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Bayesian Density Estimation and 
Inference Using Mixtures 

Michael D. ESCOBAR and Mike WEST* 

We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models 
provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from mixtures 
of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. 
This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty 
about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are 
established for a general class of normal mixture models. 
KEY WORDS: Kernel estimation; Mixtures of Dirichlet processes; Multimodality; Normal mixtures; Posterior sampling; Smoothing 

parameter estimation. 

1. INTRODUCTION 

Models for uncertain data distributions based on mixtures 
of standard components, such as normal mixtures, underly 
mainstream approaches to density estimation, including 
kernel techniques (Silverman 1986), nonparametric maxi- 
mum likelihood (Lindsay 1983), and Bayesian approaches 
using mixtures of Dirichlet processes (Ferguson 1983). The 
latter provide theoretical bases for more traditional non- 
parametric methods, such as kernel techniques, and hence 
a modeling framework within which the various practical 
problems of local versus global smoothing, smoothing pa- 
rameter estimation, and the assessment of uncertainty about 
density estimates may be addressed. In contrast with non- 
parametric approaches, a formal model allows these prob- 
lems to be addressed directly via inference about the relevant 
model parameters. We discuss these issues using data distri- 
butions derived as normal mixtures in the framework of 
mixtures of Dirichlet processes, essentially the framework of 
Ferguson (1983). West (1990) discussed these models in a 
special case of the framework studied here. West's paper is 
concerned with developing approximations to predictive 
distributions based on a clustering algorithm motivated by 
the model structure and draws obvious connections with 
kernel approaches. The current article develops, in a more 
general framework, a computational method that allows for 
the evaluation of posterior distributions for all model pa- 
rameters and direct evaluation of predictive distributions. 
As a natural by-product, we develop approaches to inference 
about the numbers of components and modes in a popula- 
tion distribution. 

The computational method developed here is a direct ex- 
tension of the method of Escobar (1988, 1994) and is another 
example of a Gibbs sampler or Markov Chain Monte Carlo 
method recently been popularized by Gelfand and Smith 
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(1990). Some of the earlier references on Markov Chain 
Monte Carlo methods include work of Geman and Geman 
(1984), Hasting (1970), Metropolis et al. (1953), and Tan- 
ner and Wong (1987). Besag and Green (1993) and Smith 
and Roberts (1993) recently reviewed Markov Chain Monte 
Carlo methods. 

The basic normal mixture model, similar to that of Fer- 
guson (1983), is described as follows. Suppose that data Y1, 
... . Y, are conditionally independent and normally distrib- 
uted, (YYi 17ri ) - N(Mu, JVi), with means Ai and variances Vi 
determining the parameters 7ri = (Ai , Vi), i = 1, .. ., n. 
Suppose further that the 7ri come from some prior distri- 
bution on 9 X X+. Having observed data Dn = {Y1i .., 

Yn }, with yi the observed value of Yi, the distribution of a 
future case is a mixture of normals; the relevant density 
function Yn+ I N(gn+1 , Vn+1) mixed with respect to the 
posterior predictive distribution for (irn+l I DO). If the com- 
mon prior distribution for the 7ri is uncertain and modeled, 
in whole or in part, as a Dirichlet process, then the data 
come from a Dirichlet mixture of normals (Escobar 1988, 
1994; Ferguson 1983; West 1990). The important special 
case in which Vi = V has been studied widely; references 
were provided by West (1990, 1992), who considered the 
common setup in which the Ai have an uncertain prior that 
is modeled as a Dirichlet process with a normal base measure 
(see also West and Cao 1993). The connections with kernel 
estimation techniques are explored in these papers, as are 
some analytic and numerical approximations to the predic- 
tive distributions derived from such models. The analysis 
covers problems of estimating the Vi. Escobar (1988, 1994) 
considered similar models, differing in the use of a uniform 
Dirichlet process base measure, and assuming Vi = V, 
known. Ferguson (1983), using Monte Carlo techniques 
from Kuo (1986), considered more generally the case of 
possibly distinct and uncertain Vi. The suitability of this 
model form for density estimation has been well argued there 
and in the earlier references. With a suitable Dirichlet process 
prior structure, described later, this model produces predic- 
tive distributions qualitatively similar to kernel techniques, 
but catering for differing degrees of smoothing across the 
sample space through the use of possibly differing variances 
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Vi. The structure is such that the posterior distribution will 
strongly support common values of individual parameters 
-i and -rj for data points yi and yj that are close, thus com- 
bining information locally in the sample space to estimate 
the local structure. We proceed with this general model, not- 
ing that similar discussion and analysis applies to the more 
restricted global smoothing version in which Vi = V. 

Section 2 completes the model specification and reviews 
some implications. Section 3 develops the computational 
technique for Monte Carlo analysis, extending the technique 
of Escobar (1988, 1994). This improves on the importance 
sampling-based simulation analysis of Ferguson (1983) and 
Kuo (1986), because it provides for efficient sampling from 
the posterior distribution of the model parameters rir. Section 
4 discusses prior and posterior inference about the number 
of components of a discrete mixture, and multimodality, 
and this is further developed in an application, in Section 5, 
to a problem in astronomy recently considered by Roeder 
(1990). Section 6 discusses some advanced techniques re- 
lated to the smoothing parameter for the Dirichlet process 
with a further illustration. Finally, Section 7 presents a sum- 
mary discussion. The Appendix provides a discussion of 
some convergence issues for the Monte Carlo analysis. 

2. NORMAL MIXTURE MODELS AND PREDICTION 

Suppose that the normal means and variances 7ri come 
from some prior distribution G(*) on 9 X X+. If G(*) is 
uncertain and modeled as a Dirichlet process, then the data 
come from a Dirichlet mixture of normals (Escobar 1994; 
Ferguson 1983; West 1990). In particular, we suppose that 
G - D(aGo), a Dirichlet process defined by a, a positive 
scalar, and Go( * ), a specified bivariate distribution function 
over R X X+. Go( * ) is the prior expectation of G( ), so that 
E{ G(1r) } = Go(r) for all i- E R X X+, and a is a precision 
parameter, determining the concentration of the prior for 
G(*) about Go(*). Write ir = {frl, . . ., lrn}. 

A key feature of the model structure, and of its analysis, 
relates to the discreteness of G( * ) under the Dirichlet process 
assumption. (Details may be found in Ferguson 1973.) 
Briefly, in any sample i- of size n from G( * ) there is positive 
probability of coincident values. See this as follows. For any 
i = 1, ... ., n, let r (i) be gr without gri . r (i) =I7 { , . . . , '7ri- 1 

