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Estimating Normal Means With a 
Dirichiet Process Prior 

Michael D. ESCOBAR* 

In this article, the Dirichlet process prior is used to provide a nonparametric Bayesian estimate of a vector of normal means. In the 
past there have been computational difficulties with this model. This article solves the computational difficulties by developing a 
"Gibbs sampler" algorithm. The estimator developed in this article is then compared to parametric empirical Bayes estimators (PEB) 
and nonparametric empirical Bayes estimators (NPEB) in a Monte Carlo study. The Monte Carlo study demonstrates that in some 
conditions the PEB is better than the NPEB and in other conditions the NPEB is better than the PEB. The Monte Carlo study also 
shows that the estimator developed in this article produces estimates that are about as good as the PEB when the PEB is better and 
produces estimates that are as good as the NPEB estimator when that method is better. 

KEY WORDS: Empirical Bayes; Gibbs sampler; Importance sampling; Mixtures of Dirichlet processes; Nonparametric Bayes. 

1. INTRODUCTION 
Suppose that Y1, Y2, . . ., Y, are observed such that the 

Yi's given the Xi's are independent and have a normal dis- 
tribution with mean Xi and variance 1, the Xi's given G are 
independent with distribution G, and G and the Xi's are all 
unknown. This article introduces a new way to estimate the 
Xi values from the observed Yi's by using a nonparametric 
Bayesian estimator that uses a Dirichlet process prior. Pre- 
vious attempts to use a nonparametric Bayesian estimator 
have been limited due to computational difficulties. The 
main objective of this article is to introduce a new method 
for calculating the nonparametric Bayesian estimator and to 
compare this estimator with other methods of estimating 
the Xi's. 

Before presenting the Dirichlet process prior and the non- 
parametric Bayes estimator, some typical ways to estimate 
the vector of Xi's are discussed. The most common method 
is to estimate the Xi by Yi. This method, called the straight 
estimator in this article, has many desirable properties, such 
as being the maximum likelihood estimate, the least squares 
estimate, and the minimum variance unbiased estimator. 
But when the number of means is greater than 3, Stein (1955) 
showed that the straight estimate is inadmissible under the 
squared error loss function. 

When G is known, the posterior mean is the best estimator 
under squared error loss and the Bayes estimator is the pos- 
terior mean; that is, 

E(X I i) r X14)(Y - X,) dG(X,) 
E(Xi j Yf) = fk(Yi -Xi) dG(Xi) 
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where X is the density of the standard normal distribution 
function. If G is unknown, then G can be estimated by 
Bayesian or frequentist methods. Methods of estimating Xi 
by first estimating G using frequentist methods and then 
substituting the estimate of G into the preceding equation 
are called empirical Bayes methods. These methods were 
first introduced by Robbins (1955). 

There are two classes of empirical Bayes methods: para- 
metric and nonparametric (see Morris 1983). If G is assumed 
to belong to a parametric family, like the family of normal 
distributions, then the estimator is the James-Stein estimator 
or one of its relatives (see Efron and Morris 1973ab, 1975; 
James and Stein 1963). To obtain a nonparametric empirical 
Bayes estimator, one can first estimate G by nonparametric 
maximum likelihood methods (see, for instance, Laird 1978, 
1981; Lindsay 1983). 

Instead of using a frequentist estimate of G, this article 
presents a nonparametric Bayesian analysis using a Dirichlet 
process as a prior distribution on the family of distributions 
for G. The Dirichlet process prior (see Ferguson 1973, 1974 
and references therein) is a prior distribution on the family 
of distribution functions that is dense in the space of distri- 
butions. Antoniak (1974) showed that if a Dirichlet process 
prior is used for G in this problem, then the posterior dis- 
tribution of Xi is sampled from a mixture of Dirichlet pro- 
cesses. 

In the past it has been difficult to estimate values from a 
mixture of Dirichlet processes. Berry and Christensen (1979) 
used a parametric approximation for binomial models. Kuo 
(1986) and Lo (1984) have independently developed similar 
Monte Carlo integration algorithms to estimate from a mix- 
ture of Dirichlet processes. But these algorithms do not sam- 
ple values conditionally on the data, which can lead to very 
inefficient estimates (see Escobar 1992 for a more detailed 
discussion). With mixtures of Dirichlet processes, sampling 
from the data vector using importance sampling techniques 
is critical. 

The methods introduced in this article are based on a 
Monte Carlo integration that always samples points condi- 
tional on the data. In Section 2 an algorithm to estimate the 
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values of Xi is developed that uses a Dirichlet process prior 
with fixed parameters as the prior distribution for G. To 
estimate the Xi values, samples from the posterior distri- 
bution are obtained by reiterating a Markov chain con- 
structed from the easy-to-sample conditional distributions. 
We also show that the limiting distribution of the sample 
obtained from the reiterated Markov chain is the posterior 
distribution. Previously, the idea of using a reiterated Markov 
chain has been used in image processing by Geman and 
Geman (1984). Recently there has been extensive research, 
independent from the author's work, on calculating posterior 
distributions by sampling from a reiterated Markov chains 
by, among others, Tanner and Wong (1987), Rubin (1988), 
and Gelfand and Smith (1990). Gelfand and Smith (1990) 
extended the Gibb's sampler method of Geman and Geman 
(1984) to estimate general posterior distributions by using 
the reiterated Markov chain based on conditional distribu- 
tions. 

In Section 3 methods of selecting a prior distribution for 
the parameters of the Dirichlet process are discussed, and 
methods of estimating the posterior distribution for these 
parameters are developed. To calculate the posterior distri- 
bution of these parameters, an importance sampling algo- 
rithm is developed. The parameters of the Dirichlet process 
are important, because they enable the estimator from the 
Dirichlet process prior to behave almost like the James-Stein 
estimator, the nonparametric empirical Bayes estimator, or 
a combination of these two estimators. Choosing the correct 
parameter allows the Dirichlet process prior to behave like 
the better of these estimators for a given data set. 

