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Generalized Linear Models for Small-Area Estimation 
Malay GHOSH, Kannan NATARAJAN, T. W. F. STROUD, and Bradley P. CARLIN 

Bayesian methods have been used quite extensively in recent years for solving small-area estimation problems. Particularly effective 
in this regard has been the hierarchical or empirical Bayes approach, which is especially suitable for a systematic connection of 
local areas through models. However, the development to date has mainly concentrated on continuous-valued variates. Often 
the survey data are discrete or categorical, so that hierarchical or empirical Bayes techniques designed for continuous variates 
are inappropriate. This article considers hierarchical Bayes generalized linear models for a unified analysis of both discrete and 
continuous data. A general theorem is provided that ensures the propriety of posteriors under diffuse priors. This result is then 
extended to the case of spatial generalized linear models. The hierarchical Bayes procedure is implemented via Markov chain 
Monte Carlo integration techniques. Two examples (one featuring spatial correlation structure) are given to illustrate the general 
method. 

KEY WORDS: Hierarchical model; Markov chain Monte Carlo; Posterior propriety; Spatial statistics. 

1. INTRODUCTION 

Bayesian methods have been used quite extensively in re- 
cent years for solving small-area estimation problems. Par- 
ticularly effective in this regard have been the hierarchical 
Bayes (HB) and empirical Bayes (EB) approaches, which 
are especially suitable for a systematic connection of local 
areas through the model. For the general theory as well as 
specific applications of the HB and EB methods for small- 
area estimation, relevant work includes that of Datta and 
Ghosh (1991), Fay and Herriot (1979), Ghosh and Lahiri 
(1987, 1992), Ghosh and Meeden (1986), Prasad and Rao 
(1990), and Stroud (1987, 1991), among others. Ghosh and 
Rao (1994) have provided a review of many of these results. 

But development to date has concentrated mainly on 
continuous-valued variates. Often the survey data are dis- 
crete or categorical, for which the HB or EB analysis suit- 
able for continuous variates is not appropriate. Recently, 
some work has begun to appear on the Bayesian analy- 
sis of binary survey data. Dempster and Tomberlin (1980), 
Farrell, MacGibbon, and Tomberlin (1997) and MacGib- 
bon and Tomberlin (1989) have obtained small area esti- 
mates of proportions via EB techniques, whereas Malec, 
Sedransk, and Tompkins (1993) found the predictive distri- 
butions of a linear combination of binary random variables 
using a HB technique. Stroud (1991) also developed a gen- 
eral HB methodology for binary data, and Nandram and Se- 
dransk (1993) suggested Bayesian predictive inference for 
binary data from a two-stage cluster sample. Subsequently, 
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Stroud (1994) provided a comprehensive treatment of bi- 
nary survey data encompassing simple random, stratified, 
cluster, and two-stage sampling, as well as two-stage sam- 
pling within strata. 

The binary models constitute a subclass of generalized 
linear models that are often used for a unified analysis 
of both discrete and continuous data. Section 2 presents 
a general account of how HB generalized linear models 
(GLMs) can be used for small-area estimation. The section 
begins with a general description of HB GLMs. Sufficient 
conditions are provided for the joint posterior distribution 
of the parameters of interest to be proper under the pro- 
posed hierarchical models. The Bayes procedure is imple- 
mented via Markov chain Monte Carlo (MCMC) integration 
techniques-in particular, using the Gibbs sampler. Next, 
this section contains a discussion of some general multi- 
category models that may be handled indirectly by meth- 
ods of this section, even though in their natural multino- 
mial formulation they do not fit into the univariate GLM 
framework. We also point out that in contrast to the work 
of Stroud (1994), who used the Brooks (1984) method for 
approximating numerical integrals, we use exact MCMC 
integration techniques. We conclude this section by consid- 
ering some spatial GLMs and find sufficient conditions that 
ensure the propriety of the posterior. We also point out a 
common HB model for this situation that actually leads to 
an improper posterior. 

Section 3 contains the analysis of two real datasets. The 
first consists of responses to the question "Have you expe- 
rienced any negative impact of exposure to health hazards 
in the workplace?" based on a 1991 sample of all persons in 
15 geographic regions of Canada (Statistics Canada 1992). 
For each region, workers were classified by age (<40 or 
> 40) and sex (male or female). The responses were classi- 
fied into four categories: (1) yes, (2) no, (3) not exposed, and 
(4) not applicable or not stated. The objective is to estimate 
the proportion of workers in each of the four categories for 
every one of the 15 x 2 x 2 = 60 groups cross-classified by 
15 geographic regions and the 4 demographic categories. 
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Our HB cell probability estimates "borrow strength" from 
the other cells, resulting in smaller standard errors. More- 
over, shrinkage toward the grand mean is done adaptively, 
in that the estimates reported for cells with larger sample 
sizes are shrunk less than those based on smaller sample 
sizes. 