+ri ..1 . , rn }. Then the conditional prior for (7rk I r (i)) is 
n 

(1ri Ilr(i)) - aan_1Go(1rir) + an-I 6( 1ri)X (1) 
j= 1,joi 

where kXj(r) denotes a unit point mass at i- = -xi and ar = 1/ 
(a + r) for positive integers r. Similarly, the distribution of 
(Orn +I I X?) is given by 

n 

(irn+I 1ir) - aanG0(7rn+l) + an ,1i(7rn+l)) (2) 
i=l 

Thus, given ii-, a sample of size n from G(.*), the next case 
7i-n?1 represents a new, distinct value with probability oaan 
and is otherwise drawn uniformly from among the first n 
values. These first n values themselves behave as described 
by (1) and so with positive probability will reduce to some 

k < n distinct values. Write the k distinct values among the 
n elements of 7r as 7r * = (,4*, Vj*),j = 1, ... , k. Suppose 
that there are nj occurrences of iri- and let Ij be the index set 
for those occurrences; thus 7ri = 7ri- for i E Ij and j = 1, .... 
k, with n1 + * + nk = n. Immediately, (2) reduces to the 
mixture of fewer components, 

k 

(nr+ I Ir) - aanGo(rn+l ) + an I nj 6r;( rn+1) (3) 
j=I 

Theory summarized by Antoniak ( 1974) gives the prior for 
k induced by this Dirichlet process model. The prior distri- 
bution for k depends critically on a, stochastically increasing 
with a. For instance, for n moderately large, E(k I a, n) a 
ln ( 1 + n/ a). In practical density estimation, suitable values 
of a will typically be small relative to n; a = 1 corresponds 
to the initial prior Go( * ) for Inr+1 receiving the weight of one 
observation in the posterior (2) or (3). Then, for n between 
50 and 250, say, the prior for k heavily favors single-digit 
values. 

To proceed, we need to specify the prior mean Go(.) of 
G(.). A convenient form is the .normal/inverse-gamma 
conjugate to the normal sampling model; thus, under Go( * ), 
we assume V;1 G (s/2, S/2), a gamma prior with shape 
s/2 and scale S/2, and (,IjI Vj) - N(m, TVj), for some 
mean m, and scale factor X > 0. For the moment, assume 
that the prior parameters s, S, m, and X are specified. Ge- 
nerically, let P( Y I D) represent the distribution of any quan- 
tity Y given any other quantity D. Then, with respect to 
predicting Yn+1, it is clear that P(Yn+1 j 1r, Dn) P(Yn +1 I) 
which may be evaluated as f P(Y?+jIIXn+I) dP(irn+ I I). 
The first component of the integrand is the normal sampling 
distribution, and the second is given in (2); these imply 

n 
(Yn+1 1,7) - aanTs(M5 M) + an Z N(,ui5 Vi), (4) 

i=l 

where T,(m, M) is the Student-t distribution with s degrees 
of freedom, mode m, and scale factor M1/2 and M = (1 
+ X )S/s. Equivalently, using the reduced form (3) , we have 

k 

(Yn+l 1,7) - aanTs( m, M) + an , njN( u* 5 V*) ( 5) 
j=I 

As discussed by Ferguson (1983), there are strong rela- 
tionships between (4) and standard kernel density estimates 
(Silverman 1986). The standard kernel density estimator, 
using a normal kernel, would estimate (Yn+1 I DO) by 
(Yn+l I DO) n-I E i7=I N(yi X H) for some window width H. 
In addition to obvious data-based estimation of smoothing 
parameters inducing varying window-widths across the sam- 
ple space, (4) involves two types of shrinkage: The yi's are 
shrunk toward their means, the Ai's, and the density estimate 
is shrunk toward the initial prior, T,(m, M). 

The Bayesian prediction, or density estimation, problem 
is solved by summarizing the unconditional predictive dis- 
tribution 

P(Yn+?1IDn) = frP(Yn?iI1 ) dP(wI D") (6) 
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Direct evaluation of (6) is extremely computationally in- 
volved for even rather small sample size n, due to the inherent 
complexity of the posterior P(ir I D") (Antoniak 1974; Es- 
cobar 1992; Lo 1984; West 1990). Fortunately, Monte Carlo 
approximation is possible using extensions of the iterative 
technique of Escobar(1988, 1994), now described. 

3. COMPUTATIONS 

Recall that for each i, r (i) = {Iri, .. ., 7ri-i, 7ri+i , 
irn }. We note that (ri I DO) has the following conditional 
structure. For each i, the conditional posterior for (iri I r ( 
Dn) is the mixture 

n 

(irilI (i), DO) qoG(iri) + I qj 6rj(ir)r (7) 
j=1,joi 

where 

(a) Gi(ri) is the bivariate normal/inverse-gamma dis- 
tribution whose components are Vi-l G(( 1 + s)/ 
2, Si /2) with Si = S + (y -M) 2 /(I1 + -r), and (Aui I Vi) 
- N(xi, XVi) with X = T/(1 + T) and xi = (m 
+ryi)l(l +T);and 

(b) the weights qj are defined as 

qo oc ac(s)[1 + (y, - m)2/(sM)]-(l+s)/2/ml/2 

and 

qj oc exp{-(y - (2V) (2) 

j = 1, . . . , n; j#i, 

subjecttoqo+ **+qi-l+qi+1+ +* +q=q1, 
with M = (1 + T)S/s and c(s) = r(( 1 + s)/2)r(s/ 
2)- s-l 

Here Gi( ( ) is just the posterior distribution of (ri I y1) 

under a prior Go( * ), and the weight qo is proportional to a 
times the marginal density of Yi evaluated at the datum yi 
using Go( * ) as the prior for iri. In our model, therefore, qo 
is proportional to a times the density function of Ts(m, M) 
evaluated at yi . The weight qj is proportional to the likelihood 
of data yi being a sample from the normal distribution (Yi I xj) 
or just the density function of N(Mj, Vj) at the point yi. The 
conditional distribution, (ri I r (i), Dn) is a weighted mixture 
of our best guess of the prior Go with single atom distributions 
on the other values on which we conditioned. The weights 
are determined according to the relative predictive densities 
at the data value yi. 

These conditional distributions are easily sampled; given 
ir (i), it is straightforward to sample from (ri Ir (i), DO). This 
fact is important in the iterative resampling process that pro- 
vides a single approximate draw from the joint posterior 
p(rjl Dn) as follows. 

Algorithm I. 

Step 1. Choose a starting value of ir; reasonable initial 
values are samples from the individual conditional posteriors 
Gi (.*) in (7). 

Step 2. Sample elements of ir sequentially by drawing 
from the distribution of ( ir jI r (1 , Dn), then' ( ir2ji r 2), Dn), 

and so on up to (rn I ir (n), Dn) with the relevant elements 
of the most recently sampled ir (i) values inserted in the con- 
ditioning vectors at each step. 

Step 3. Return to Step 2 and proceed iteratively until 
convergence. 

The sampling process is computationally very straight- 
forward. Note that in implementation, the required com- 
putations are reduced through the fact that each of the mix- 
tures (7) will reduce to typically fewer than the apparent n 
components, due to the clustering of the elements of ir . 
Using the earlier superscript * to denote distinct values, sup- 
pose that the conditioning quantities ir (i) in (7) concentrate 
on ki ? n - 1 distinct values ir = (O4 V), with some nj 
taking this common value. Then (7) reduces to (7ri 1r(i), 
Dn) qoGi (ir ) + I qj" 6;(r ), where the weights now 
include the nj (viz., qj oc njexp{-(yi - (2V*)} 

(2 VJ /)12 
The sampling process results in an approximate draw from 

p(I Dn). Escobar (1994) discussed theoretical aspects of 
convergence in the simpler case where Vi is known. Unfor- 
tunately, the proof in that simple case does not extend easily 
to this model, because the qj can get arbitrarily close to 1. 
This results in a violation of the equicontinuity condition 
required by Escobar (1988, 1994), Feller (1971, pp. 271- 
272) and Tanner and Wong (1987). Instead, we use the 
results from Tierney (1994), which are based on the mono- 
graph by Nummelin (1984). The theorem is stated later; 
the proof and additional discussion of convergence issues 
are contained in the Appendix. 

