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SOME ASPECTS OF MULTIVARIATE ANALYSIS

8.1 INTRODUCTION

In all the problems we have so far considered, observaiions are made of a single
unidimensicnal response OT output y. The inference problems that result are called
umivariate problems. 1In this and the next chapter. we shall consider problems
which arise when the output ;s multidimensional. Thus, in the study of a
chemical process, at each expﬂrimental setting one might observe yield yi1»
density y;, and color s of the product. Similarly, in a study of consumer
behavior, for each household one might record spending om food »i. spending
on durables y,, and spending on travel and entertainment ¥s. We would then say
(hat a three-dimensional output T response 18 observed. Inference problems
which arise in the analysis of such data are called multivariate.

In this chapter, we shall begin by reviewing some univariate problems in a
general setting which can be easily extended to the mulsivariate case.

8.1.1 A General Univariate Model

It is often desired to make inferences about parameters B, 0 contained in
the relationship between a single observed output variable ot response ¥ subject
1o error and p input invariables &y, - S5 whose values are assumed exactly known.
It should be understood that the inputs could include qualitative as well as
quantitative variables. For example, & might take values of ¢ or 1 depending 0B
whether some particular quality was absent or present i which case &; 18 called
an indicator variable or 1ess appropriately 2 dummy variable.

The Design Matrix

Suppose, in an investigation, n experimental “rups’ are made, and the uth run
consists of making an observation y, at some fixed set of input conditions
B = (Euyy Euzs oo Cup) The nxp desigh matrix

all é_l] 512 élp
& = é,u = ‘%ul éul éup (811)
é, Enl EnZ ﬁnp
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lists the p input conditions to be used in each of the » projected runs and the
uth row of & is the vector &,. The phraseology ‘‘experimental run”, “experimental
design” is most natural in a situation in which a scientific experiment is being
conducted and in which the levels of the inputs are at our choice. In some
applications, however, and particularly in economic studies, it is often impossible
to choose the experimental conditions. We have only historical data generated
for us in circumstances beyond our contrel and often in a manner we would not
choose. It is convenient here to extend the terminologies “experimental run”
and “experimental design™ to include experiments designed by nature, but we
must, of course, bear in mind the limitations of such historical data.

To obtain a mathematical model for our set-up we need to link the »
observations y’ = (y;, ..., ¥,) with the inputs & This we do by defining two
functions called respectively the expecration function and the error function.

The Expectation Function

The expected value E(y,) of the output from the wth run is assumed to be a known
function #, of the p fixed inputs &, employed during that run, involving k& unknown
parameters @ = (@, ..., 8,),

The vector valued function m=n(& 0w = (n,,.... "M, ...,n,), is called the
expectation function.

The Error Function

The expectation function links E(y,) to &, and 8. We now have to link y, to
E(y.)=mn. This is done by means of an error distribution function in
& = (&, ..., &,). The n experimental errors € = y — 1 which occur in making the
runs are asstmed to be random variables having zero means but in general not
necessarily independently or Normally distributed. We denote the density
function of the » errors by p(e|n) where m is a set of error distribution
parameters whose values are in general unknown. :
Finally, then, the output in the form of the n observations y and the input |
in the form of the n sets of conditions & are linked together by a mathematical |
model containing the error function and the expectation function as follows

n =n{§,90) p(ymnl_t)) 8.1.3)
g 7 y. (

This modet involves a function

Ay, 8,m,5)

of the nhservations y, the parameters 8 of the expectation function, the parameters
n of the error distribution and the design E.
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Daia Generation Model

[ we knew 9 and = and the design &, we could use the function (8.1.4) 1o calculate
{he probability density associated with any particular set of data y. This data
peneration model {which might, for example, be directly useful for simulation
and Monte-Carlo studies) is the function f(y, 0,7, E) with 8, and & held fixed

4nd we denote it by
ply |8, m &) =fy, 0.1 &), (8.1.5)

which emphasizes that the density is a function of y alone for fixed 9, 7, and &.