The second dataset relates to cancer mortality rates for 
the 115 counties in Missouri during 1972-1981. In each 
county, deaths due to lung cancer are broken down into four 
age groups (45-54, 55-64, 65-74, and 75+) and two sex 
groups (male and female). The number of deaths in some 
of these county subgroups during this period is very small 
(occasionally 0), so there is a clear need to borrow strength 
across cells. Tsutakawa (1988) and Tsutakawa, Shoop, and 
Marienfeld (1985) considered EB estimation of the rates for 
the given age groups, and Tsutakawa (1985) compared these 
EB rates with approximate Bayes rates, but these works 
dealt only with the male population and did not use prior 
distributions that could account for spatial similarity of the 
underlying rates in neighboring counties. We consider sev- 
eral possible models using such a spatial smoothing prior 
and including age, sex, and age-sex interaction as covari- 
ates. After selecting an appropriate model somewhat in- 
formally using a log-likelihood score statistic, we map the 
raw and fitted relative risks for a particular age-sex group 
as well as the fitted risks obtained in the earlier analysis by 
Tsutakawa, allowing the benefits of our spatial model to be 
assessed visually. We also investigate the adequacy of our 
model using a variety of model checks facilitated by our 
MCMC implementation. 

2. HIERARCHICAL MODELS 

Suppose that there are m strata or local areas. Let Yik de- 
note the minimal sufficient statistic (discrete or continuous) 
for the kth unit within the ith stratum (k = 1, ...,ni;i = 
1,... im). The Yik are assumed to be conditionally inde- 
pendent with pdf 

f(Yik Iik, Oik) = exp[ 0 ((YikOik - /(0ik)) + P(Yik; kik)] 

(1) 

(k 1,...1nii ,... m). Such a model is referred to 
as a generalized linear model (McCullagh and Nelder 1989, 
p. 28). The density (1) is parameterized with respect to the 
canonical parameters Oik and the scale parameters Oik (> 

0). It is assumed that the scale parameters Oik are known. 
The natural parameters Oik are first modeled as 

h(Oik) = X To + Ui + Eik (k =1 ni; i = I1, m), 

(2) 

where h is a strictly increasing function, the Xik (p x 1) 
are known design vectors, _ 3 (p x 1) is the unknown regres- 
sion coefficient, Wj are the random effects, and 6ik are the 
errors. It is assumed that the Wj and the 6ik are mutually 
independent with ui jid N(O, (J and 6ik itd N(O, u2). 

It is possible to represent (1) and (2) in a hierarchical 
framework. Let Ru = au 2 and R = C-2. Also, let 0 = (011, 

Ovln, . .. v Oml . * Omnm )T and u = (u1, . . . ,um)T. 
Then the hierarchical model is given by the following: 

(I) Conditional on 0,f3, u Ru = ru, and R = r, Yik are 
independent with densities given in (1). 

ind 
(II) Conditional on 3, u, Ru ru, and R = r, h(Oik) 

N(xT/3 + ui, r1). 
ind 

(III) Conditional on ,3, Ru ru, and R = r,ui 
N(O, r-1). 

To complete the hierarchical model, we assign the fol- 
lowing prior to 3, Ru = ru, and R = r: 

(IV) 3, Ru = ru, and R = r are mutually independent with 
d3 uniform(RP), (p < m), Ru -gamma('a, 'b), 
and R gamma(' c, 2 d). 

(A random variable Z gamma(a, 3) if Z has pdf f (z) oc 
exp(-oGz)z 1-11(o,00) (z).-) 

We are interested in finding the joint posterior distribu- 
tion of the g(Oik)'S, where g is a strictly increasing function, 
given the data y = (YI ... Ylnl . Yml ... Ymnm )T, 
and in particular in finding the posterior means, variances, 
and covariances of these parameters. In typical applications, 
9(Oik) = V (Oik )= E(Yik |Oik) - 

First, however, one must ensure that the joint posterior 
distribution of the Oik'S given y is proper. A theorem is 
proved to this effect. In what follows, the support of Oik 

is the open interval (Oik, Oik), where the lower endpoint of 
the interval can be -oo, the upper endpoint can be +oo, or 
both. 

Theorem]. Assume that a > O,c> 0, Eini-p+d> 0, 
and m+b > 0. Then, if 

oJik 
exp{[OYik - ()]/(0$ik}h (0) dO < 0o (3) 

-ik 

for all Yik and Oik (> 0), the joint posterior pdf of the 0ik'S 

given y is proper. 
The proof of this theorem is deferred to the Appendix. 
Two special cases are of interest. In the first case, 

Yik Iik bin (nik,exp(Oik)/(1 + exp(Oik))). Suppose now 
that h is the identity function; that is, the link is canonical. 
Also, let g(Oik) = V'(Oik)/nik = eXp(Oik)/[1 + exp(Oik)]. 
Then, writing Pik= exp(Oik)/[1 + exp(Oik)], (3) reduces to 
f Ptk (I - Pik)nYikl dpik < 00, which requires 1 < 
Yik < (nik- 1); that is, excludes cases of all failures or all 
successes. In the second case, Yik 0ik Poisson(exp(Oik)). 
Then, if h is the canonical link, and g(Oik) = A(0ik) - 
exp(Oik), (3) reduces to 0 Yk exp(-(ik) dik < 0, 

which holds for Yik = 1, 2,... It may be noted, however, 
that although our general theorem needs this postivity re- 
striction on the Yik in the binomial and Poisson examples, 
recent work by Maiti (1997) showed that Ek Yik > 0 for 
each i is sufficient for posterior propriety. 