Let Q,( ir(O), A) be the probability that, with initial value 
-r(O) and after one iteration, Algorithm I produces a sample 
value that is contained in the measurable set A. Let 
Q'(-r(O), A) be the probability that, with initial value ir(O) 
and after s iterations, Algorithm I produces a sample value 
that is contained in the measurable set A. For the Markov 
chain implied by Algorithm I, Q,( *, * ) is called the transition 
kernel for the Markov chain. (For an explicit representation 
of the transition kernel for similar algorithms involving Di- 
richlet processes, see Escobar 1994.) For a fixed value of 
-r(O), both Q&(r(O), * )and Q'(-r(O), * )are probability mea- 
sures, and for a fixed measurable set A, both Q5( *, A) and 
Q'(., A) are measurable functions. Let the metric 11 11 be 
the total variation norm as defined by Tierney (1994). Let 
P( * I DO) be the posterior distribution of -r. In the theorems 
that follow, the conditions "almost all" and "almost surely" 
are with respect to the measure generated by the posterior 
distribution. 

Theorem 1. For almost all starting values of Algorithm 
I, the probability measure Q, converges in total variation 
norm to the posterior distribution as s goes to infinity. That 
is, for almost all -r(O), lims o lQ'(-r(O), *) )P(* I D) 11 
= 0. 

The initial prior variance T plays a critical role in deter- 
mining the extent of smoothing in the analysis. For a given 
k distinct values among the elements of ir, a larger value of 
T leads to increased dispersion among the k group means 
,Uj*, which, for fixed V j, leads to a greater chance of mul- 
timodality in the resulting predictive distribution. In re- 



580 Journal of the American Statistical Association, June 1995 

stricted models with Vj = V, choice of T relates to the choice 
of window-widths in traditional kernel density estimation. 
Rather typically, the information content of the data for es- 
timating T will be small unless the prior for V is reasonably 
informative. This is relevant in the more general setting 
here, too. 

The conditionally conjugate structure built into the model 
easily allows for an extension of the sampling-based analysis 
to include learning about the prior parameters m and/or T. 
Suppose independent priors of the form m - N( a, A) and 
X' -1 G( wI2, W/2), for some specified hyperparameters 
a, A, w, and W. It follows that 

(a) given T and ir, m is conditionally independent of Dn 
and normally distributed with moments E(m IT, ir) 
=(1-x)a+xVf (VJ)-'g and V(mIT,lr) = xTJ, 
where x = A/(A + TV), V- = E (VJy-1, and all 
sums are over j = 1, . .. , k; and 

(b) given m and ir, T is conditionally independent of Dn 
and has the inverse gamma posterior (T-r m, ir) 

G((w + k)/2, (W + K)/2) whereK= K 
- )1J I 

Incorporating m and/or T into the iterative resampling 
scheme provides for sampling from the complete joint pos- 
terior of (r, m, T I Dn). Thus steps 1 to 3 of Algorithm I may 
be modified as follows: 

Algorithm I. 

Step 1. As in Step 1 of Algorithm I, generate an initial ir 
conditional on a preliminary chosen value of m and T. 

Step 1'. Sample m and T (in some order) using the relevant 
distributions as just described. 

Step 2. Proceed as in Step 2 of Algorithm I, using the 
most recently sampled values of m and T. 

Step 3. Return to Step 1', and proceed iteratively until 
convergence. 

By extending the notation introduced for Algorithm I to 
Algorithm II, we get the next convergence theorem. The 
proof involves the straightforward extension of the arguments 
in the proof of Theorem 1. 

Theorem 2. For almost all starting values of Algorithm 
II, the probability measure QI converges in total variation 
norm to the posterior distribution as s goes to infinity. That 
is, for almost all (r(O), m(O), T(O)), limscjIQI5((r(O), 
m (O) TI( O) .) I Pir,m,T(* I D) 11 = 0- 

From specified initial values, we first iterate the sampling 
procedure to "burn-in" the process to (approximate) con- 
vergence. Following burn-in, successively generated values 
of ir, m, and T are assumed to be drawn from the posterior; 
denote these values by (lr(r), m(r), Tr(r)), for r = 1, .... 
N, where N is the specified simulation sample size required. 
Approximate predictive inference now follows through the 
Monte Carlo approximation to (6) given by 

N 

P(Y_ +, ID-) -N- 1 7,P(Yn+,I m(r) -m (r)- (r))- 8 
r=l 

with the summands given by the mixtures in (5 ), and the 
notation now explicitly recognizes the dependence on the 

sampled values of m and T. Additional information available 
includes the sampled values of k, {k(r), r = 1, . .., NJ, 
which directly provide a histogram approximation to 
p (k I Dn), of interest in assessing the number of components. 
The posteriors for m and/or T may also be approximated 
by mixture of their conditional posteriors noted earlier, fol- 
lowing general principles expounded by Gelfand and Smith 
(1990). For m, this leads to the mixture of normals p(m I Dn) 

N- p(mIr(r), r(r)); for , to the mixture of inverse 
gammas p(r I D") N`1 p(-r I m(r), r(r)), the sums being 
over r = 1, . .. , N in each case. 

Using theorem 3 of Tierney ( 1994 ), it can be shown that 
the path averages of bounded functions converge almost 
surely to their posterior expectations. Therefore, estimates 
of the cumulative distribution functions, estimates of the 
probability functions of discrete random variables, and his- 
togram estimates of probability density functions all converge 
almost surely to the posterior expectations. The next three 
theorems state that the estimates of the following probability 
density functions also converge almost surely to their pos- 
terior expectations. 

Theorem 3. The estimate of the predictive density, eval- 
uated at any fixed point, is strongly consistent for almost all 
starting values of the algorithm. That is, for almost all starting 
values, given any fixed value Y,?1,o, 

N 

N1 I p(Yn+1,01,(r)5 m(r), T(r)) P(Yn+,,o IDO) a.s 
r=1 

Theorem 4. The estimate of the posterior density of r, 
evaluated at the fixed point T0, is strongly consistent for 
almost all starting values of the algorithm. That is, for almost 
all starting values, given any fixed point T0, 

N~~~~~~-o 
N-1 I p(-ro 1 7r(r) , m (r)) A pro I D") a.s 

r=1 

Theorem 5. The estimate of the posterior density of m, 
evaluated at the fixed point moi, is strongly consistent for 
almost all starting values of the algorithm. That is, for almost 
all starting values, given any fixed point mo, 

N~~~~~~-o 
N-1 zp(mo I r(r) ,() pp(mo IDO) a.s. 

r=1 

4. MIXTURE DECONVOLUTION 

Common, and closely linked, objectives in density esti- 
mation are the assessment of the number of components of 
a discrete mixture and inference about the number of modes 
of a population distribution (see, for example, Hartigan and 
Hartigan 1985, Roeder 1990, and Silverman 1981). In our 
framework, prior and posterior distributions for the number 
of components underlying an observed data set are readily 
derived, as is shown and Illustrated here, and, if desired, 
inference on modality questions can be deduced as a by- 
product. 