In Section 4 the method developed in this article is com- 
pared to the straight estimator, the Bayes estimator if the 
true G is known, the James-Stein estimator, and the non- 
parametric empirical Bayes estimator. The James-Stein es- 
timator is a global estimator; it assumes that G is a member 
of a parametric family and then uses all the data to calculate 
the parameters. If G is a member of this parametric family, 
then the James-Stein estimator can be extremely efficient. 
But if G is not a member of this family and is instead, for 
example, multimodal, then the James-Stein estimator will 
not be very efficient; however, it will do no worse than the 
straight estimator. The nonparametric empirical Bayes 
methods (NPEB), such as the nonparametric maximum 
likelihood estimator, are local estimators. They do not as- 
sume that G is from any parametric family and use only the 
nearby data values to estimate the value of G at a given 
location. If the distribution G is multimodal, then the NPEB 
may be very efficient at finding the different modes and then 
shrinking the estimates to the center of the modes. But if the 
distribution is very disperse, which happens if G is a normal 
distribution with a variance of 4 or 10, then there will be 
few data points in the local area of the estimation. This will 
lead to very poor estimates. When G is a normal distribution 
with a variance of 10, then the NPEB does worse then the 
simple straight estimator. The estimate based on the Dirichlet 
process can act as a local or a global estimator, depending 
on the value of an adjustable parameter. By using the data 
to adjust this parameter, the Dirichlet process estimator can 

mimic either the James-Stein estimator or the NPEB esti- 
mator. It will do well if either the James-Stein estimator or 
the NPEB estimator does well, and it will avoid some of the 
pitfalls of these estimators. 

Although the methods introduced in this article are used 
to calculate the posterior means of several normal distri- 
butions, these methods can be used to perform a wide range 
of nonparametric Bayesian analyses. Many analysis of vari- 
ance, linear regression, and random-effects models can be 
reduced to the problem of estimating the mean of several 
normal populations. To study the estimation problem more 
clearly, the linear structure in the means and unequal vari- 
ances have not been considered. Section 5 shows how the 
posterior expectation of a function of X can be calculated 
and also how to extend the algorithm to models with different 
error distributions. With these extensions, the methods in 
this article could be used to calculate a wide range of non- 
parametric Bayesian problems. 

Section 6 presents a final discussion. The Appendix con- 
tains detailed proofs of the theorems presented in Sections 
2 and 3. 

2. THE ESTIMATOR 
Assume that G is sampled from a Dirichlet process with 

parameters Go and AO, where Go is a probability measure 
and Ao is a positive real constant. The parameter Go is a 
location parameter for the Dirichlet process prior. It is the 
best guess at what G is believed to be and is the mean dis- 
tribution for the Dirichlet process. The parameter Ao is a 
measure of the strength in the belief that G is Go. Therefore, 
the parameter Ao is a type of dispersion parameter for the 
Dirichlet process prior. In this section it is assumed that Ao 
and Go are fixed. 

To simplify the use of the Dirichlet process prior, note 
that when G is integrated over its prior distribution, the se- 
quence of Xi's follows a general Polya urn scheme; that is, 

XI - Go, 

= Xj with probability 1 
Xn IX1, Xn* 

AO 
* 

n 
-nI 

AO 
Go with probability A + ? - 

From this it is easy to sample a sequence XI, . . ., Xn, ... 
given Go and Ao. 

The closed form of the joint probability of XI, . . , Xn is 

dF(XI,. , Xn) 

[AOGO(dXi) + I " 6(Xj, dXi)] 
i=1 ~~AO +i - 1I1 

where 3(X, *) is a measure defined by 
I1 when XE B 

3(X, B)= 4 
10 when X t B. 

(For more on the relationship between a generalized Polya 
urn scheme and the Dirichlet process prior, see Blackwell 
and MacQueen 1973 and Ferguson 1973). 
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In this article the same notation is used for a set and the 
indicator function for a set; that is, { x < a } is the indicator 
function for the set { x < a }. Also, the symbols X and Y will 
represent the vectors (X1, . , X.) and (Y1, . . ., Yn) 

Antoniak (1974) showed that the distribution of X given 
Y is a mixture of Dirichlet processes. A mixture of Dirichlet 
process can be difficult to use; however, Escobar (1988) 
has shown that the conditional distribution of Xi given all 
the other Xj's (with i * j) and the data Y is a mixture of 
a discrete distribution with weights on the other Xj's and 
a distribution that is usually close to a normal distribution. 
The proof of the following theorem is contained in Ap- 
pendix A. 

Theorem 1. The conditional distribution of Xi given Xj, 
j * i, and Y has the following closed form: 

dF[Xi IXj, i *j, Y] 

-(Yi- Xi)AoGo(dX ) + Z7- i O(Yi - Xj)6(Xj, dXi) 
J#i 

A(Yj) + nj- i (Y - Xj) 
J#i 

(2) 

where X is the standard normal density function and A (Y) 
is defined as A(Y) = Ao f 4(Y - X)Go(dX). 

The conditional distribution defined in equation (2) can 
be sampled according to the following rule: 

F = Xj with probability .nY)- i_X I' IA;,I ~ A(Y1) + 7=I /4Yi -Xl) 
XIi iXj i *&j, Y A(Y.)3 

- h(XiI Y1) with probability A 
(XY) 

A(Y ) + Z ii ?(Y - X,)) 

where h is a density function from which to sample Xi and 
is defined as h(Xi I Yi) = [AolA(Yi)]0(Yi - X)go(X), and 
where go is the density function or the probability function 
corresponding to the probability measure Go. 