The Likelihood Function and the Posterior Distribution
In ordinary statistical practice, we ar¢ not directly interested in probabilities
wssociated with various sets of data, given fixed values of the parameters f and «.
On the contrary, we are concerned with the probabilities associated with various
sels of parameter values, given & fixed set of data which is known to have occurred.
After an experiment has been performed, ¥ is known and fixed (as is &) but
b and & are unknown. The likelihood function has the same form as (8.1.4),
butinit y and & are fixed and 0 and m are not 1o be regarded as variables. Thus, the
likelihood may be written

10, %1y, 5) = (v, 8, 7.8 (8.1.6)

In what follows we usually omit specific note of dependence on g and write
1(6,m1y,E) as [(8,7]¥).

In the Bayesian framework, inferences about @ and m can be made by suitable
study of the posterior distribution p(8, = | ¥) of 8 and = obtained by combining the
likelihood with the appropriate prior distribution p(8, %),

p(B,n’,\y) o I(B,nly)p(e,n). {8.1.7)

An example in which the expectation function is nonlinear and the error
distribution is non-Normal was given in Section 3.5. In this chapter, we shall
from now on assume Normality but will extend our general model to cover

multivariate problems.

8.2 A GENERAL MULTIVARIATE NORMAL MODEL

Suppose now that a number of output responses are measured in each
experimental run. Thus, in a chemical experiment, at each setting of the process
conditions ¢, = temperature and £, = concentration. observations might be
made on the output responses ¥y = yield of product A, y, = yield of product B,
and y, = yield of product C. In general, then, from each experimental run the
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m-variate observation
YEH) = (yul} ceos Vais ""yum)

would be available. There would now be m expectation functions

E(Y{u)) = n(u) = (’?ul! sery rl'umyI

where
_E(J’ul) =1 = 1;(Gur, 8))

-'E(yui) =1 = Ni(&u 9) (8.2.1
:E(yuj) = Muj = nj(guj: 9_;)

E(yum) = Hum = N Gums )

where §,; would contain p; elements (£,,: ..., &ugs -.o» Bupa) 20d 6; would contair
k, elements (B, ..., 0, ..., 8,). The expectation functions 7,; might be linear
or nonlinear both in the parameters 8, and the inputs ;. Also, depending on the
problem, some or all of the p; elements of &, might be the same as those of &,
and some or all of the elements of 8; might be the same as those of 0;. That is
to say, a given output would involve certain inputs and certain parameters whick
might or mjght not be shared by other outputs.

8.2.1 The Likelihood Function

Let us now consider the problem of making inferences about the 0; for a se
of n m-variate observations. We assume that the error vector

E(u) = Y(u} - Tl(u) = (sul’ meey Eum)ls U= 1! ey F (822]

is, for given 0 and Z, distributed as the m-variate Normal M,,(0, Z), and that the
runs are made in such a way that it can be assumed that from run to run the
observations are independent. Thus, in terms of the general framework of
(8.1.4), L = r are the parameters of an error distribution which is multivariate
Normal. We first derive some very general results which apply to any model of
this type, and then consider in detail the various important special cases that emerge
if the expectation functions are supposed linear in the parameters 0;.

The joint distribution of the-n vectors of errors & = (81y, ..., 8y --» Em) is

HIP(E(;;) tE, )

ple| %, 0)

1 -
e &) & ls(uj)

i=1,...,m, . u=1,..,n, (8.2.3)

It

M:

1

1l

(2r) ™z exp -

—'OO<E,‘,.<OO,
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8.2
where £ = {o1;} is the mxm covariance matrix, .= {a”} its inverse and
0 refers to the complete set of all the (ky + -+ + k) parameters 0,...0,
Denoting S(8) to be the m x m symmetric matrix
S(G} = {Sij(ei» ej)}
with
=i Bfl’ef) = ug‘l E"iB"J' = l;l [yul' - ni(auhei)] [yuj - nj(&ujs Bj)]! I:J = 15 vy 1,
(8.2.4)