Consider generating a sample ir of size n from the model 
in ( 1), resulting in predicting an observation using the mix- 
ture ( 5 ). With knowledge of ir, this mixture is the Bayesian 
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estimate of the population distribution. The number of dis- 
tinct components k from which the n realized observations 
arise is itself generated in the process of drawing ir. The lead- 
ing component of (5) allows for the observation to come 
from a further, distinct component. As noted earlier, the 
Dirichlet structure imposes a prior on k that depends only 
on n and a. In problems where the number of mixture com- 
ponents is likely to be small relative to n, say, and with mod- 
erate sample sizes, then the nonnegligible prior probabilities 
P(k I a, n) do not vary dramatically with n, and decay rapidly 
as k increases. Table 1 illustrates this for a = 1 and sample 
sizes between 1 and 500, the probabilities computed using 
results of Antoniak ( 1974). In such cases the model may be 
considered as a proxy for a finite mixture model with fixed 
but uncertain k. The conditions for this are that a be fairly 
small, leading to high prior probabilities on small values of 
k, and that the implied prior for k, for sample size n in the 
problem of interest, be an acceptable representation of avail- 
able prior information about the number of compo- 
nents. In Section 5 we assume these conditions in analysis 
of the astronomical data of Roeder ( 1990). 

In the computations of posterior and predictive distribu- 
tions described in Section 3, information is generated that 
provides a Monte Carlo approximation to the posterior for 
k based on the observed data. Generating each draw { ir( r), 
m ( r), -i( r) } also leads, as a by-product, to a value of k, say 
k(r), from the posterior for k. Thus a histogram approxi- 
mation to the posterior for k is induced and may be used to 
address the question about the number of components. 

Issues as to numbers of modes, rather than numbers of 
components, will often be of secondary consideration from 
a practical perspective, though they will remain of some in- 
terest because the number of modes provides a conservative 
estimate, as a lower bound, of the number of components 
that does not rely as heavily on the normal distributional 
assumption as the estimate of the number of components. 

One particular point of interest concerns the implied prior 
distribution of the number of modes to be expected in pre- 
dicting a future observation based on a sample of a given 
sample size. By calculating this in any specified model, the 
extent to which the predicted number of modes seems to 
satisfactorily represent informed prior Opinion provides one 
way of assessing the prior suitability of the model assump- 
tions. This too is explored in the data analysis that follows. 
The model does not permit easy analytic calculation of the 
prior for the number of modes, however, and so we resort 
to simulation, as follows. 

As in (1), and conditional on m and i-, we have, for i = 2, 
n, prior distributions 

i-l 

-xi-xi-l, 1 , iri) - aaiaGo(-ir) + a1 E 5J7r(i), (9) 
j=1 

with r I- Go( ). Thus we may trivially sample from the 
joint prior for (ir, m, Xr) by drawing m and r from their joint 
prior, next generating ir1 from Go (.*) given these values of 
m and X and then using (9) to sequentially sample the re- 
maining elements of ii-. The density of the prior predictive 
distribution ( 5) may then be evaluated over a fine grid and 

Table 1. Prior Probabilities P(k I a = 1, n) 

k 

n 1 2 3 4 5 6 7 8 9 10 

100 .01 .05 .13 .19 .21 .18 .12 .07 .03 .01 
200 .01 .03 .08 .15 .19 .19 .15 .10 .06 .03 
300 .02 .06 .12 .17 .19 .16 .12 .07 .04 
400 .02 .05 .11 .16 .18 .17 .13 .09 .05 
500 .01 .05 .09 .15 .17 .17 .14 .10 .06 

the values searched to count the number of modes. Repeating 
this procedure provides a random sample from the prior 
distribution of the number of modes, a histogram estimate 
of the prior. Similarly, we can calculate the posterior distri- 
bution of the number of modes by simply counting and re- 
cording the number of modes of the predictive density at 
each sample point. A simpler versibn of this strategy can be 
used in cases with m and/or T specified and/or with constant 
variances Vi = V, known or unknown, with obvious mod- 
ification. Finally, note that whereas the parameter a alone 
determines the number of mixture components, it is the 
variance r that predominates in determining the modality 
characteristics for any given k; as X- increases, smoothing 
decreases and the prior favors larger numbers of modes. 

5. INITIAL ILLUSTRATION 

Roeder ( 1990) described data representing measured ve- 
locities, relative to our own galaxy, of n = 82 identifiable 
galaxies from six well-separated conic sections of space. She 
considered the estimation of the density of velocities repre- 
sented as a finite mixture of normals and focused on the 
effects of uncertainty about density estimates on the assess- 
ment of multimodality, particularly on the hypothesis of 
unimodality. Of scientific interest is the hypothesis of galaxy 
clustering consistent with the Big Bang theory. Roeder ( 1990, 
p. 617) stated "If the galaxies are clumped, the distributions 
of velocities would be multimodal, each mode representing 
a cluster as it moves away at its own speed." To assess the 
scientific issue of clustering, we look at both the number of 
mixture components and the number of modes. The galaxies 
may indeed be clustered, or clumped, into several compo- 
nents, but the number of modes cannot exceed the number 
of components and may be much lower, the data distribution 
possibly exhibiting inflection points and skewness induced 
by distinct, though heavily overlapping, components. Related 
issues were raised and reviewed by Titterington, Smith, and 
Makov ( 1985, secs. 3.3.1 and 5.5). Similarly, after we cal- 
culate the posterior distribution for the number of compo- 
nents, there still remains the inferential leap that each normal 
component represents a galactic cluster. The underlying as- 
sumption is that each galactic cluster is a normal component. 
If the distribution of a galactic cluster is skewed or has a very 
light or heavy tail, then we may use two or more normal 
components to fit one galactic cluster component. (See Tit- 
terington et al. 1985, sec. 2.2.9, for more discussion of this 
point.) 

We detail the elements and results of a first analysis based 
on ae = 1, 50 that however many distinct components there 
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Table 2. Prior Probabilities P(k a = 1, n = 82) 

k 

1 2 3 4 5 6 7 8 9 

.01 .06 .14 .21 .21 .17 .11 .06 .02 

may be after sampling n = 82 cases, the probability that a 
further observation is drawn from a new component is 
1 /83, small. The prior for k, the number of distinct com- 
ponents, is given in Table 2. Recall that this is determined 
by n and a alone, and note that this prior differs only very 
marginally from that with n = 100 in Table 1. The prior is 
appreciable and fairly diffuse over 3 < k < 7, though smaller 
and larger values all have positive probability. 

To further assist in prior specification, consider the mo- 
dality issue discussed in Section 4. Let h be the number of 
modes in the predictive density for a further observation 
based on a sample of size n = 82. For initial simplification, 
consider standardizing the model to m = 0 (with no loss of 
generality) and fixing Vi = V = 1 for all i. Then, given a 
value of r, simple modification of the discussion of Section 
4 provides a way to compute the prior for the number of 
modes of the predictive density, based on n = 82. Under 
these assumptions, the smoothing parameter r, critical to 
the modality issue, is the only unspecified quantity, so the 
simulation exercise may be performed for various r to assess 
its effect on predictions. This simulation exercise was per- 
formed for the values of r, appearing in Table 3. The Monte 
Carlo sample size in each case in 10,000, so that the estimated 
prior probabilities displayed have numerical standard errors 
less than (.25/ 10,000)1/2 = .002. As a cross-check on ac- 
curacy, note that the prior for k is also produced in the sim- 
ulation, and in each of the cases summarized in the table, 
the Monte Carlo estimates of all prior probabilities for k 
agree with the exact values in Table 2 to two decimal places. 
As exemplified in the table, larger values of -X lead to increased 
chances on larger values of h, and the priors are more sen- 
sitive to lower X values although, from a practical viewpoint, 
the differences here are small. 