Note that the function h(Xi I Yi) is the posterior density 
of Xi given the data Yi if Go is the prior distribution of Xi. 
The function A ( Yi ) is the marginal distribution of Yi when 
Go is the prior distribution of Xi. In the procedure described 
in equation (3), the weights are proportional to o(Yi - Xj) 
and A (Yi ), because A (Yi ) is the marginal distribution of Yi 
when the prior of Xi is Go and O(Y, - Xj) is the marginal 
distribution of Yi when the prior of Xi is a point mass on 
Xj. Of course when the prior for Xi is a point mass on Xj, 

then the posterior distribution of Xi given Yi is a point mass 
on Xj. 

If Go is constant in a large area around Y, then h(X I Y) 
is approximately the normal density. So if Go is the uniform 
distribution, with support that covers the range of the data 
with a margin of 2 or 3 on each side of the range, then 
h(X I Y) is just the normal distribution with mean Y and 
variance 1. 

The distribution defined in (2) or (3) can be used to con- 
struct a Markov chain that converges in the limit to the pos- 
terior distribution F(X I Y ). Start by setting (X1, . . ., X,) 
= (x, . . , x()). Usually, xi() = Yi. Define the first step 
of a continuous-state Markov chain by the following: 

Sample x() from X1 1X2 = X2?), X3 = X3 , X = n Y1, ..., Yn. 

Sample x21) from X2IX = X(1), X3 = X30, . . ., xn = 
XnI Y1, ..., Yn. 

Sample xn () from X. IX, = xlI , X2 = x2 . ,Xn_l = Xn ()1, YI, .. ., Yn. 

These n samples are considered to be one step in the Markov 
chain. In a similar way X = x( can be sampled given 

(rn-), .X. .,xn l). Define the random vector X((m) as the 
vector produced after the mth step of the Markov chain. The 
proof of the following theorem is in the Appendix. 

Theorem 2. The distribution F(X I Y ) is the stationary 
distribution of the Markov chain and X(m) converges in dis- 
tribution to the stationary distribution, F(X I Y ), regardless 
of the initial values of the Markov chain. 

Note that the proof in the Appendix primarily uses theo- 
rem 2 of Feller (1971, p. 271). Schervish and Carlin (1992) 
presented convergence results similar to Feller's theorem 
under slightly different conditions and also discussed rates 
of convergence for similar types of Markov chains. But due 
to the unusual dominating measure of the posterior distri- 

bution, it is not clear how one could demonstrate that the 
necessary conditions could be satisfied to apply the theorems 
of Schervish and Carlin (1992). 

To estimate Xi, for some large m draw samples of X(,) 
X for I = 1, .. . , L and estimate E[Xi I Y ] by 

lL 

Xi -L E[Xi(, I Y, Xj(,), j * i], (4) 

where E[Xi(/) I Y, Xjy,, j * i] is calculated from the distri- 
bution defined in Equation (2). 

The method of summing the conditional expectation of 
Xi instead of just summing the sampled Xi's was first sug- 
gested by Gelfand and Smith (1990), who called this method 
Rao-Blackwellization. 
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3. POSSIBLE PRIORS FOR THE DIRICHLET PROCESS 

3.1 General Approach for Selecting the 
Parameter Priors 

In the preceding section we assumed that Ao and Go, the 
parameters for the Dirichlet process prior, are fixed. In prac- 
tice it is difficult to select appropriate values for these param- 
eters. Instead, a prior distribution is placed on these values 
and a posterior distribution is calculated. Because these pa- 
rameter values have an important influence on the estima- 
tion, a broad range of possible values for the parameters is 
chosen. 

For computational simplicity, the set of values for the 
parameters is finite. For example, in the simulations in the 
next section the support for the prior for Ao contains four 
positive numbers and the support for the prior on Go contains 
four distinct distributions. In this case there are 16 possible 
values for the pair (AO, Go). In the simulation the prior dis- 
tribution for (AO, Go) puts equal weight on all the pairs. 

The posterior distribution is obtained by calculating the 
likelihood of each (AO, Go) pair for the data Y. Here it is 
important to use importance sampling methods, because the 
calculations involve integrations that have almost all the 
weight in a small neighborhood near the data vector, Y. 
When we wish to sample X(,) from the Markov chain, we 
first sample (Ao, Go) from its posterior distribution and then 
use this sampled (AO, Go) to generate the vector X(l) using 
the method described in the previous section. Choices for 
the prior distributions on Ao and Go and the calculation of 
their joint posterior distribution are discussed next. 

3.2 Prior Distribution for AO 

When defining a Dirichlet process prior, Ao represents the 
weight of our belief that G is the distribution Go. Although 
this may be hard to quantify, in this section it is shown that 
Ao is related to how "clumpy" the data are. Clumpy data 
occur when the observations are concentrated into a few 
clusters. If the observed data are very sparse and not very 
clumpy, then we will see in the Monte Carlo study of the 
next section that nonparametric maximum likelihood 
methods may not work very well. But if the data are very 
clumpy, with modes that are spread out, then standard para- 
metric empirical Bayes methods do not work very well and 
nonparametric empirical Bayes methods work quite well. 
The choice of Ao will determine whether the estimate from 
the Dirichlet process prior behaves like the nonparametric 
empirical Bayes estimator or like the parametric empirical 
Bayes methods. 