\hen the exponent in (8.2.3) can be expressed as

n m m

Y B B g = U S@OL = Y Y 075,8,8) (8.2.5)

w=1 i=1 Jj=1

where ir A means the trace of the matrix A. Given the observations, the
tikelinood function can thus be written

10, £]y) cc p(e| 5, 0)
o« [E|" P exp[ — ktr oIS ]. (8.2.6)

To clarify the notation, we emphasize that y refers to the axm matrix of
chservations

Yir o Yii e Yim 3_’21)
v b e e | =D Yea Yl = | Yo
Vet cer Pui e Frm Yim

where ¥, = (¥ oo Yai) 18 the vector of » observations corresponding to the ith
response and Y = (Yute oy Vu) 1s the vector of m observations of the uth
experimental run. Similarly, & refers to the n x m matrix of errors

'

gy 8y oo Eim &1y
: 3

e= | &y - Ew - Bum | T [sl,...,si,...,sm]_ L)
: ..g’

£y Byt oo+ Eum i

8.2.2 Prior Distribution of (9, X)

For the prior distribution of the parameters (8, ), we shall first of all assume
that § and ¥ are approximately independent so that

p(8, L) = p(8) p(¥)- 8.2.7
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We shall further suppose that the parameterization in terms of @ is so chosen
such that it is appropriate to take 8 as locally uniform,}

p(8) oc constant. V (8.2.8)

For the prior distribution of the 3m(m + 1) distinct elements of E, application
of the argument in Section 1.3 for the multiparameter situation leads to the
non informative reference prior

p(E) oo |£(D)]'2. (8.2.9)
Now,
-2
=S EC N == 8.2.
W (E) = FE ST (8.2.10)
where
i)Y 5-(0'11,012, cvs Crm)
= 8.2.
. az~1 6(0'11, 0_12, o G,mm) ( 1])

is the Jacobian of the transformation from the elements a; of E to the elements
¢/ of 7% It is shown in Appendix AB.2 that

—1
[F(E ) e M PSRt 1 (8.2.12)
and that
oL
— | = [E"*+, 8.2.13
162‘1 1z { }
Thus,
p(E) oc |B|73m D, {8.2.14)
In this special case m = 1, (8.2.14) reduces to
‘ 1
ploy;) o€ —— (8.2.15)

11

which coincides with the usual assumption concerning a noninformative priof
distribution for a single variance. Another special case of interest is when the
errors (g,q, ..., £.,) are uncorrelated, that is, o;; =0 if i# j. In this case, the
same argument leads to

p(E|o; =01 # ) =p(Gyys e O € H Gi_il- (8-2-16?‘{

i=1

+ As we have mentioned earlier, when the parameter space is of high dimensicn, the use:
of the locally uniform prior may be inappropriate and more careful considerations shoul
be given to the structure of the model in selecting a noninformative prior.
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Posterior Distribution of 0, %)
sing (8.2.6), (3.2.8}, and (8.2.14), the joint posterior distribution of (B, %) is
\—H"J”"H]exp[-{-trfa"‘ S(G)], o < < w, < 0,
{8.2.17)

he notation — % < § < oo means that cach element of the set of
melers 0 can vary from — o0 o 90, and the notation ¥ > 0 means that the
+ 1) elements 0j; are such that the random matrix I is positive definite.
ometimes convenient o work with the elements of T~ = {g"} rather
ments of E. Since

. E>3

(8.2.13) that the posterior distribution of (8, L7}) is
FICR M RIS (£ exp [ 17 S0,
o< B < w, T =0 (8.2.19)

4 The Wishart Distribution

¢ now introduce 2 distribution which is basic in Normal theory multivariate

Let Z be a mxm positive definite symmetric random matrix which

inct random variables z; (. J = 1, LLmyizi)h Let

7> 0, and B be a mxm positive definite symmetric matrix of fixed constants.
he distribution of Z;

p(L) ot |Z5 7 exp (— 1t ZB), 2> 0 (8.2.20)

abtained by Wishart (1928), s a multivariate generaiization of the 1 distribution.
It can be shown that

jm}zﬁ”'l oxp (— 3 tr ZB)dZ = (BT aemerm D Ty (q‘ = )