This information helps in choosing parameters of the prior 
for r, s-' - G(w/2, W/2). We choose a rather low value 
of the shape w/2, setting the prior degrees of freedom pa- 
rameter as w = 1. This defines a rather imprecise initial prior. 
Now W/ w represents a prior point estimate of -r-in fact, 
the prior harmonic mean E(-X -1) -i = W/ w. The prior mode 
is W/(w + 2). With W = 100, the harmonic mean is 100 
and the mode is 33.3, the corresponding prior density 
appearing as the dashed line in Figure 5 (p. 584). This is the 
very diffuse prior chosen for this analysis; in addition to being 
suitably diffuse, it has much consistency with the predictive 
assessments of the modality issue. In fact, analysis is possible 
under the traditional improper reference prior for r, pro- 
portional to r-r; it should be noted that the conclusions 
reported below are essentially unchanged under analysis 
based on a reference prior. For the prior for the conditional 
variances VJ A G(s/2, S/2), we note that Roeder (1l990, 
p. 61l7 ), citing the original data source of Postman, Huchra, 

Table 3. Prior Probabilities P(h I a = 1, n = 82, r) 
in a Standardized Model 

h 

T 1 2 3 4 5 6 7 8 

25 .09 .38 .38 .13 .02 
50 .05 .24 .38 .24 .08 .01 

100 .03 .15 .32 .29 .16 .04 .01 
200 .02 .12 .25 .28 .21 .09 .03 
300 .02 .10 .23 .28 .21 .11 .04 .01 

and Geller ( 1986), stated that "the error [in observed ve- 
locities] is estimated to be less than 50 km per second." The 
uncertainty of the current authors as to the interpretation of 
this phrase is fairly high, indicating a small initial precision 
parameter s. We take s = 4 here. For location of the prior 
for the Vj, this 50 km per second may be variously interpreted 
as an estimate of one or more standard deviations; we take 
it as a baseline standard deviation accounting for experi- 
mental error in velocity records. We reflect further that any 
identifiable cluster of galaxies may be expected to be subject 
to additional intragalaxy variation in velocities. As Roeder 
( 1990, p. 617) stated, "Given the expansion scenario of tlxe 
universe, points furthest from our galaxy must be moving 
at greater velocities." We thus specify a prior that favors 
rather larger Vj values, taking S = 2 with the degrees of free- 
dom s = 4; recall that the V)112 are in units of thousands of 
kilometers per second. The corresponding 95% equal tails 
interval for each of the V112 is roughly 400-2000 km per J 

second. 
Before proceeding to analysis, we explore the implied prior 

for h under this specification and with the prior mean taken 
(without loss of generality) as m = E(Yi) = 20. Prior sim- 
ulations described in Section 4 can be carried out in full, 
sampling the joint prior of { i-, Xr} and hence the prior for 
the number of modes h. Again based on 10,000 replications, 
the prior for h under this model appears in Table 4. Note 
that relative to the various cases in Table 3, the prior is rather 
more diffuse due to the additional uncertainty about -r. Again 
these probabilities are quoted to two decimal places, being 
positive, though rapidly decreasing, for smaller and larger 
values of h. 

Posterior and predictive analysis is detailed in this frame- 
work, with the additional (and final) assumption of a diffuse 
or reference prior for m, taking the limiting form of the N( a, 
A) prior with A` -* 0 as a reference. Clearly, other infor- 
mative priors might be used here instead. Analysis is based 
on the techniques in Section 3 with Monte Carlo sample 
size N = 10,000 and the number of iterations used for burn- 
in to convergence set at 2,000. These values are supported 

Table 4. Prior Probabilities P(h I a = 1, n = 82) Under Chosen Priors 

h 

1 2 3 4 5 6 7 8 

.03 .13 .26 .26 .18 .09 .04 .01 
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through experimentation with different starting values that 
suggest that an initial 1,000 iterations are more than adequate 
to achieve stability in the estimated posterior distributions. 
Further analyses with varying sample sizes lead to substan- 
tially similar inferences; see Section 6. In fact, the 10,000 
draws used for inference here are based on an actual run of 
150 times that number, saving draws only each 150 iterations; 
this induces posterior samples such that consecutive values 
in each of the k and h series have negligible autocorrelations. 
This rather wasteful analysis is reported so that the approx- 
imate posterior probabilities reported in Table 5 will be ac- 
ceptably accurate in the second decimal place; assuming ex- 
actly independent draws, .01 represents an upper bound on 
two posterior standard deviations for each of the posterior 
probabilities reported. Analyses were coded in Risc Fortran 
running on Ultrix DECstations and use standard numerical 
algorithms for random variate generation (e.g., ran 1, gasdev, 
gamdev, as in Press, Teukolsky, Vettering, and Flannery 
1992). 

The substance of the scientific issue of galaxy clustering 
is addressed through the posteriors for k and h. The corre- 
sponding Monte Carlo approximations from this analysis 
are given in Table 5. The prior for k (in Table 2) provides 
heavy support for between three and seven clusters, while 
being reasonably diffuse over a wider range. The posterior 
supports rather larger values. Because the prior is centered 
around lower values than the posterior distribution, the like- 
lihood function puts most of its weight on large values of k. 
Therefore, alternative priors giving more support to larger 
values of k would produce posteriors shifted upward. As is 
typical with inference about overlapping mixtures, there is 
clearly a great deal of uncertainty about the number of com- 
ponents. But unlike traditional approaches to density esti- 
mation, the computations here provide a formal assessment 
of such uncertainty. The posterior for h heavily favors five 
modes, evident in Figure 1. A crude summary of Table 5 
would conclude that there is strong support for between five 
and nine components. 

Varying a and repeating the analysis provides insight into 
just how sensitive the results for k are to a. The sensitivity 
is marked. For example, repeat analyses with a increasing 
from .5 through a = 1.0 to a = 2.0 correspondingly shifts 

0.20 
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0.10 

0.05 

0.0 

1 0 20 30 
Figure 1. Predictive pdf p(y 0 ). 

0.3 

0.2 

0.1 

10 20 30 
Figure 2. Sampled pdf's p(y ID). 

the posterior for k from smaller to somewhat larger values, 
though differences in predictive distribution functions are 
undetectable. The effects of varying a on inferences about r 
are, predictably, that smaller a values shift the posterior for 
T to favoring high values; the effects are not great, however, 
due to the marked lack of information about r in such anal- 
yses with small numbers of observations. Rather than pursue 
such sensitivity analyses further, we defer to the next section 
and formally subsume sensitivity studies in extended analyses 
incorporating learning for a. 