The value Ao is related to the number of different X's. 
Define C(AO, n) as the expected number of different X's. 
Then (see Antoniak 1974, p. 1161), 

n A 
C(AO, n) = E(number of different X's) = 0 I 

i1l A0 + - 1 

It is easy to show that the preceding implies that max (1, 
A0ln[(A0 + n)/A0]) ? C(Ao, n) ? 1 + A0ln([A0 + n -1]/ 
A0). Table 1 gives the expected number of clusters, C(A0, 

Table 1. Expected Number of Clusters for Different Values of Ao and n 
Where n is the Sample Size and AO is the Precision Parameter 

for the Dirichlet Process 

n 

Ao 16 20 50 100 200 1,000 

n3.0 15.97 19.98 49.99 100.00 200.00 1,000.00 
n2.5 15.88 19.89 49.93 99.95 199.96 999.98 
n2.0 15.55 19.54 49.52 99.51 199.50 999.50 
n1'5 14.38 18.14 46.83 95.36 193.28 984.93 
n'0 11.34 14.12 34.91 69.57 138.88 693.40 
n0 5 6.86 8.03 15.22 24.44 38.90 110.69 
no0? 3.38 3.60 4.50 5.19 5.88 7.49 
n-0.5 1.75 1.72 1.60 1.50 1.41 1.24 
n-1'0 1.20 1.17 1.09 1.05 1.03 1.01 
n-1'5 1.05 1.04 1.01 1.01 1.00 1.00 
n-20 1.01 1.01 1.00 1.00 1.00 1.00 

n), where n equals 16, 20, 50, 100, 200, and 1,000 and where 
Ao equals different powers of n. This table shows that for Ao 
equal to or less than n1, one expects only about one cluster; 
for Ao equal to or greater than n2, one expects almost n 
different clusters; for Ao about 1, one expects only a few 
clusters; and for Ao equal to n one expects about 2 n clusters. 
[Actually, when Ao equals n, C(AO, n) n ln(2).] 

When there are only a few clusters, the estimate of the 
normal means from the Dirichlet process prior will be similar 
to the nonparametric empirical Bayes estimator. When there 
are almost n different clusters, the estimator from the Di- 
richlet process prior will be similar to the parametric em- 
pirical Bayes estimator. The parameter Ao adjusts the esti- 
mator presented in this article to behave like either a 
parametric estimator, which uses the data in a global manner, 
or a nonparametric estimator, which uses the data in a local 
manner. 

In choosing a prior on Ao based on the expected number 
of clusters, I developed the following prior. Let the values of 
Ao be between n -1 and n 2, because these values would result 
in almost the extreme values for the expected number of 
clusters; that is, one cluster or n clusters. Because of the log- 
arithmic relationship between the expected number of clus- 
ters and Ao, it seems reasonable to pick a prior for AO so that 
log,(A0) is evenly spread between -1 and 2. For the simu- 
lations study I used a discrete prior on Ao which puts a mass 
of 1 /4 on each of the atoms { n-', n0, n 1, n2}. The largest 
and smallest atoms, n - and n2, correspond to a belief that 
the expected number of clusters is nearly the minimum or 
maximum number of possible clusters. The middle atoms, 
no and n1, correspond to a belief that one expects either a 
few clusters or many clusters. Simple modifications to the 
author's prior (e.g., using a prior that has more atoms, re- 
sulting in a finer grid to cover the prior space, or using a 
prior that uses different weights reflecting one's own prior 
belief on the number of different clusters) could easily be 
incorporated. By using the updating mechanism presented 
in Section 3.4 to calculate the posterior distribution of AO, 
the data are then used to modify the algorithm to produce 
estimates similar to either the nonparametric or parametric 
empirical Bayes estimates. 
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3.3 Prior Distribution for Go 

The parameter Go is the prior guess of the shape of G. 
The parameter Go is used only in the algorithm in Section 
2 to calculate A(Y), h(Xi I Yi), and E[Xi IXj, j # i, Y]. 
Thus Go could be chosen to facilitate the calculation of 
these values in the algorithm. For computational pur- 
poses, Go could be a conjugate prior, a uniform prior, or 
some mixture of these two types of distributions. Three 
different types of priors one could use would be a sub- 
jective prior, an empirical Bayes prior, and a noninfor- 
mative prior. 

The role of Go for the Dirichlet process priors is similar 
to the role that the median or mean play in the typical prior 
distribution; it is the location parameter. It is our best guess 
of where the true value is. Therefore, if there are prior sub- 
jective beliefs, prior expert opinions, or theoretical consid- 
erations that G belongs to a small, finite set of possible dis- 
tributions, then the prior distribution of Go should have 
support on this set. If the set of distributions is not finite, 
then a finite subset of "typical" distributions that belong 
to this set could be chosen that represent the larger set. Be- 
cause the algorithm will average over the posterior distri- 
bution of Go, a natural smoothing occurs. Also, this prior is 
a third-stage prior in a hierarchical Bayesian structure. 
Therefore, picking a finite subset will approximate the results 
that would have been obtained from the infinite set of pos- 
sible Go values. 

If we decided to use the data to help determine the set 
of possible Go's, then we are actually using an empirical 
Bayes method. When estimating normal means, it is com- 
mon to assume that G is a normal distribution with un- 
known mean and variance. We could let Go be a normal 
distribution and use the data to estimate the mean and 
variance, as is done in the James-Stein estimator. If we 
wanted to incorporate the possibility of multimodal G's, 
then we could let Go be a mixture of one to, say, four 
normals and could use standard methods to estimate from 
the data the means, variances, and mixing parameters for 
the different fixed number of mixed normals. (See, for ex- 
ample, Titterington, Smith, and Makov 1985 for methods 
for calculating these mixtures.) 

An alternative prior for Go is to use a noninformative 
or improper prior; that is, to let Go have constant weight 
on the real line. Of course improper priors can cause 
mathematical problems. But the effect of such an improper 

prior in our problem could be approximated by using a 
uniform prior with support much larger than the range of 
the data. To do this I must calculate the minimum and 
maximum of the data, which means that I am technically 
using an empirical Bayes approach. Of course this could 
be avoided by consulting experts in the field where the 
data is collected and having them state some extreme 
maximum and minimum values of the data. One advan- 
tage of the truncated prior is that it is very similar to the 
improper prior but avoids the computational and math- 
ematical difficulties. 

For the simulation study in the next section, the nonin- 
formative prior for Go was used. Define G, as the uniform 
distribution on the interval [ r1, r2] with r1 = {min(Y) - r } 
and r2 = {max(Y) + r}. The set of Go's used in the simu- 
lation study is Go E {GrI r = 0, 1, 2, 3} . 