2

(8.2.21)
where T ,(b) is the generaiized gamma function, Siegel (1935)

ey - e T rs+ 5 )ooe> Pl gam

We shall denote the distribution (8.2.20) by Wn (B~!,q) and say that Z 18
distributed as Wishart with g degrees of freedom and parameter matrix B
For a discussion of the properties of the Wishart distribution, 5e€ for example
A}lderson (1958). Note carefully that the parameterization used in (8.2.20) is
different from the one used in Anderson in one respect. In his notation, the
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distribution in (8.2.20) is denoted as W (B™',v) where v=g + m — 1 is said
to be the degrees of freedom.

As an application of the Wishart distribution, we see in (8.2.19) that, given
¢, =1 is distributed as W,[S™1(@),n — m + I] provided n = m.

8.2.5 Posterior Distribution of 0

Using the identity (8.2.21), we immediately obtain from (8.2.19) the marginal
posterior distribution of 8 as

p(@]y) oc [S@)i ™2, — o <0 < oo, (8.2.23)

provided # = m.
This extremely simple result is remarkable because of its generality. It will
be noted that to reach it we have not had to assume either:

a) that any of the input variables §,; were or were not common to more than
one output, or

b) that the parameters 0; were or were not common to more than one output, or
c) that the expectation functions were linear or were nenlinear in the parameters,

This generality may be contrasted with the specification needed to obtain
“nice” sampling theory results. For example, a common formulation assumes
that the &, are common, that the 8; are not, and that the expectation functions
are all linear in the parameters.

In the special case in which there is only one output response y, (8.2.23)
reduces to '

p(81y) o [S(0)]72, —w <0< o, (8.2.24)

with S(0) = 3., [v, — (£, 0)]%. As we have seen, this result can be regarded
as supplying a Bayesian justification of least squares, since the modal values of @
{those associated with maximum posterior density) are those which minjmize S.
The general result (8.2.23) supplies then, among other things, an appropriate
: Bayesian multivariate generalization of least squares. The “most probable”
5 P values of 8 being simply those which minimize the determinant |S(0)].
g _ | Finally, in the special case o¢;; = 0,/ # j, combining (8.2.16) with (8.2.6)
i and integrating out ¢4, ..., 6, yields ]

pBy) ]jl [S.(0)17"2, — 0 <8< o (8.2.25).

8.2.6 Estimation of Common Parameters in 2 Nonlinear Multivariate Model

an example in which:




5.1

a}

by the expectation functions ar
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certain of the §’s are common to more than one output, and

e nonlinear in the parameters.

Respoenses

Time § ~——

Fig. 8.2.1 Diagrammatic representation of a system 4 —+ B —~ C.

Suppose we have the consecutive system indicated in Fig. 8.2.1, which shows
water running from a tank A via a tap opened an amount $, into a tank B which
(hen runs into a tank C via a tap opened an amount ¢,.

o If #4,7%, and 5 are the proportions of A, B, and C present at time &, with
initial conditions (4, = L, 2 = 0,n, = 0), the system can be described by the

differential equations

dy

dﬁl = - ¢1"15

dn

—"d; =P — DNz (8-2-26)
dn

2= a2

i
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pplications in engineering and in the

physical and biological sciences. In particular, the equation (8.2.26) could represent
a consecutive first-order chemical reaction in which a substance A decomposed
to form B, which in turn decomposed to form C. The responses 1y, Mas N3 would
then be the mole fractions of A, B, and C present at time ¢ and the quantities
$, and ¢, would then be rate constants associated with the first and second
decompositions and would normally have to be estimated from data.