6. LEARNING ABOUT a AND 
FURTHER ILLUSTRATION 

Central to this analysis is the precision parameter a of the 
underlying Dirichlet process-a critical smoothing parameter 
for the model. Learning about a from the data may be ad- 
dressed with a view to incorporating a into the Gibbs sam- 
pling analysis. Assume a continuous prior density p( a) 
(which may depend on the sample size n) and hence an 
implied prior P(k In) = E[P(kl Ia, n)], where, using results 
of Antoniak (1974), 

P(kl a, n) = cn(k)nf!k r( + n) 

(k = 1, 2, ..., n), (10) 

and c,(k) = P(k a a = 1, n), not involving a. If required, the 
factors cn(k) can be easily computed using recurrence for- 
mulas for Stirling numbers. (Further details available on re- 
quest from the second author.) This is important, for ex- 
ample, in considering the implications for priors over k of 
specific choices of priors for a (and vice versa) in the initial 

Table 5. Posterior Probabilities P(k I a = 1, D,) and 
P(h I a = 1, D,) for Roeder's Data 

1 2 3 4 5 6 7 8 9 10 11 

P(k =iI|Dn) .03 .11 .22 .26 .20 .11 .05 .02 
P(h =i|Dn) .04 .14 .49 .29 .04 
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Figure 3. Predictive cdf P(y I D). 

prior elicitation process. As an aside, note that there is a 
great deal of flexibility in representing prior opinions about 
k through choices of prior for a. This will be elaborated and 
explored elsewhere in greater generality. 

Now suppose that we have sampled values of the param- 
eters xi. By sampling the parameters 7ri, we have in fact 
sampled a value for k, the number of distinct components, 
and have also sampled a specific configuration of the data 
Dn into k groups. From our model, the data are initially 
conditionally independent of a when k, ir, and the config- 
uration are known, and the parameters ir are also condi- 
tionally independent of a when k and the configuration are 
known. We deduce 

p(a I k, r, Dn) = p(a I k) oc p(a)P(kI Ia), ( 11) 

with likelihood function given in (10). (The sample size n 
should appear in conditioning, of course, but is omitted for 
clarity of notation.) Thus the Gibbs sampling analysis can 
be extended; for given a, we sample parameters 7r, and hence 
k, as usual from the conditional posteriorp( r I a, D). Then, 
at each iteration, we can include a in the analysis by sampling 
from the conditional posterior (1 1) based on the previously 
sampled value of k-no other information is needed. Sam- 
pling from (11) may involve using a rejection or other 
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Figure 4. Sampled cdf's P(y I D). 
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Figure 5. Pdf's p(tau) and p(tau I D). 

method, depending on the form of the prior p(a). Alter- 
natively, we may discretize the range of a so that ( 11 ) pro- 
vides a discrete approximation to the posteriors-the so- 
called "griddy Gibbs" approach (Ritter and Tanner 1991 ). 
More attractively, sampling from the exact, continuous pos- 
terior ( 11 ) is possible in the Gibbs iterations when the prior 
p( a) comes from the class of mixtures of gamma distribu- 
tions. We develop the results here for a single gamma prior 
and leave generalizations to mixtures to the reader or refer 
to the work of West ( 1992b). 

Suppose a - G(a, b), a gamma prior with shape a > 0 
and scale b > 0 (which we may extend to include a "refer- 
ence" prior (uniform for log( a)) by letting a - 0 and 
b -- 0). In this case ( 11 ) may be expressed as a mixture of 
two gamma posteriors, and the conditional distribution of 
the mixing parameter given a and k (and, of course, n) is a 
simple beta. See this as follows. For a > 0, the gamma func- 
tions in (10) can be written as 

F(a) (a + n)3(a + 1, n) (12) 
r(a + n) ar(n) ( 

where ,B(* *) is the usual beta function. Then in ( 11), and 
foranyk= 1,2,...,n, 

p(a I k) oc p(a)a k-l (a + n)f3(a + 1, n) 

oc p(a)ak-l(a + n) x a( 1-X)nl dx, 

1.5 #'% 

_~~~~~~ 

0 1.0 2 

0.5 6 

0. n ............ 
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using the definition of the beta function. This implies that 
p(a I k) is the marginal distribution from a joint for a and a 
continuous quantity X such that p (a, X I k) X p (a) a k-1 ( a 
+ n)rqa( 1- - q) , 1for 0 < a and 0 < X < 1. Hence we have 
conditional posteriors p(a In, k) and p(q I a, k), determined 
as follows. First, under the G(a, b) prior for a, 

p(a I n, k) oc a?+k-2( a + n)Ca(b-log(n)) 

OC a a+k- Ie- (b-log(n)) + naa+k-2e-a(b-log(n)) 

for a > 0, which reduces easily to a mixture of two gamma 
densities, viz. 

(a In, k) -7r,G(a + k, b - log(X)) 

+ ( I - 7r,,) G(a + k - 1, b - log(X)), ( 13) 

with weights xl,, defined by 7r,/( 1 - ir,) = (a + k - 1 ) {n(b 
- log(X))}. Note that these distributions are well defined 
for all gamma priors, all X in the unit interval, and all k > 1. 
Second, 

p(n Ia, k) oc n'(I - w)n-l (O < X < 1), (14) 

so that (nlIa, k) - B(a + 1, n), a beta distribution with 
mean (a + 1)/(a + n + 1). 

It is now clear how a can be sampled at each stage of the 
simulation. At each Gibbs iteration, the currently sampled 
values of k and a allow us to draw a new value of a by (a) 
first sampling an X value from the simple beta distribution 
( 14), conditional on a and k fixed at their most recent values, 
then (b) sampling the new a value from the mixture ( 13 ) 
based on the same k and the X value just generated in (a). 
On completion of the simulation, p((a I Dn) will be estimated 
by the usual Monte Carlo average of conditional forms ( 13), 
viz. p(a I Dn) - N`1 s=lp(al ls, k), where fl are the sam- 
pled values of q. 

One could develop convergence theorems for this new 
algorithm. The proofs would be straightforward extensions 
of our foregoing results. For example, to prove new versions 
of our Theorems 3, 4, and 5, one could bound the expected 
posterior distributions with the bounds proven in the Ap- 
pendix, because these bounds were constants with respect to 
a. 

We reanalyze the astronomical velocities data with the 
gamma prior a - G(2, 4); this density appears as the dashed 
line in Figure 6. Note that there is a fair degree of support 
for values near the a = 1 used in the previous section. All 
other assumptions and details of the analysis are as in the 
previous section. Analysis is summarized graphically in Fig- 
ures 1-6. Figure 1 displays a histogram of the data, from 
table 1 of Roeder ( 1990), together with a graph of the esti- 
mated predictive density function from Equation (8). This 
latter density is very similar to the "optimal" density estimate 
of Roeder (1990, fig. 7), but it has five modes rather than 
her four. To give a qualitative indication of uncertainty, Fig- 
ure 2 (p. 583) displays graphs of a random selection of just 
100 of the 10,000 sampled predictive densities, the sum- 
mands of ( 8) . Plots of the corresponding cumulative distri- 
bution functions appear in Figures 3 and 4. A nice way to 
exhibit uncertainties about density and distribution functions 
is via "live" animated graphical display of sequentially sam- 

pled functions (Tierney 199 1 ). Restricted to static plots, we 
prefer displaying sampled curves to bands mapping pointwise 
interval estimates of the functions, because the latter do not 
define density or distribution functions. 