Direct evaluation of the joint posterior distribution of the 
g(Onk) 's given y involves high-dimensional numerical inte- 
gration and is not computationally feasible. Instead, we use 
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the Gibbs sampler (Gelfand and Smith 1990; Geman and 
Geman 1984). Its implementation requires generating sam- 
ples from certain conditional posterior distributions. Write 
h(O) = (h(.ll) . , h(Olnj), .,. h(Omi), ... ,h(0mnm))T, 
and X =(x, .. ,xlnl, Xml ,Xmnm)T. Assume 
that XTX is nonsingular. The necessary conditional distri- 
butions based on (I)-(IV) are 

(i) 030, u, ru, r, y N((XTX)1l (XTh(O) - i Ui Ek 
Xik ), r l(XTX) l); I ind 

(ii) uiJ0, j3, ru, r, y N((rni + ru)-lrEk(h(0ik) - 

XTk3), (rni + ru)1); 
(iii) RI0, 3, u, ru, y gamma( (c + Zi Ek(h(Oik) - 

xTi - U)2), 2(d + Zm ni)); 

(iv) Ru 0, )3, u, r, y gamma('(a + EiZu?), 1(b + 
m ni)); and 

(v) 0ikJ13,U,ru,r,y ind 7J(OikJ/,u,rU,r,y) 

oc exp [(Yikoik - (Oik))Oik 

- 2(h(Oik) - XT> -ui) 2] h'(Oik). 

It is easy to generate samples from the normal and 
gamma distributions given in (i)-(iv). On the other hand, 
as evidenced in (v), the posterior distribution of Oik given 
j3, u, ru, r, and y is known only up to a multiplicative con- 
stant, and accordingly one must use a general accept-reject 
algorithm to generate samples from this pdf. In the spe- 
cial case where h is the identity function, the task becomes 
much simpler due to the following lemma, which estab- 
lishes log-concavity of 7w(Oik 1, u, ru, r, y). In such cases 
one can use the adaptive rejection sampling scheme of Gilks 
and Wild (1992). 

Lemma 1. When h(z) = z for all z, log 7(Oik 13, u, r, 
ru, y) is a concave function of Oik 

Proof. Straightforward. 
Inference about 0 will be based on (i)-(v). Indeed, 

based on (v), one can also find E(Oik Y), V(Oik y), and 
COV(0ik,0i'k'Jy)(i,k) * (i',k') based on Monte Carlo in- 
tegration techniques and formulas for iterated conditional 
expectations and variances. 

The model considered in (I)-(IV) resembles closely the 
ones considered by Breslow and Clayton (1993), MacGib- 
bon and Tomberlin (1989), and Zeger and Karim (1991). 
However, this model is not strictly contained in the one 
considered by Zeger and Karim (1991). Zeger and Karim 
considered h(Oik) = XfiT' + Ui, where h(.) is a strictly in- 
creasing function, but this formulation does not include pos- 
sible error in misspecifying this model. Indeed, according to 
our model, the uncertainty in specifying the model is broken 
up into two components: the effect of the local area and the 
error component. This allows the possibility of accounting 
for overdispersion by introducing an extra variance compo- 
nent. 

Our method should also be contrasted to that of Al- 
bert (1988), which generalizes the approach of Leonard and 

Novick (1986) and which was applied to binary survey data 
by Stroud (1994). Albert's method applied to the present 
setting first uses independent conjugate priors 

T(Oik mik, ()= exp[((mikOik - Vb(Oik)) + 9(mik; ()] (4) 

for the Oik. Next, it assumes that h(mik) = X1>3 for some 
known monotone function h. Subsequently, it assigns dis- 
tributions (possibly diffuse) to the hyperparameters 3 and 
(. In contrast, our approach does not need the conjugacy 
of the prior and models monotone functions of Oik instead 
of monotone functions of mik = E[/'(0ik)]. Moreover, Al- 
bert (1988) suggested approximation to the Bayes procedure 
by one of the following three methods: Laplace's method, 
quasi-likelihood approaches, or Brooks's (1984) method. 
These approximations generally are unnecessary now with 
the advent of the sophisticated MCMC integration tech- 
niques. 

The log-concavity idea is used slightly differently by Del- 
laportas and Smith (1993), whose prime objective is infer- 
ence about 3 in generalized linear models and model Oik as 
functions of 3 without any error. In addition, their method, 
unlike ours, does not introduce any uncertainty in specify- 
ing the model. 