3.4 Calculating the posterior distribution 
of (AO, Go) 

First, the parameters (AO, Go) are limited to a finite number 
of values, S. Label the S different values (A((s), s)), with s 
= 1, 2, ... , S. Put prior weights on the set of values { (A (s), 
G(s))}, which we signify by P[(AO, Go) = (A((s), s))]. In 
the simulation in the next section, S equals 16 and the prior 
distribution puts equal weight on all values of { (A(s), G (s))}. 

By Bayes's theorem, the posterior prior of(A(s), G(s)) given 
the data Y is 

P{ (Ao, Go) = (A(s), G(s)) I Y } 

f[Y I (A(s), G(s))]P[(Ao, Go) = (A(s), G(s))] 
Et=-1 f [Y I (A(t), G(t))]P[(AO, Go) =(A(t), G(t))]'_ 

where 

fl [Y i(A (s), G(s))] 
rn 

= f 171(Y - xi) dF[ X I (Ao, Go) = (s), G(s))] (6) 
i=lI 

and dF[X I (Ao, Go) = (A(t), G(t))] is defined in equation (1) 
with the parameters (AO, Go) set to the values (A(t), G(t)). 

The hard part in calculating Equation (5) is calculating 
Equation (6). Equation (6) is evaluated via Monte Carlo. It 
is very important to sample values Xi near Yj; therefore, an 
importance sampling method is used. 

Sample a vector Xm with the following rule: let 

Xi N(Yi, 1)' A(s) 
with probability z M = 1 JA (s) + Z O1q(Yj - Xfm 

and forj=l,...,i-l 

Z Z -? with probability (Yi -X,){J< i } 
z~~~ =oJ ~~A (s) + Oq(Y, - X7m)(7 
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Table 2. Estimated Bayes Risk of the Means When the Means Have a Normal Distribution with Variance or2 

or2 ,2 

Method .01 1 4 10 .01 1 4 10 

N= 8 N =32 

B 106 495 844 933 03 533 792 91, 
JS 405 685 893 983 104 572 802 92, 
ML 294 744 1 115 1238 93 653 963 1143 
Dir 314 644 904 1034 73 632 902 96, 

N =16 N =50 

B -44 524 783 882 23 532 822 92, 
JS 133 655 812 932 83 552 822 92, 
ML 138 735 1034 1214 62 632 965 1 102 
Dir 133 654 872 982 63 602 912 97, 

NOTE: All units are in hundredths. Subscripts are standard errors. The Bayes risk of the straight estimate is 100 units. Method symbols: B = Bayes estimator; JS = James-Stein estimator; ML 
= nonparametric maximum likelihood estimator; Dir = Dirichiet process estimator. 

For M samples of Xm, with g(S) as the density function or 
the probability function of G(s), we can estimatef [ Y I (A (s), 
G(s))] byf[Y I (A(s), G(s))] defined as 

I M n 

f[Y (A(s), G(s))] z I| {Z> g(s)(X )+ (1 - Z7)} 

*{A()+ Z_A(s 4 Y -X I (8) 

The next theorem states that the preceding estimate is 
consistent. The proof of this theorem is contained in Ap- 
pendix C. 

Theorem 3. As M - oc, f[Y I(A(s), G(s))] 
a 

f [Y I (A (s), G(s)) ]. 

4. THE MONTE CARLO STUDY 

A Monte Carlo study was done to compare the Dirichlet 
process prior estimator with the James-Stein estimator (a 
parametric empirical Bayes estimator), the nonparametric 
maximum likelihood estimator (a nonparametric empirical 
Bayes estimator), the straight estimator, and the Bayes es- 
timate with known G. The Bayes estimator with known G 

is the best one could possibly do. Because the straight esti- 
mator that estimates Xi by Yi is so simple, one might consider 
the straight estimator to be the worst estimator that one might 
be willing to tolerate. The overall study design is described 
in Section 4.1; some of the Fortran programs used in the 
study have been provided by Escobar (1988). The results of 
the Monte Carlo study are contained in Tables 2 and 3; 
these results are discussed in the Section 4.2. 

4.1 Study Design 
There are 50 sets of observations, each of size n and dis- 

tribution G. For each set of observations, first a value of Xi 
is generated from a distribution G, and then Yi is the sum 
of Xi and a generated standard normal. The value of n, which 
is the number of observations, is either 8, 16, 32, or 50. The 
unknown distribution G is either normal or symmetric Ber- 
noulli. The normal distributions have a mean 0 and variance 
either .01, 1, 4, or 10. The symmetric Bernoulli samples 
have values of a or - a with equal probability. The parameter 
a has values 0, .5, 1, 2, or 5. Note that when a is greater than 
1, the unconditional distribution of Yi is bimodal. 

When calculating the estimator that uses a Dirichlet process 
prior, the posterior distribution is approximated by reiterating 

Table 3. Estimated Bayes Risk of the Means When the Means are Equal to Either or or -o With Equal Probability 

or 2 or2 

Method 0 .5 1 2 5 0 .5 1 2 5 

N= 8 N = 32 

B 69 108 485 286 96 04 213 483 264 -33 
JS 419 465 654 883 1002 124 303 603 812 98, 
ML 294 444 785 685 454 103 323 643 403 122 
Dir 284 414 634 734 533 83 303 653 622 63 

N =16 N =50 

B 16 314 534 315 35 -23 202 432 263 -23 
JS 195 455 704 862 98, 53 242 532 822 97, 
ML 154 444 814 574 283 42 262 532 372 92 
Dir 193 443 723 682 283 33 232 542 522 43 

NOTE: All units are in hundredths. Subscripts are standard errors. The Bayes risk of the straight estimate is 100 units. Method symbols: B = Bayes estimator; JS = James-Stein estimator; ML 
= nonparametric maximum likelihood estimator; Dir = Dirichiet process estimator. 
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the Markov chain 16 times. This approximated posterior dis- 
tribution is sampled 100 times; that is, when using Equation 
(4), the value of m is 16 and the value of L is 100. When 
calculating the posterior distribution of the pair (Ao, Go), the 
likelihood f[Y I (A(s), G(s))] is calculated using Equation (8) 
by drawing M samples, where M is equal to min { n2, 1024}. 