The results summarized here attest to the robustness to a 
values noted in the previous section in so far as the issues of 
predictive density estimation is concerned. The predictive 
distributions and density functions are substantially similar 
to those obtained under the various analyses noted with a 
fixed. The estimated posterior p(T I Dj) appears as the full 
line in Figure 5, together with the prior p(T ) (with the latter 
quite diffuse, having a long tail off to the right of the plotted 
region). Finally, Figure 6 presents the corresponding prior 
and posterior densities for a. These are typical pictures; the 
information available in such small data sets about the 
smoothing parameters T and a is typically very limited, and 
this relates to the difficulties of smoothing parameter esti- 
mation in traditional approaches. 

Again addressing the substantive issue of galaxy clustering 
through inference about k and h, Table 6 provides the pos- 
teriors for k and h, now accounting for estimation of a. 
These posteriors are very similar to those at a = 1 in 
Table 5, though rather more diffuse over larger values of k 
and supporting between five and nine components. There is 
marked residual uncertainty about the number of compo- 
nents. Inferences about the number of modes h are also rather 
similar to those based on Table 5. 

7. FURTHER COMMENTS 
We have described and illustrated Bayesian density esti- 

mation and mixture deconvolution in classes of models 
whose analyses are now routinely implementable using sto- 
chastic simulation methods. The key contributions here lie 
in the development of computational techniques for hier- 
archical mixture models. Though these models have been 
known for about 20 years, only now can their real utility be 
realized. Problems of hierarchical prior specification and in- 
ference about layers of parameters and hyperparameters- 
particularly the variance and precision parameters that con- 
trol and define degrees of local smoothing-have been ad- 
dressed and may now be (and currently are, in various ap- 
plication areas) incorporated in routine data analyses using 
these models. In addition to developing methodology and 
demonstrating its utility in density estimation and mixture 
identification, we provide theoretical results proving con- 
vergence of the implemented simulation schemes, showing 
that they provide consistent numerical approximations to 
the exact Bayesian posterior and predictive distributions of 
interest. 

Current and recent areas of active research on extensions 
to this article include generalizations to more elaborate 

Table 6. Posterior Probabilities P(k I Dj) and P(h I Dj) Under a - G(2, 4) 
i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 2 3 4 5 6 7 8 9 10 11 12 

P(k = i|Dn) .02 .05 .14 .21 .21 .16 .11 .06 .03 .01 
P(h = i|Dn) .07 .15 .47 .27 .04 
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multivariate linear models and nonlinear models. Since 
this paper was originally written (in 1991 ) there has been 
research on refining the basic computational methods; in 
particular, MacEachern ( 1994) has introduced important 
algorithms that improve convergence characteristics; see 
also Bush and MacEachern ( 1993) and West, Muller, and 
Escobar (1994). 

APPENDIX: CONVERGENCE ISSUES 

In these proofs, it is helpful to use the notion of a configuration 
defined by West ( 1990) as follows. 

Definition. For each integer k, 1 < k < n, let c = (c1, . .., c,) 
be any integer n vector whose elements take values between 1 and 
k, with each such value appearing at least once. Define Ck(c) as 
the configuration of the n elements { i } into exactly k distinct 
values, 7r 1,.. ,7r k*, with 7ri = 7rj* where ci j j, i = 1,.., n . Then 
Ck(c) is called a k configuration of the { -xi }. Finally, let nj be the 
number of the { -xi } equal to u*, given by nj = ci = j; i = 1, 

In this definition, please note that -ri = 7r* implies , = p7 and 
Vi = VJ7. With this definition of configurations, the posterior dis- 
tribution produced from Algorithm I, where m and r are fixed, can 
be written as 

P(,7 I Dn5 ,5 m) 

= z P(7rI Dn, Ck(c), r, m)P(Ck(c) Dn T, m), 
{Ck(C) } 

where the sum is over all the unique configurations and where 
s and S, the parameters for the prior distribution, are sup- 
pressed in the notation. The posterior distribution for Algorithm 
II is 

P(ur, m, rIDn) = P(7r, m, rIDn, Ck(c))P(Ck(c)IlDn). 
{Ck(C) } 

Again, the parameters for the prior distribution, s, S, a, A, w, and 
W, are suppressed in the notation. 

Each configuration, Ck(c), is associated with 2k-dimensional 
subspace on ? 87'=1 (9 X 9+ )i. For example, the configuration C1 ( 1, 
. 1 ) is associated with the 2-dimensional subspace { r 1 7i = uj, 

for all i = j }. Define Xck(c) as the Lebesgue measure on the subspace 
associated with Ck( c) , and let A = z {ck(c)) Xck(c). Given the con- 
figuration, the posterior and predictive distributions behave like 
standard hierarchical normal models. Therefore, for example, 
P(7r I Dn, Ck(c)) and Xck(c) are mutually absolutely continuous, and 
thus the posterior distributions of u- and A are mutually absolutely 
continuous. 

Conditioning on the configurations, the model in this article 
reduces to the standard normal/inverse-gamma hierarchical 
model. Because the number of configurations is finite, proofs for 
the consistency of the Markov chain Monte Carlo estimates of 
the posterior and predictive densities would be a simple extension 
of the proofs for the standard normal/inverse-gamma hierar- 
chical model. But we do not know of any such published proofs 
for the consistency of these estimates for this standard model. 
Also, because the standard normal/ inverse-gamma hierarchical 
model is our model at a fixed configuration, the convergence of 
the density estimates for the standard model are corollaries to 
the theorems in this article. 

Proof of Theorem 1 and 2 
The arguments for the proof of both theorems are identical, so 

we will formally argue only the proof of Theorem 1. From theorem 

1 of Tierney ( 1994), we need to show that posterior distribution is 
an invariant distribution for the Markov chain defined by the al- 
gorithm and that the Markov chain is aperiodic and irreducible 
with respect to the posterior distribution. A proof of the invariance 
of the posterior distribution is similar to the proof of invariance 
contained in theorem 2 of Escobar ( 1994). From the construction 
of the Markov chain, we can see that for any set A such that A(A) 
> 0, for all starting points 7r(0), Q,( -x(0), A) > 0. So Q, is A irre- 
ducible and by mutually absolute continuity Q, is also irreducible 
with respect to the posterior distribution. Also, because A(A) > 0 
implies Q(ir(0 ), A) > 0, Q, is aperiodic. 

Proof of Theorem 3 

To show convergence of path averages, we use theorem 3 of 
Tierney (1994), which requires that the transition kernel of the 
Markov chain converge (in total variation norm) to the posterior 
distribution, that the chain be Harris recurrent, and that the posterior 
expectations of p(Y,+ I I r(r), m(r), r(r)) be bounded and equal to 
p(Yn+, I Dn). By our Theorem 2, we know that the Markov chain 
converges. It is straightforward to show that the path averages have 
the right expectation. 

We will make our recurrent Markov chain Harris recurrent by 
throwing away a set of starting values that have measure zero under 
the posterior distribution. See this as follows. First of all, we know 
that our Markov chain is positive recurrent by theorem 1 of Tierney 
(1994). Theorems 9.0.1 and 9.1.5 of Meyn and Tweedie (1993). 
state that the state space can be divided into two disjoint sets H 
and T, where the set T is a transient null set, and where the set H 
is an absorbing set with the property that our Markov chain restricted 
to this set is Harris recurrent. Therefore, if we do not use starting 
values in T, then we start our chain in the absorbing set H, and in 
this state space our recurrent chain is Harris recurrent. For a fuller 
discussion of this argument, please see the discussion around theo- 
rems 9.0.1 and 9.1.5 of Meyn and Tweedie (1993). 