We now examine how the previous results can be gen- 
eralized for the analysis of multicategory data. Consider 
m strata labeled 1,... ,m. Within each stratum, several 
units are selected; suppose that the responses of individ- 
uals within each selected unit are independent and can 
be classified into J categories. For the kth selected unit 
within the ith stratum, let Pijk denote the probability that 
an individual's response falls in the jth category (j - 

1,.... J; k = 1, ... ni). Then within the kth selected unit 
within the ith stratum, Zijk (j = 1, .. . J) have a joint 
multinomial(tik; Pilk,... , PiJk) distribution, where tik - 

Ej Zijk. Using the well-known relationship between the 
multinomial and Poisson distributions, (Zilk, * * *, ZiJk) has 
the same distribution as the joint conditional distribution 
Of (Yilk, * , YiJk) given EJ I Yijk = tik, where the Yijk 
(j 1,. , J) are independent Poisson((ijk) and Pijk 

(ijkl EJ I (ijk (j ,*** J). 
Let Oijk = 10gijk, and let 0 denote the vector whose 

elements are the Oijk'S. One can also model Oijk as 

h(Oijk) = Xi?k + Uij + Eijk- (5) 

Also, it is assumed that uij and the Eijk are mutually inde- 
pendent with Uij id N(O, (J2) and 6ijk id N(O,u2). 

Then the hierarchical model, which is closely related to 
(I)-(IV), is given by the following: 

(A) Yijk 10, u, 3, ru, r are independent with 

f(Iisk 0,u , , rf,wr) 

=exp[q$)jiykO(iyk j- ~(Oiyk ) ) + P(Yijk; Xijk )] - 

(B) h(Yijk) U,, ru, r are N(xdpjn + Uij, rw1). 

(C) uijk 1p, ,rr ind N ((O )j r-) 
(D) /3, Ru, and R are mutually independent with 3 

uniform(RP ), Ru r gamma( 2a, 2kb), and R r 

gamma( 2c, 2 d). 
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We are interested in the posterior means, variances, and 
covariances of the Pij k = exp (Oijk)/ J 1 exp (Oij k) (k 
1,..., ni; i =1,..., m; j =1,...,J). The necessary pos- 
terior distributions for doing these calculations are given 
by 

(a) 310, u, ru, r, y - N((ZijkXijkX?k) Xijk 

(h(Oijk) - uij)), r1 (Zi,jk XijkXi?k)1); 
ind (b) uijJ0O/3)ru,r,y N((rni + ru)-'rEk(h(Oijk) - 

XTjkI3), (rni + ruY1); 

(c) R|0,3, u,ru:y gamma(1/2(c + Zi,J,k(h(0ijk) - 

XTkI - uij)2), 1/2(d + J Ei ni)); 
(d) Ru0),fu, r,y gamma(1/2(a + EiEjZu?),1/2 

(b + mJ)); and 

(e) Oijk, u, ru, r,y ind 7T(Oi kI, Ur r, y) o exp[(yijk 
Oijk - b(Oijk))O_j - (r/2)(h(Oijk) - X?Tk3 

_Uij )2]h'(Oij k) - 

Once again posterior inference about g(0ijk)'S is performed 
using (e) and iterated formulas for posterior moments. 

To conclude this section, we consider spatial HB GLMs 
and provide sufficient conditions for the propriety of the 
posterior. We begin with the likelihood given in (1) and 
model the Oik as in (2), but this time the ui represent vari- 
ables that if observed would display spatial structure. More 
particularly, we model the ui so that a pair of contiguous 
zones would have stronger (positive) correlation than any 
arbitrary zones that are noncontiguous. 

For ul, ... . um, we consider the prior 

p(uI, . . .,umJrn ) oc rn/2 exp 2 - u)21 
(6) 

where the wil are strictly positive if zones i and I are con- 
tiguous, and wil = 0 otherwise. This prior is a special case 
of general pairwise difference priors, considered by, for ex- 
ample, Besag, Green, Higdon, and Mengersen (1995). The 
marginal priors for j, Ru, and R remain as before. 

For brevity, write nT = E i and T - =1 
Ek= Xik. It is assumed that the matrix Xg= (xii - 
x,.., Xlnl -x, .. ., Xml- X. ., Xmnm -x) has rank p. 
We then obtain the following theorem. 

Theorem 2. Assume the conditions of Theorem 1, but 
where now nT - p + d > 1. Then the joint posterior of the 
Oik under the spatial prior (6) is proper. 

The proof of this theorem is also deferred to the Ap- 
pendix. For implementing this Bayes procedure via Gibbs 
sampling, one finds conditional distributions similar to (i)- 
(v) earlier, with minor modifications to (ii) and (iv). 

Remark. It should be noted that if instead of (2), one 
models the Oik as 

h(Oik) = /3o?XU3p+ Ui?+&ik 

then the posterior of the h(Oik) fails to be proper. The intro- 
duction of the intercept term /0 creates a nonidentifiability 
in the posterior, which in turn implies that the joint poste- 
rior of the g(Oik) is also improper. 