Normal distributions are generated by first generating a uni- 
form distribution using algorithm AS 183 (Wichmann and Hill 
1982) and then calculating the inverse normal distribution 
function using algorithm AS 11 1 (Beasley and Springer 1977). 
The symmetric Bernoulli distributions are generated using the 
uniform distribution generated from algorithm AS 183. 

The Bayes risk is calculated by first getting the difference 
between the errors of the test estimator and the error of the 
straight estimator. This difference is then squared, averaged, 
and subtracted from 1 to obtain an estimate of the Bayes risk 
under a squared error lost function. This differencing procedure 
improves the estimate of the Bayes risk when the Bayes risk is 
near 1 for a given estimator and distribution G. 

4.2 Simulation Results 

The results are in Tables 2 and 3. There are times when 
the Dirichlet process estimate is better than either the James- 
Stein estimator or the NPEB estimator. Even when the Di- 
richlet process is not the best, it is usually very close to the 
best of the other two. Also, each of the other two estimators 
have weak spots. The NPEB is worse than the simple straight 
estimator, sometimes 20% worse, especially in the case where 
G is a normal distribution with large variance. The James- 
Stein estimator is not very good for bimodal data. It assumes 
that G is close to a normal distribution and will not offer 
much of an improvement when G deviates significantly from 
a normal distribution. As the modes get further apart, the 
James-Stein estimator collapses to the straight estimator. 
The posterior estimation of (Ao, Go) allows for the Dirichlet 
process estimator to act like either a parametric or nonpara- 
metric empirical Bayes method. 

5. EXTENSIONS 

The algorithm presented in this article could be extended 
to allow the use of the Dirichlet process prior in more general 
settings. So far, methods for estimating posterior means with 
a simple normal error model have been discussed; however, 
these methods can easily be extended to nonnormal models 
and to estimate other posterior expectations. 

If one wished to calculate the posterior expectation of a 
function of X, say {P(X), then this function could be esti- 
mated by modifying Equation (4) to 

t[~(Xi)l 
l L 

E[t'( Xi) | Y ] - L E[t(Xi(,)) Xj(,), j # i, YV 

if t/(X) is a function of just one component of the vector 
Xi, or the following formula could be used: 

iL 
E[IiV(X)IY] = - 7 (X,,) 

if ,6V(X) was a finite function of the whole X vector. 

The method in this article can be extended to nonnormal 
models with relative ease. Assume that Yi, given Xi and a 
fixed parameter 0i, has the likelihood function X( Yi I Xi, 0i ) 
rather than the function O( Y, - Xi) in the algorithm. Replace 
O(Yj - Xj) by X(Yi IXj, 0i) everywhere in this article. 
Also, in the sampling procedure (7), replace A(s) by A (s*) 
and instead of sampling from N(Yi, 1), sample from the 
distribution with density X*( X I Yi, 0,), where A (s*) = A(s) 
f X(Y, IX, 0) dXand 

A (s) 
X*(XIYi i) = (s )x(YiIX i) 

Given these substitutions for the nonnormal case, 
Theorems 1 and 3 are obviously still true. In Theorem 2 
the proof presented in the Appendix still applies if 
X(Yi I Xi, Oi ) is a bounded function of Xi for fixed values 
of Y1 and 0A. 

6. CONCLUSION 

A method to calculate the posterior distribution for param- 
eters of the Dirichlet process has been presented, and a tech- 
nique to obtain Bayesian estimates from this method for the 
means of a normal distribution has also been shown. These 
estimates have been compared to empirical Bayes estimates. 

The Dirichlet process estimator blends together the ad- 
vantages of both the James-Stein estimator and the NPEB 
estimator. For fixed (Ao, Go), the Dirichlet process provides 
a nonparametric empirical Bayes method that is able to es- 
timate the local features of the unknown G distribution, sim- 
ilar to the NPEB estimator. By putting a prior distribution 
on (AO, Go) and then calculating the posterior distribution 
for (AO, Go), a global parameter is estimated that protects 
the Dirichlet process from very sparse data. 

Besides using this method to estimate posterior means, 
the algorithm in this article could be used to perform "non- 
parametric" Bayesian estimates. The use of Ferguson's non- 
parametric prior has been limited due to its computational 
difficulties; even previous Monte Carlo algorithms share this 
problem, because they have not used importance sampling 
techniques. Now nonparametric Bayesian analyses can be 
applied to a wide range of statistical procedures. 

APPENDIX: PROOFS 

A. 1 Proot ot Theorem I 

For some constant C, by the Bayes theory for Dirichlet pro- 
cesses (Ferguson 1973, p. 217), dF[X, IXi, j# i] = C[A0G0(dX1) 
+ Ejoi 6(Xj, dX )]. Now Bayes's theorem gives 

dF[Xi lXj, j # i, Yi= q(Y, -Xi) dF[X; 
I Xj, j i i] 

Forj # i, 1') is conditionally independent of Xi given the X)'s; there fore, 
dF[Xi I Xj, j # i, Y ] = dF[X, I Xj,j # i, Yi ], which proves the theorem. 