1f we denote by ¥, V2, and v, the observed values of #y, 2, and #3, then,

on integration of (8.2.26), we have the expectation functions

Systems of this kind have many a

E(y) =m =¢*" (8.2.273)
E(y;) =tz = (e_dm: - e—‘blc) /(P2 — ¢4, (8.2.27b)
E(y) =13 =1+ (—¢2 et 4 By e P {Ds — D) (8.2.27¢)

and it is to be noted that for all &,

ny + M2 413 = 1. (8-227(1)

Observations on y; could yield information only on ¢,, but observations on
y, and y; could each provide information on both ¢, and ¢,. If measurements

of more than one of the quantities (¥1, Y2, y,) were available, we should certainty

able to estimate the parameters more precisely. The Bayesian

expect to be
approach allows us to poaol the information from (¥ys Y2 y,) and makes it easy

Table 8.2.1

Observations on the yield of three substances in a chemical reaction
- —

—

Yield of Yield of Yield of

A B C
Time=¢, Yiu Ya2u Yu
% 0.959 0.025 0.028
3 0.914 0.061 0.000
i 0.835 0.152 0.068
1 0.785 0.197 0.096
2 0.628 0.130 0.090
2 0.617 0.249 0.118
4 0.480 0.184 0.374
4 0.423 0.298 0.358
8t 0.166 0.147 0.651
8t 0.205 0.050 0.684
16+ 0.034 0.000 0.899
16% 0.054 0.047 0.991

ﬁ

+ These four runs are omitted in the second analysis.
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10 appreciate the contribution from each of the three responses. In this example
£ the only input variable and is the elapsed time since the start of the reaction.
we denote by Y = (Jut> Yuz» Yua) 8 S€t of m =3 observations made on
Mo Nzer Tl3u 8L time &,. A typical set of such observations is shown in Table 8.2.1.

(n some cases observations may not be available on ail three of the outputs.
Thus only the conceniration y, of the product B might be observable, or 2
and y, might be known, but there might be no independently measured
abservation y, of the concentration of 4.7

We suppose that the observations of Table 8.2.1 may be treated as having
arisen from 12 independent experimental runs, as might be appropriate if the runs
were carried out in random order in sealed tubes, each reaction being terminated
al the appropriate time by sudden cooling. Furthermore, we suppose that
(y,, V2. P3) 4T€ functionally independent 80 that the 3 x 3 matrix & may be assumed
to be positive definite and contains three variances and three covariances, all
unknown. Tt is perhaps most natural for the experimenter to think in terms of the
logarithms 8, = log ¢4 and 8, = log ¢, of the rate constants and to regard these
as locally uniformally distributed « priori.i We shall, therefore, choose as QUL
reference priors for (84, g,) and L the distributions in (8.2.8) and (8.2.14),
respectively.

% When the chemist has difficulty in determining one of the products he sometimes makes
use of relations like (8.2.27d) to “obtain it by calculation.” Thus he might “obtain™ ¥,
from the relation y, =1 — ¥2 — Y. For the resulting data set, the 3 X 3 covariance
ﬂwlrix ¥ will of course not be positive definite, and the analysis in terms of three-
dimensional responses wiil be inappropriate. In particular, the determinant of the sums
of squares and products which appears in (8.2.23) will be zero whatever the values of the
parameters. ‘The difficulty is of course overcome very simply. The quantity y; is not an
observation and the data has two dimensions, not three. The analysis should be carried
through with v, and y, which have actually been measured. For a fuiler treatment of
Drc_Jb]ems of this kind arising because of data dependence or near dependence, see Box,
Erjavec, Hunter and MacGregor (1972).

i Suppose that (a) the expectation functions were [linear in 0,(h) and 0,(d) where

‘1’ = (¢, ), (b} little was known & priori about either parameter compared with the

information supplied by the data, and (c) any prior information about one parameter would

supply essentially none about the other.

) _fThen, arguing as in Section 1.3, 2 noninformative reference prior to 8 should be locally
niform.