3. DATA ANALYSIS 

3.1 Exposure to Health Hazards Dataset 

The analysis of the multicategory dataset mentioned in 
Section 1, where persons in 15 regions of Canada were 
asked the question "Have you experienced any negative 
impact of exposure to health hazards in the workplace," 
is reported in Table 1 and Figure 1. Here for the kth se- 
lected age-sex category within the ith region, Pijk denotes 
the probability that an individual's response falls in the jth 
category (where the categories are 1 = yes, 2 = no, 3 = 
not exposed, and 4 = not applicable or not stated). Within 
the kth selected age-sex category and the ith region, the 
Zijk have a joint multinomial(tik; Pilk, . . PiJk) distribu- 
tion, where tik = Ej Zijk. Fitting model (5) with the Pois- 
son likelihood as described in Section 2, and relabeling k 
as (a, s) for clarity, the regression equation is 

T = 
A S J AS AJ SJ i =kP /+ Ta+ Ts +Tj + Tas + Taj' + Tsj 

where p, is the general effect, TA is the main effect due to 
the ath age group, Ts is the main effect due to the sth sex, 
<is the main effect due to the jth category response, TYS 
is the interaction effect of the ath age and sth sex, TA.J is the a~j 
interaction effect of the ath age and jth category response, 
and TS.J is the interaction effect sth sex and jth category 
response. To avoid redundancy, we assume the corner point 
restrictions 

A _ S _J _AS _AS 
TIA - s =1 -1 =-Tal -TlY 

A~J =AJ SJ SJ= Tal Ti = Ts = Tlj 

for all a, s, and j. 
Using the extremely vague (but proper) priors for RU 

and R determined by setting a = b = c = d = .002, we 
generated 10 parallel Gibbs sampling chains of 2,000 iter- 
ations each. Using the 1,000 samples from the latter half 
of these chains (iterations 1,001-2,000), Table 1 contains 
the HB estimates, the sample proportions, and the asso- 
ciated standard errors for all four categories in each of 
the cells cross-classified by 2 x 2 -4 demographic cate- 
gories for three regions: the smallest, the median, and the 
largest. Figure 1 shows the sample proportions ("Prop"), 
traditional logistic regression estimates ("Regr"), and hier- 
archical Bayes estimates "HB") for all 15 regions for fe- 
males age 40 or younger. For regions with larger overall 
sample sizes, shrinkage of the estimates toward the logistic 
regression estimates within each age-sex category is much 
smaller than that observed in the smaller regions. For ex- 
ample, Figure lb shows the HB estimates to be very simi- 
lar to the logistic regression estimates in the sparsely pop- 
ulated Region 2, whereas Figure lh shows HB estimates 
very much like the original sample proportions in popu- 
lous Region 8. Also, within the kth age-sex category in 

This content downloaded from 130.215.56.64 on Fri, 14 Jun 2013 10:31:12 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Ghosh, Natarajan, Stroud, and Carlin: Small-Area Estimation 277 

Table 1. Impact of Exposure to Health Hazards in the Workplace 

Sample H. Bayes 

Category Response Proportions SD Proportions SD 

Region = 2 Total n = 294 

M, Age < 40 Yes .400 .100 .373 .042 
No .383 .101 .345 .041 
Not exposed .150 .119 .199 .031 
NA/NS .067 .125 .083 .015 

F, Age < 40 Yes .257 .100 .266 .035 
No .284 .098 .279 .035 
Not exposed .311 .097 .274 .036 
NA/NS .148 .107 .181 .026 

M, Age > 40 Yes .111 .111 .184 .028 
No .153 .109 .176 .027 
Not exposed .167 .108 .156 .026 
NA/NS .569 .077 .484 .040 

F, Age > 40 Yes .159 .098 .110 .019 
No .091 .102 .103 .018 
Not exposed .125 .010 .134 .022 
NA/NS .625 .065 .654 .034 

Region = 3 Total n = 740 

M, Age < 40 Yes .294 .070 .311 .029 
No .426 .063 .395 .032 
Not exposed .203 .075 .186 .023 
NA/NS .077 .080 .108 .015 

F, Age < 40 Yes .246 .064 .235 .024 
No .273 .063 .287 .026 
Not exposed .180 .067 .204 .023 
NA/NS .301 .062 .274 .026 

M, Age > 40 Yes .156 .069 .154 .019 
No .150 .069 .165 .020 
Not exposed .100 .071 .112 .016 
NA/NS .594 .048 .569 .028 

F, Age > 40 Yes .064 .063 .071 .010 
No .086 .063 .091 .012 
Not exposed .111 .062 .099 .013 
NA/NS .739 .033 .739 .021 

Region= 8 Totaln= 1707 

M, Age < 40 Yes .274 .047 .279 .021 
No .360 .044 .362 .023 
Not exposed .253 .048 .253 .020 
NA/NS .113 .052 .106 .012 

F, Age < 40 Yes .199 .042 .196 .016 
No .267 .040 .275 .019 
Not exposed .289 .040 .295 .019 
NA/NS .245 .041 .234 .017 

M, Age > 40 Yes .113 .047 .130 .013 
No .166 .046 .174 .016 
Not exposed .217 .044 .195 .017 
NA/NS .504 .035 .501 .022 

F, Age > 40 Yes .087 .042 .076 .009 
No .123 .041 .110 .011 
Not exposed .119 .041 .131 .012 
NA/NS .671 .025 .683 .017 

the ith region, the shrinkage is again smaller for categories 
with larger numbers of responses. For example, of females 
over age 40 in Region 3, 15/234 (6.41%) answered "yes," 
compared to 173/234 (73.93%) in the "not applicable/not 
stated" category. As seen in Table 1, the shrinkage is much 
larger for the former case, again revealing the adaptive na- 
ture of the HB estimates. Finally, note that the standard 
errors associated with the HB estimates are much smaller 
than those for the sample proportions. 