Finally, we need to show that the posterior expectations are 
finite. From (4) and (6), letf(y; s, m, M) be the density function 
of a t distribution with s degrees of freedom, mode m, and scale 
factor M112 evaluated at the value y, where M = (1 + r)S/s. 
The function f(y; s, m, M) is bounded by B,,,,s for all values 
ofy,whereBn,,,s=S-1/2r[(1 +s+n)]/{F[(s+n)/2]F(1/2)}. 
This is because 

MY;S5 5 M =(SM -12P[(1 + s)/2] +(y 2M21(1+s)/2 

M(s/2)F(1/2)[1+ .sM7j 

< (SM)-1/2 F[(1 +s)/2] 
F(s/2)F(1/2) 

=[(1 +-r)S] 1/2 F[(1 +s)/2] 
F(s/2)F(1/2) 

< S-112 F[( 1 + s + n)/2 ] 
F[(s+ n)/2]F( 1/2) 

=Bn,ss,S 

From (4) and (6), let fN(y; s, m, M) be the density function of 
a normal distribution with mean ,u, and variance V, evaluated at 
the value y. As a function of y, the posterior expectation offN(y; 
p,* V) is also bounded by Bn,s, for all values of y. To see this, 
first note thatfN(y; j*5, Vj*) < (2Vf*)-1/2/r( 1/2). Now note that 
for a fixed configuratiot, the posterior distribution of (V7 )1 is a 
gamma distribution with shape parameter (s + n3)/2 and scale 
parameter (S + Nj)/2, where Nj = E7L1J(Y3* - Yj)2, Y>1 s the 
Ith value of Y, such that c, = j, and Y7* = 'if1 El 1 Y *Z There- 
fore, 
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P(fN(y;17, V*)ICk(c), m, r, D) 

< P((2V7 )-1/2/r( 1/2)1 Ck(c), m, r, Dn) 

= (S+Nj)12 F[(s + nj )/](/2) 

<S-112 
F[(1+s+n)/2] F[(s+n)/2]F(1/2) 

=Bn,ss,S 

Letfp(y) be the density of the random variable (Yn+1. 17r) defined 
in Equations (4) and (5). With these bounds onfN andf, we now 
show that the posterior estimation offp(y) is bounded by the finite 
constant Bn,s,S. For all y, 

P(fp(y) I DO) 

=ff(y) dP(1 I Ck(c), m,T, Dn) dP(Ck(c), m,TDl D) 

= ff{l aanf (y; s m, M) + an z njfN(y; , V, ) 
j= 1 

X dP(ii I Ck(c), m, , DO) dP(Ck(c), m, TI DO) 

k r 

?JanBn,s,S +an~JnJNY/7 7 

X dP(7r I Ck(c), m T, -Dn)} dP(Ck(c), m, I D) 

< {Bn,s,s} dP(Ck(c)5 m,T I DO) 

< Bn,s,S- 

Therefore, the posterior expectation has a finite bound, and by 
theorem 3 of Tierney ( 1994), the proof is complete. 

Proof of Theorem 4 

The proof is similar to the proof of our Theorem 3. After proving 
Theorem 3, what remains to be shown is that the posterior expec- 

tation is bounded. From the preceding comments, the statement 
to Algorithm II, (X-1 I m, 7r) G((w + k)/2, (W+ K)/2)), where 
K = k =I (g* - m)2/V* and where w and W are fixed positive 
parameters of the prior distribution for r. Let the density function 
of r at the value -r0 be p(r 0 m, 7r). The density is maximized when 
-0 = (W+ K)/(w + k + 2). Now, by evaluating p(ToIm, 7r) at its 
mode to get the first inequality in what follows and by using Stirling's 
formula for the gamma function (Johnson and Kotz 1969, p. 6) 
to get the second inequality, we have, for all -r0, 

w+ k+2 (w+k+2)/2 2 exp [- (k + w)/2] 
P(To I m, r) < 2 r[(w + k)/2] 

e(w+k)w w+k+2 e(w+n)Vw+n+2 
2F(1/2) 2F(1/2) 

where e = exp( 1). Because p(To I m, 7r) is bounded by a constant 
for all values of m and 7r, then the posterior expectation, P(p( 0 m , 
) I Dn) , is also bounded, and the theorem is proven. 

Proof of Theorem 5 

Again, the proof is similar to the proof of Theorems 3 and 4, 
and what remains to be shown is that the posterior expectation is 
bounded. From the preceding comments the statement of Algo- 
rithm II, given T and 7r, the random variable m is normally dis- 
tributed with variance V(ml-, 7r) = TAV/(A + TV), where V-1 
= 4j (V*)-1. Let the density function of m at the value mo be 
p(molr, 7r). For all values of mo, the density is bounded by ((A 
+ TV)/(2TA V)) 12/2( 1/2). Also, for all values of m, p((_)-1121m, 
Xr, Ck(c)) < /iP2((w + k + 1)/2)/(r((w + k)/2)ViWi). 
Now define (Uj)-1 = ((S + Nj)/S)(V*)-1 and (Uj)-l 
= I ( Uj)< Then ( V1 <( U)1, and given Ck(c) and Df, ( U) 

G(k(s + 1)/2, S/2). Finally, define the constant B* as 

B* (2((w+n+ 1)/2)JF((ns+n+ 1)/2) + 1/2 B* = , +A - 

F((w + n) /2)F(n (s + 1) )/2)VW_S 

x 
Xrrf 1/2) 

Therefore, for all in0, 

P(p(mo I,T,7r) Dn) ={ P(moIT,T7r)dP(I7 T, Ck(c),Dn)dP(7r Ck(c),Dn)dP(Ck(c)I D,) 

A + TrV 
1/2 1 2 dP(T j r, Ck(c), Dn) dP(i-l Ck(C), Dn) dP(Ck(c) Dn) 

JJ 2TAV / F(1/2) 

cccr 1 2 )12 < JJ((rV)'1/ + (A)) f dP(-I jr, Ck(c), Dn) dP(7rl Ck(c), Dn) dP(Ck(c)I Dn) 

CC ViP(w+k+1)2F) 12 
< ( 2 + A )122 I dP(r ICk(c), Dn) dP(Ck(c)I Df) JJF((w +k)/2)W 1/2 (VI)1/2 /V2F(1/2) 

?JJ ( F(w + k / ) ) + A1/)2 dP(Orl Ck(c), Dn ) dP(Ck(c)) Dn ) JJF((w +k)/2)W 112(Cj)112 /2 Fi(1/2) 

cI2F((w +k+ 1)/2)F((ks + k + 1)/2) 11/2 
D 

?11 ~~~~~~~~+ A11 IdP(Ck(c) ID,) 
F\ P((w+k)/2)F(k(s+ 1)/2)ViWS I Fr(1I2) 

?B*. 
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Therefore, the posterior expectation is bounded, and the theorem 
is proven. 

[Received September 1991. Revised July 1994.] 
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