A.2 Proot ot Theorem 2 
This theorem is an application of results from the ergodic theory 

of Markov chains. Let 2 be the support of Go and let 1 c Q; then 
the Markov chain { Xm } has the transition probability given by the 
stochastic kernel K, where K is defined as 
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K(x, r) = .. 1 X Xi ...}xx Xn,-IY[dZn, I 1Z2, - * * I lY] 

* * PX21 IXl3.. XnY [dZ2 1 ZI , X3, * * *, Xn, Y] 

* PXI I X2... X,Y [dzi I X2, * * * X Xn, Y]1, (A. 1 ) 

where 

Pxilxl ... X-i Xi+i .xny[dziIzl z i-I Zi+l . . Zn, Y] 

=dF(Xj = zi IX, = zj,.. Xi-, = zi-1, Xi+, 

= Zi+l Z * * Xn = Zn, Y = Y)- 

Also, the transition probability, K'(x, r), of m steps in the Markov 
chain is defined recursively from (A. 1) and the following equation: 
Km(x, r) = f Kml (x, dz)K(z, r). To prove the theorem we use 
the following theorem and four definitions from Feller (1971, pp. 
207, 271-272). 

Definition I (Feller). A measure a is strictly positive in Q if 
a(I) > 0 for each open interval I C Q. The kernel K is strictly 
positive if K(x, I) > 0 for each open interval I in Q. 

Given xo with initial distribution -yo, the distributions of X(') 
X(2),... are defined recursively as -ym{ Ir = f 'Ym-I (dx)K(X, r). 
If -yo is defined as an atom at x(?), then -ym{ r} = Km(x(o), r). 

Definition 2 (Feller). The distribution -yo is a stationary 
distribution for K if -ym = -yo for all m; that is, if yo(r) 

f yo(dx)K(x, r). 

Definition 3 (Feller). The kernel is ergodic ifthere exists a strictly 
positive probability distribution a such that -ym -? a independently 
of the initial probability distribution -yo. That is, Km(x, I) e a(I) 
> 0 for each interval of continuity of a, regardless of the initial 
value of x. 

Given a function u that is bounded and continuous in the un- 
derlying interval Q, define u = uo and, by induction, um as 

um(x) = f K(x, dZ)Um-I(Z). (A.2) 

Definition 4 (Feller). The kernel K is regular if the family of 
transforms ur is equicontinuous whenever uo is bounded and uni- 
formly continuous in Q. 

Theorem (Feller). A strictly positive regular kernel K is ergodic 
if and only if it possesses a strictly positive stationary probability 
distribution a. 

To prove Theorem 2 we show that K is a strictly positive regular 
kernel and P[ X I Y ] is a stationary distribution of K, and then apply 
the preceding theorem from Feller. The kernel K and distribution 
P[ X Y ] are obviously both strictly positive on the support of Go. 
In Part A we show that P[X I Y ] is a stationary distribution of K; 
in Part B we show that K is a regular kernel. 

Part A. The probability P[X I] is a stationary probability 
for K. 

Proof of A. We need to show that 

P[{X E rF IY] = fP[dxIY]K(x, r). (A.3) 

To simplify the notation, we prove only the n = 3 case. The exten- 
sion to the general case is straightforward. To prove (A.3), the fol- 
lowing basic properties are needed: 

f. f . 23(x2, x3)PX,X2X3[d(x1, x2, X3) 

= .. .f 23(X2, X3)PX2X3[d(x2, X3)], (A.4) 

where /23 is any measurable function and is not a function of xl, 
and 

{(xl, x2, x3)PXI I x2x3 [ dxl I x2, x3] PX2X3[ d(x2, X3) 

= f (xl, x2, x3)PX,X2X3[d(x1, x2, X3)], (A.5) 

where t is a measurable function. In the following series of equa- 
tions, let everything be conditional on Y. To prove the results it is 
necessary to show that f K(x, r)P(dx) = P(X E r). By repeated 
applications of (A.4) and (A.5), 

f K(x, r)P(dx) = f K[(xl, X2, x3), r]P[d(x1, X2, x3)] 

= f {(zI, Z2, Z3) E r}K[(xl, X2, X3), d(zl, Z2, Z3)]Pxlx2X3[d(x1, X2, X3)] 

= f { (z1z2, z3 ) E r} Px3lx1 
x22[ 

dz3 IzI, z2 ] PX21 
x,x3 [dz2 

zI, 
X3 ]Px x2x3 [dz, X2, X3 ] 

PxI 
x2x3[d(x x2,x)] 

= f {(z1,z2, z3) E F}Px3ix1x2[dz31zi, z2]Px2ix1x3[dzz1z, x3]PX11x2x3[dz1 lx2, x3]Px2x3[d(x2, X3)] 

= f {(ZI, z2, Z3) C }ZPx31 ,2[dz3 z1, z2X] P2213[dz2lz1, x3] P,2x3[d(z, x2, x3)] 

= f {(z1, z2, z3 ) E } PX31 x,x2 [dz31 
ZI, 

z2] PX21 xx3 [dzdZ2 1Z, X3] 
PXXX3 [d(ZI X2 X3)] 

= f {(ZI, Z2, Z3) E Z}Px31x,2[dz31z2]PX,2X3[d(Z1, z2, X3)] 

= {(ZI, Z2, Z3) E F}Px31[ 2[dz3dz1, zl 2]Px2[d(z1, z2)] 

= {(ZI, Z2, Z3) E r}Pxlx2x3[d(z1, Z2, Z3)] 

P[XE r]. 
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Therefore, Equation (A.3) is true and, in turn, Part A is true. 

Part B. The stochastic kernel K is regular. 

Proof of B. We have to show that for all uo(x), a bounded 
uniformly continuous function, the family of functions { urn } de- 
fined by Equation (A.2) is equicontinuous. 

Let the symbol II xII,, be the sup norm for a vector x defined as 
lixiK1 = maxi { Ixi I } . (Note: Use of the sup norm instead of the 

usual euclidian norm is not restrictive, because for any vector x 
E 9N , iixii2/In ? X x11o < 1lxii2, where the euclidian norm is defined 
as 11X112 = X2 ) 1/2 . Therefore, the arguments that follow could 
be rewritten using the usual euclidian norm, but the sup norm is 
more straightforward for this proof.) 

To simplify the notation, we work only with the case n = 2. The 
extension to the general case is more complex, but it follows the 
same basic argument. 