3.2 Missouri Lung Cancer Dataset 

Our second example relates to lung cancer mortality rates 
in the 115 counties in Missouri during the period 1972- 
1981. Following the original analysis of this data by Tsu- 
takawa (1985, 1988), we separate the city of St. Louis from 
the remainder of St. Louis County, which surrounds it. Mor- 
tality was classified for each county by sex into four age 
groups: 45-54, 55-64, 65-74, and 75 and older. The popu- 
lation size for each cell was taken to be the midperiod pop- 
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(a) Region 1; n = 171 (b) Region 2; n = 74 (c) Region 3; n = 183 

g ~~o 0 

O~~~~~~~~~~ 6 

CM~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C 

o 0 0 

YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX 

Prop Regr HB Prop Regr HB Prop Regr HB 

(d) Region 4; n = 154 (e) Region 5; n = 197 (f) Region 6; n = 327 

? 0 G 0 gI X X AoI C 0 

O LO 

o 0 0i 

YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX 

Prop Regr HB Prop Regr HB Prop Regr HB 

(g) Region 7; n = 196 (h) Region 8; n = 453 (i) Region 9; n = 182 

o 6 7 
o 0 0~~~~~~~~~~~~~~~L 

YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX 

Prop Regr HB Prop Regr HB Prop Regr HB 

(j) Region 1b0; n = 89 (k) Region f1; n =a99 (I) Region 12; n = g149 

Leo LOm Leo 

6 0 6i 

YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX YNUX 

Prop Regr HB Prop Regr HB Prop Regr HB 

(in) Region 13; n =231 (n) Region 14; n =120 (o) Region 15; n =214 

YNUX YNUX Y N UX Y N UX YNUX YNUX YNUX YNUX Y NU X 

Prop Regr HB Prop Regr HB Prop Regr HB 

Figure 1. Bar Graph of Estimated Proportions by Category by Region for Females Age < 40. Prop= sample proportion, Regr = logistic 
regression estimate, HB = hierarchical Bayes estimate. Categories: Y = Yes, N = No, U = Not exposed, X =Not applicable or not stated. 

ulation, obtained from the 1970 and 1980 U.S. censuses by 
linear interpolation. 

Again relabeling k as (a, s) for clarity, let Yias be the 
lung cancer death count and nias the midperiod popula- 
tion in the ith county for the ath age group and sth sex, 
i = 1, ... .,115, a = 1, ... , 4,s 1, 2. At the first stage of 

ind the model, we assume that Yiasl(ias rin Poisson((ias). We 
then model the mean structure by assuming that (ias = 
Ejas exp(uias), where Eias is the number of deaths that 
would be expected using some current reference standard 

and Alias is the corresponding log-relative risk in cell ias. 
Some spatial analyses (see, e.g., Bernardinelli and Monto- 
moli 1992) have used an externally available reference table 
to compute the Eias; here we adopt the simpler alternative 
of internal standardization, defining Eias = nias r, where 
Zr- Eias Yias/Eias nias, the statewide lung cancer rate 
over all sex and age groups in our dataset. 

The log-relative risks are then modeled linearly as 

1-tias = xT, + Ui + Eias, (7) 
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Table 2. Informal Model Comparison, Missouri Lung Cancer Data 

Number of 
fixed Log-likelihood 

Model for xT4o effects score, I Difference 

Vs a + Za Y 2 580.0 

Vsa + ZaqY + VsZae 3 597.8 17.8 

vsa + za(L)y(L) + VsZaM)(L) 5 614.9 17.1 

+Za(U)(u) + VsZIu)N(u) 

Vs& + Z)Ly(L) + ) 7 618.7 3.8 

+zq(M)yM) + vsz(M)((M) 

+Za(U)wY(U) + vszIu)N(u) 

where ,3 is a vector parameter that captures the effect of 
sex, age, and sex-age interaction. The ?ias are assumed iid 
N(O, ,2), but the ui account for potential spatial clustering 
of the rates via a conditionally autoregressive (CAR) prior 
structure (see, e.g., Besag, York, and Mollie 1991; Clayton 
and Kaldor 1987). That is, we assume that 

ui lul7si N(ui, 1/(,rmi)), 

where ui is the average of the ul#i that are defined to be 
"neighbors" of ui, and mi is the number of these neigh- 
bors. Here we adopt the most common implementation of 
the CAR structure, defining two counties to be neighbors 
if and only if they are physically adjacent to each other. 
It is easy to show that this prior is of the form given in 
(6), where wil = 1 if counties i and 1 are adjacent, and 0 
otherwise. Note that this CAR prior is defined only up to 
additive constant, again explaining the lack of an intercept 
term in (7). 

