen when there is
poor convergence or a bug in the program) but not yet close to convergence, with several
values of B that are more than 2. The average acceptance probabilities of the 4 chains are
o 0.23,0.59,0.02, and 0.57, well below 65%, so we suspect the step size is Loo large.
' “We decrease ey b0 0.05, increase Ly to 20 {thus keeping ey Ly constant), and revun the 4
chains for 100 iterations, now getting acceptance rates of 0.72,, 0.87, 0.33, and 0.55, with
chains still far from mixing. At this point we increase the number of simulations to 1000.
The simulations now are close to convergence, with R less than 1.2 for all parameters, and
average acceptance probabilities are more stable, at 0.52, 0.68, 0.75, and 0.51. We then
run 4 chains at 10,000 simulations at these tuning parameters and achieve approximate
convergence, with K less than 1.1 for all parameters.

Tn this particular example, HMC is unnecessary, as the CGibbs sampler works fine on
an appropriately transformed scale. In larger and more difficult problems, however, Gibbs,
_and Metropolis.can-be too.slow, while HMC can move effectively efficiently move throngh

high-dimensional parameter spaces. - o= caouebdint A

k)

Transforming to logT

Wheﬁ"running TIMC on a mode! with constrained parameters, the algorithm can go.outside
the boundary, thus wasting some.iterations. One remedy is to transform the space to be

umconstrained. In this case, the simplest v@ to handle the constraint 7 >0 is to transform
to log 7. We then must alter the algorithm in the following ways:
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1. We redefine 0 as (aq,..., s, @108 7) and do all jumping on this new space.

9. The (unnormaiized) posterior density p(dly) is multiplied by the Jacobian, 7, so we add
togT to the log posterior density used in the calculations.

3. The gradient of the log posterior density changes in two ways: first, we need to account
for the new term added just above; second, the derivative for the last component of the
gradient is now with respect to log T rather than 7 and so must be multiplied by the
Jacobian, T

J
d log p(8ly) (b —ay)?
a2 ANA L LA S | W)
dlogT ( )+ Z T2
F=1
4. We change the mass matrix to account for the transformation. We keep ay,...,Q8, i
with masses of 15 (roughly corresponding to a posterior distribution with a scale of 15

in each of these dimensions) but set the mass of log T to 1.
5. We correspondingly change the initial values by drawing the first nine parameters from
independent; N(0, 15?) distributions and log from N{0, 1).
AMC runs as before. Again, we start with ¢ = 0.1 and L = 10 and then adjust to get a
reasonable acceptance rate.

12.6 Stan: developing a computing environment

Hamiltonian Monte Carlo takes a bit of effort to program and tune. In more complicated

settings, though, we have found HMC to be faster and more reliable than basic Markov

chain simulation algorithms.
"~ Ty riftigite The challenges of programming and tuning, we have developed a computer
program, Stan (Sampling through adaptive neighborhoods) to automatically apply HMC
given & Bayesian model. The key steps of the algorithm are data and model input, compu-
tation of the log posterior density {up to an arbitrary constant that cannot depend on the
parameters in the model) and its gradients, a warm-up phase in which the tuning param-
eters are set, an implementation of the no-U-turn sampler to move through the parameter
space, and convergence monitoring and inferential summaries at the end.

We briefly describe how each of these steps is done in Stan. Instructions and examples

for running the program appesr in Appendix C.

Entering the doto and model

Each line of a Stan model goes into defining the log probability density of the data and
parameters, with code for looping, conditioning, computation of intermediate quantities,
and specification of terms of the log joint density. Standard distributions such as the normal,
gamma, binomial, Poisson, and so forth, are preprograramed, and arbitrary distributions
can be entered by directly programming the log density. Algebraic manipulations and
functions such as exp and logit can also be included in the specification; i& is all just sent

' ﬂinto C++. -

" To compute gradients, Stan uses automatic enalytic differentiation, using an. algorithm
that parses arbitrary C+4-+ expressions and then applies basic rules of differential calcuius
to construct a C-++ program for the gradient. For computational efficiency, we have pre-
programmed the gradients for various standard statistical expressions to make up some of
this difference. We use special scalar variable classes that evaluate the function and at the
same time construct the full expression tree used to generate the log probability. Then the
Teverse pass walks backward down the expression tree (visiting every dependent node before
any node it depends on), propsgating partial derivatives by the chain rule. The walk over
the expression tree implicitly employs dynamic programming to minimize the number of
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calculations. Tpe___resulting antodifferentiation is typically much faster than computing the
_gradient numerically via finite differences. '

" In addition to the data, parameters, and model statements, a Stan call also needs the
nurmber of chains, the number of iterations per chain, and various control parameters that

can be set by default. Starting values can be supplied or else they are-generated from prese;

defauit random varia.bles.r

Setting tuning parameters in the worm-up phase

As noted above, it can be tricky to tune Hamiltonian Monte Carlo for any particular ex-
ample. The no-U-turn sampler helps with this, as it eliminates the need to assign the
number of steps I, but we stili need to set the mass matrix M and step size . During a
prespecified warm-up phase of the simulation, Stan adaptively alters M and e using ideas
from stochastic optimization in numerical analysis. This adaptation will not always work—-
for distributions with varying curvature, there will not in general be any single good set
of tuning parameters—and if the simulation is having difficulty converging, it can make

what is Happening. Qonvergeﬁae can sometimes bé improved by reparameterization. More
generally, it could maks sensé t6 have different tuning parameéters for different areas of the
distribution—this is related to ideas such as Riemannian adaptation, which at the time of
this writing we are incorporating into Stan. ~— T

No-U-turn sampler

Stan runs HMC using the no-U-turn sampler, preprocessing where possible by transforming
hounded variables to put them on an unconstrained scale. For complicated constraints this
cannot always be done autormnatically and then it can make sense for the user to reparame-
terize in writing the model. While running, Stan keeps track of acceptance probabilities {ns
well as the simulations themselves), which can be helpful in getting inside the algorithm if

there are problems with mixing of the chains.