Using Equations (A.2), (A. 1), and (2), ur is equal to the following: 

Um(Xi, x2) = Um- I (ZI, z2)K[ (xi , X2), d(zi, Z2)] 

uM_1(x2, X2)4(Y2 - X2) + f Um-l(x2, z2)k(Y2 - z2)AoGo(dz2)1 

I [ A (Y2) + 4Y2 - X2) j X2) 

r [Um-(ZI, zI)(Y2 - z) + f Um-I(ZI, z2)O(Y2 - z2)AoGo(dz2)] Z 
+ j A(Y2) + (Y -YZI) (YI -z)AoGo(dz1)j-[A(Y1)+ -x2)]' 

To simplify the right side of this equation, define the following 
functions: 

O(Yi-x) 
A(Yi) + q(Yi-x) 

Br(x) = u u (x, z) k(Y2 - Z) AoGo(dz), J ~~A(Y2)AG(d) 

and 

Cm = { Ur(Z, Z)P2(Z) + B.(Z)[l -P2(Z)]} 

X A(G 0 ) AOGO(dz). 

Therefore, urn(xl, x2) reduces to 

Umr(XI, X2) = {P2(X2)Um- I(X2, X2) + [1 - P2(X2)]Bm-l (X2)} 

X PI(x2) + [1 -PI(X2)]Cm-1i 

Because the function O(Yi - x) is greater than 0 and bounded 
by 1/ (2-r), and because Y is fixed in this theorem, pi (x) is 
bounded by 1/{ 1 + A (Yi) l/2-r}, which is strictly less than 1. The 
function pi (x) is also uniformly continuous, because it is bounded 
and goes to 0 as x goes to positive or negative infinity. 

By the hypothesis, uo is bounded in absolute value; therefore, 
there exists a number M such that supx I uo (x) < M < co. By 
definition, ul is an average of uo; therefore, ul is bounded by M. 
Repeating this argument for all m, we find that for all m, 
supx I Um (x) I < M < so . Also, for each Bm and Cm, these functions 
are averages of the function Urn; therefore, for all m, these functions 
are also bounded in absolute value by M. 

Also, if uim is absolutely continuous, then so is B,, ab- 
solutely continuous with the same b's and c's. That is, if there exist 
a 3 and an c such that I um(x'i, x'2 ) - um(x'f, x') ? e whenever 
(x', x'2) - (x',, x'I). ? 6, then for the same 6 and e we have 
Bm(x'2) -Bm(x' ) < c whenever I x2-x' < ?. This is true 

because if II(x', x'2) - (x', x')I.) < 6 implies that IUum(X , x'2) 
-um(xL, x')I <c,thenforall Ix'2-x'5I ?wehave 

IBm(x')-Bm(x'2)1 c I Um(X2, Z)- U(X2, Z) 

Aoq5(Y2 - z)Go(dz) 
A (Y2) 

f AoO(Y- z)Go(dz) 

J A ( (Y2) 
The rest of the proof of Part B follows from natural induction. 

First, because uo is uniformly continuous, there exist a 51 and an e 
such that for all (x', x'2) and (x', x's) such that 11 (x', x'2) - (x', 
x')I21 ? 6< , juo(x'l x2) -uo0(xt, x'2)I ? e. 

Also, because P2() and p,( - ) are both uniformly continuous 
and do not depend on m, there exist a 62 such that for all i (i = 1, 
2) and for all x' and x', where I x' - x' I ' 62, 

pi X') pi(x2'l 
f2A(Y, ) 

4M[1 + 2A(YI)] 

Now assume that for all (x'1, x'2) and (x', x's) such that 11 (x', 
x'2) - (xi, x")II. ? min(b3, 62), IUm-I(X'i, x') - Um-I(X"i 

x') I < c. By the preceding argument, I Bm-I (x2) BmI (x') < c, 
and we have 

|IUm(X'I X'2) - Um(X'X1, X2 )I 

'Pl(X'2){IP2(X'2)-P2(X'2)l *[IUm-i(X'2,X'2)1 + IBm-(x'2)I] 

+ P2 (X2) IUm| - (X2, X2)-Um- I(X2, X2)I 

+ 1P2(Xt2)]* Bm- (x2) - Bm-, (x2)l 

+ IP,(X2)-P,(X2')I * IP2(X2)uIm-I(X2,X2 ) 

+[ [1P2(X'2)]I Bm-,(x) - Cm-, I 

? [1 + VA(YI)]-'[ IP2(X'2) P2(X2) I * 2M + c] 
+ Pl(x')-pl (x')I *2M 

? 2M. P2(X2) -P2(X2')I + 2M. IPI(x'2) -pl(x')I 
+ 41 + V2irA(Y1)]-' < c. 
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Therefore, because ito is bounded and uniformly con- 
tinuous, the family of functions { ur } is equicontinuous by 
natural induction. Thus Part B is true, and the theorem is 
proven. 

A.3 Proof of Theorem 3 
If the expected value of t is equal to f in the preceding equa- 

tion, then the theorem is true by the strong law of large numbers. 
So the expected value off is 

n A (s) ~~~~+ ~Ij4Yi - Xi) 
E{f[Y I(A(s), GWs))]} f Ii {Zi g(s)(X() + (1 -Z)} Z { A(s + i - } 

i= I 
A~51 Z)5Y 

A(s) + _'i 4(Yi -Xj) J 

f nj A sg(s)(X1)d)(Y - Xi) dx, + j2 lk(Y, Y- Xi) 6(X),Xi 
J i=AsA(s) + i-1 

(s) ( s-Xi) Y - XdXi) + '- l 
-(Xj, 

dX1) 

= t [Y | (AA(s) + i - 1 

f f[Y I (A() Gs)] 

The second equality is obtained by integrating over Zi and collecting 
terms. 

[Received March 1991. Revised January 1993.] 
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