It thus remains to determine the appropriate structure for 
,3. Tsutakawa (1988) noted a strong similarity between the 
male death rates in the two oldest age groups, perhaps due to 
the competing risks of other diseases. Preliminary analysis 
of the female rates suggests a similar situation, and as such 
we begin by defining the sex and age scores 

fO if s = 1 (male) 
Vs jx 1 if s = 2 (female) 

and ( -1 if a= 1 (age 45-54) 
| if a= 2 (age 55-64) 

Za 1 if a= 3 (age 65-74) 
1 if a= 4 (age 75+) 

and use them in a regression-type model, 

xT )3 = V,a + ZaY + VsZa(, 

thus effectively combining the two oldest age groups. 
We complete our model specification with flat priors on 
the components of the fixed effect vector ,3, a vague 
gamma(.01,.01) hyperprior on i, and a moderately infor- 
mative gamma(l, 1) hyperprior on R = 1/o2. (This latter 
hyperprior ensures a well-identified joint posterior distri- 
bution and, as we shall see, is still quite vague relative to 
the posterior for the Eias). We then fit this model via Gibbs 
sampling using the BUGS language (Spiegelhalter, Thomas, 

Best, and Gilks 1995), aided by the CODA S+ function 
(Best, Cowles, and Vines 1995) for assessing convergence 
and computing posterior summaries. BUGS uses S-like syn- 
tax for specifying fairly complex hierarchical models. The 
program converts this syntax into a directed acyclic graph, 
the nodes of which correspond to the complete conditional 
distributions necessary for the Gibbs algorithm. Our results 

~~~~~~~a) 

(b) 

(b) 

Sptal sote RRs.g 
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-3 -2 -3 -2 -1 0 
(a) ~~~~~~~~~~~~~~~~~~~(b) 

C\J~~~~~~~~~~~~~~~~~~~~~~~~\ 

o 1 |I L- 

-4 -2 - 2 4 6 -3 -2 -1 0 1 2 3 
(c) (d) 

Figure 3. Residual Analysis, Five Fixed-Effects Model, Missouri Lung Cancer Data. (a) Histogram, with overdispersion terms; (b) normal q-q 
plot, with overdispersion terms; (c) histogram, no overdispersion terms; (d) normal q-q plot, no overdispersion terms. 

indicated moderate spatial correlation in the data (posterior 
for r centered near 30), a modest need for the extra variabil- 
ity terms (posterior for a- centered near .2), and significant 
sex-age interaction (posterior for ( removed from 0). 

To investigate the scope of models that our data could 
support, we considered a simpler model that drops the 
interaction term ( and a more complex analysis of vari- 
ance (ANOVA)-type model that replaced the age score vec- 
tor z = (-1, 0, 1, 1)' with separate vectors for the low- 
est and highest age groups, namely Z(L) = (1, 0, 0, 0)/ and 
z(U) = (0, 0, 1, 1)'. Table 2 compares the fit of these models 
using the posterior log-likelihood score, computed as the 
sample average 1 = 1/G g=1 1(9), where 

Ig = E ghasYia - Eias exp(plas) + C: 
ias ias 

g= 1...,)G. 

Here the superscript (g) indexes the Gibbs iterates, and C 
is a scaling constant. After a burn-in period of 50 iterations, 
we found that retaining G = 500 iterations was sufficient to 
produce log-likelihood scores with batched standard errors 
near .5. Note that the average score 1 for the model with 
five fixed effects is larger than that for the model with three, 
which in turn is substantially larger than that for the two 
fixed-effects model. However, a final extension to the satu- 
rated model that separates the two oldest age groups-that 
is, using z(M) = (O, 0, 1, 0)/ and z(U) = (0, 0, 0, 1)' -offers 
no numerically significant improvement in fit. Although the 
usual chi-squared asymptotics for differences in -21 are not 

appropriate in our Bayesian random-effects model setting, 
it seems clear from Table 2 that the model with five fixed 
effects offers the best fit while preserving parsimony. 

Our chosen model produces posterior means and 95% 
equal-tail credible sets as follows: for ae, -1.46 and 
(-1.545, -1.36); for y(L), -1.064 and (-1.15, -.976); for 
MU), .558 and (.503,.630); for ((L), .369 and (.227,.503); 

and for MU), -.318 and (-.428, -.207). Thus log-relative 
risk is nearly 1.5 units lower for females than for males on 
average, with the risk increasing monotonically with age. 
(Recall that the two oldest age groups have been combined.) 
However, the signs on the interaction terms ((L) and (U) 
show that this increase is not as dramatic for females as for 
males. 

Figure 2 maps the raw standardized mortality ratios for 
men age 55-64, SMRi21 = Yi21/Ei2l, the fitted relative 
risks obtained by Tsutakawa (1988) using EB methods 
without a spatial smoothing prior, and the fitted relative 
risks from our fully Bayesian spatial smoothing analysis, 

l1/ G exp(uE9) ? (g), the average of the 
G = 500 corresponding postconvergence relative risk es- 
timates. Although the comparison between our results and 
Tsutakawa's is not completely fair, because the latter were 
obtained using data for males only, clearly both of these 