Inferences and postprocessing

Stan produces multiple sequences of simulations. For our posterior inferences we discard
the iterations from the warm-up period (but we save them as possibly of diagnostic use if
the algorithm is not mixing well) and compute R and neg as described in Section il.4.

s

12.7 Bibliographic note

For the relatively simple ways of improving simulation algorithms mentioned in Sections
12.1 and 12.2, Tanner and Wong (1987) discuss data augmentation and auxiliary variables,
and Hills and Smith (1992) and Roberts and Sahu (1997) discuss different parameterizations
for the Gibbs sampler. Higdon (1998) discusses some more complicated auxiliary variable
methods, and Liu and Wu (1999), van Dyk and Meng (2001), and Liu (2003) present
different approaches to parameter expansion. The results on acceptance rates for efficient
Metropolis jumping rules appear in Gelman, Roberts, and Gilks (1995); more general results
for Metropolis-Hastings algorithms appesr in Roberts and Rosenthal (2601) and Brooks,
Giudici, and Roberts (2003). :

Gelfand and Sahu (1994) discuss the difficulties of maintaining convergence to the target
distribution when adapting Markov chain simulations, as discussed at the end of Section
12.2. Andrieu and Robert (2001) and Andrieu and Thoms {2008) consider adaptive Markov
chain Monte Carlo algorithms. -
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Slice sampling s discussed by Neal (2003), end simulated tempering is discussed by
Geyer and Thompson (1993) and Neal (1996b). Besag et al. (1995) and Higdon (1998)
review several ideas based on auxiliary variables that have been useful in high-dimensional
problerns arising in genetics and spatial models.

Reversible jump MCMC was introduced by Green {1995); see also Richardson and Green A i
{1997) and Brooks, Giudict, and Roberts (2003) for more on trans-dimensional MCMC.

Mykland, Tierney, and Yu (1994) discuss an approach to MCMC in which the algorithm
has regeneration points, or subspaces of §, so that if a finite sequence starts and ends al a
regeneration point, it can be considered as an exact (although dependent) sample from the
target distribution. Propp and Wilson (1996) and Fill (1998) introduce a class of MCMC
algorithms called perfect simulation in which, after a certain number of iterations, the
simulations are known to have exactly converged to the target distribution.

The book by Liu (2001} covers a wide range of advanced simulation algorithms including
those discussed in this chapter. The monograph by Nesl (1993) also overviews many of these
methods. Hamiltonian Monte Carlo was introduced by Duane e} al. (1987) in the physics
literature and Neal (1994) for statistics problems. Neal (2011) xeviews HMC, Hoffman and

N e ety ot

GiaFrman (2013) introduce the no-U-turn sampler, and Ciolami and Calderhead (2011) in-
trodiice Rietannian updating: see also Betancourt and Stein (2011) and Betancourt (2012, /
9013). “Romesl (2011) explains how leapfrog steps tend to reduce discretization error in  ;
HMC. Leirokuhier and Reich (2004) discuss the mathematics in more detail. Griewank and . f/

Walther (2008) is a standard reference on algorithmic differentiation.

S

S

12.8 Exercises
1. Efficient Metropolis jumping rules: Repeat the computation for Exercise 11.2 using the
adaptive algorithm given in Section 12.2. i

9. Simulated tempering: Consider the Cauchy model, y; ~ Cauchy(8,1),4=1,...,n, with
two data points, ¢y =1.3, y2=15.0.

(a) Graph the posterior density.

(b) Program the Metropolis algorithm for this problem using a symmetric Cauchy jurzping !
distribution. Tune the scale parameter of the jumping distribution appropriately. @

(¢) Program simulated tempering with a ladder of 10 inverse-temperatures, 0.1, ..., 1.
(d) Compare your answers in {b) and (¢} to the graph in (a}.

- 3. Hamiltonian Monte Carlo: Program HMC in R for the bicassay logistic regression ex-
.~ - ample from Chapter3. =~

(a) Code the gradients analytically and numerically and check that the two prograins give
the same result. .

(b) Pick reasonable starting values for the mass matrix, step size, and number of steps.
(¢) Tune the algorithm %o an approximate 65% acceptance rate.

‘ (d) Run 4 chains long enough so that each has an effective sample size of at least 100.
How many iterations did you need?

() Check that your inferences are consistent with those from the direct approach in
Chapter 3.

4. Coverage of intervals and rejection sampling: Consider the following model: 5 ~
Binomial(n;,8;), where 6; = logit e + Bz;), for § = 1,...,J, and with indepen-
dent prior distributions, o ~ £4(0,2%) and § ~ t4(0,1). Assume J = 10, the z; values
are randomly drawn from a U(1, 1) distribution, and n; ~ Poigsont {5), where Poisson™®
is the Poisson distribution restricted to positive values.