methods eliminate much of the noise in the original map 
while preserving the high rate in populous St. Louis city. 
However, our spatial model clarifies the general increase 
in rates from north to south (especially along the eastern 
border with Illinois) and also identifies possible clusters of 
counties with similar risk, while maintaining a reasonable 
amount of fidelity to the original data. 
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Finally, we check our model by analyzing the posterior 
means of the collection of standardized residuals, rias = 
E[(Yias - (ias)/ (iasJY], which are readily computable in 
BUGS (Spiegelhalter et al. 1995, pp. 40-46). Figure 3a 
shows a histogram of these mean residuals, and Figure 3b 
gives their normal Q-Q plot. Both plots reveal a high degree 
of normality. 

Finally, the rather small fitted standard deviation (.17) for 
the extra viability terms Eias made us wonder whether these 
terms were even needed in the model. To check this, we 
reran our model without these terms, obtaining the resid- 
ual histogram and normal plot shown in Figures 3c and 
3d. Although the degree of normality is still acceptable, 
the presence of a few large outliers is disturbing. The one 
enormous outlier on the high side corresponds to men in 
the youngest age group who live in the city of St. Louis; 
apparently their very high lung cancer death rate is poorly 
fit by the model. Interestingly, two of the three outlying val- 
ues on the low side are the youngest and second-youngest 
groups of men living in St. Louis County, who are appar- 
ently much healthier than the model predicts. Thus we con- 
clude that the overdispersion terms Eias are critical in ob- 
taining acceptable fits in all-urban St. Louis city and its only 
geographic neighbor, suburban St. Louis County, allowing 
differing rates in these two disparate regions despite their 
juxtaposition on the map. 

4. CONCLUSIONS 

In this article we have provided a general approach for 
small-area estimation based on hierarchical Bayes gener- 
alized linear models, with and without spatial correlation 
structure. Sufficient conditions have been given to ensure 
the propriety of posteriors under noninformative priors. The 
general methodology is applicable to a wide variety of sit- 
uations calling for simultaneous estimation of small-area 
parameters. Future work looks to continued automation in 
the fitting of these models via MCMC methods, especially 
in the areas of model choice and model averaging. Promis- 
ing tools in this regard include expected predicted deviance 
scores, recently introduced by Gelfand and Ghosh (1997) 
and illustrated for spatio-temporal models by Waller, Car- 
lin, Xia, and Gelfand (1997). 

APPENDIX: PROOFS 

Proof of Theorem 1 
The joint posterior pdf of 0, /3, u, Ru, and R given y is 

7F (O (3, u, ru, rly) 

o fJFJl exp[k (YikOik -b(Oik))]rl/2 Z n 
i k 

x fl fl exp [-2 (h(Oik) -xik7-i)2] 

i k 

x exp(- a2u) r l exp(- 2) r . 

Integrating with respect to /3, r,, and r in succession, we obtain 

ir(0, uIy) < C 171 exp[qO1 (YikOik - O(Oik))] 
i k 

m -1/2(m+b) 

x a + ut hl (Oik ), 
1 ~~~~i k 

where C (> 0) is a generic constant that does not depend on 0 or 
u. Now integrating with respect to u and using the structure of a 
multivariate t, it follows that 

i r(Oly) < C J 1f expk[bi7_(YikOik -4 (Oik))]h/(Oik)- 
i k 

The result now follows from (3). 

Proof of Theorem 2 
For notational simplicity, without loss of generality h is taken as 

the identity function throughout. The joint posterior of 0, /3, u, RU, 
and R given y is 

7r(0, /3, U, ru, rIy) 

17 17 exp [i k (YikOik -O(ik))]r,,/2 

i k 

x t exp [- 2 (Oik -Xik3-)] 
i k 

xrm/2 ex - Wil (Ui _Ul )2] 
x ru exp K -~1itmw~(~-u) 

x ~~~2 
1 <i<l<m 

x exp - aru) rl/2 b-I exp (_ cr )rl /2 d- 1 

With the one-to-one transformation (z...... , ZM-1, UM), where 
Zi = Ui- UrMni = 1 ... I m, the posterior transforms to 

r(0)3alum, z, r" rly) 

oc exp S q itk (YikOik - 4(Oik)) rT/2 

x exp [- 2 (Oik X Zik Ur )j 

ru{+ 
Wil(Zi ZJ)2 

} 
(m+b-l)/2 x exp 2 Ta + w(z-Z)2 rur?l/ 

1 <i<l<m 

x exp_cr r 1/2d-I 

where Zm = 0 and z = (zi, ,Zmr-i ). Next, write 0 
n+1 >1 S O 0ik and z- = m-1 E> zi. Integrating with respect to 
Umr, /3, ru, and r in succession, we have 

7r(0, zly) < C exp [ E Nk- (Yik Oik -4(Oik))1 

[1 I- , 'V' -1- _ -(m+?b)/2 

x [a?E wil(Zi-Zt)2 
where C (>0O) is a generic constant that does not depend on 0 or 
z. Recall that Zmn 0 and Z1?i<t?rn wit(Zi-Zt)2 involves only m 
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- 1 variables Zi,. . , Z Thus, integrating with respect to z, 
and using the structure of a multivariate t distribution yields 

1(O Iy) < C exp [ ifk (Yik Oik -b(Oik))] 

The result again follows from (3). 

[Received December 1995. Revised June 1997.] 
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