Conditions (b) and (¢) are likely to be applicable to this problem at least as
approximations, but condition (a) is not, because the expectation functions are non-linear
in¢, and ¢, and no general linearizing transformation exists. However, [see for example
Beale (1960), and Guttman and Meeter (1965)] the expectation functions are more “nearly
lm;ar“ in@, = log ¢, and 8, = log ¢,. Thus, the assumption that i, and 6, are locally
uniform provides a better approximation to a neninformative prior for the rate constants.
For reasons we have discussed earlier, the assumption is not critical and, if for example we
assume ¢b, and ¢, themselves to be locally uniform, the posterior distribution is not altered
appreciably.
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Expression (8.2.23) makes it possible to compute the posterior density for the
parameters assuming observations are available on some or all of the products
A, B, and C. Thus, we may consider the posterior distribution of § = (4,,8,)

a} if only yields y, of product B arc available .
P8y, o [So @]  —®w <8<, (8.2.284)

b) if only yields y; of product C are available, ‘
p@1y:) c [S5:(@]17"%, — <0< oo, (8.2.28b)
¢) if only yields y, and y; of B and C are available
S52(0)  Sp3(8) |72 —
6y, o . —w < b <o, 8.2.28
POl @ 5u®) (82289
and
d) if yields y,, y, and y; of the prodycts 4, B and C are all available
p@1y) SO, - o <8< o, (8.2.284)
where S(0) = {S;;(0)},4, j= 1,2, 3.
8, = lgg &y
24«-

¥4 alone

¥, alone

Y1 ¥, and ¥,

Fig. 8.2.2 99.75% H.P.D. regions for 8, and 8, for the chemical reaction data.
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‘Since there are only two .parameters g, and 0,, the posterior distributions
an be represented by contour diagrams which may be superimposed to show the
bntributions made by the various output responses. Single contours are shown
n Fig. 2.2 of the posterior distributions of &4 and 8, for (a) yz alone, (b} ¥3
lone, () ¥2 and v, jointly, and (d) ¥1> ¥2- and v, jointly. The contours actually
hown are those which should correspond 1o an H.P.D. region containing
a_pproximately 99.75% of the probability mass calculated from

log p(0]) - logp(81) = 12@,@, o= 00025

where p(81) refers (o the appropriate distributions 1n (8.2.282-d) and 0, the
porxesponding modal values of 8. In this example, it is apparent, particularly
for v, that the posterior distributions are non-Normal. Nevertheless, the above
ery crude approximation will suffice for the purpose of the present discussion.
In studying Figure 8.2.2, we first consider the moon-shaped contour obtained
from observations ¥; on the end product € alone. In any sequential reaction

'A— B C—...cfC, We should expect that observation of only the end product
(€ in this case) could provide little or no information about the individual para-
_meters but only about some aggregate of these rate constants. A diagonally
attenuated ridge-like surface is therefore to be expected. However, it should
- be further noted that since in this specific instance 713 is symmetric n 9, and 9,

[sec expression (8.2.27¢)}, the posterior surface is completely symmetric about
the line 8; = 0. In particular, if (8,, B,) is a point of maximum density the
point (B,, ;) will also give the same maximur density. In general the surface
will be bimodal and have TwoO peaks of equal height symmetrically situated
about the equi-angular line. Marginal distributions will thus display precisely
the kind of behaviour shown in Fig. A5.6.1.

Figure 8.2.2 shows, how, for this data, the ipevitable ambiguity arising
when only observations ¥s 01 product C are utilized, is resolved as soom as the
additional information supplied by values y, on the intermediate product B is
considered, As can be expected, the nature of the evidence that the intermediate
product ¥, contributes, is prefercntially concerned with the difference of the
parameters. This is evidenced by the tendency of the region to be obliquely
oriented approximately at right angles to that for y5. BY combining information
from the two sources We obtain a much smaller region contained within the
intersection of the individual regions. Finally, information from y, which casts
further light on the value of 8,, causes the region to be further reduced.

Data of this kind sometimes occur in which available observations trace
only part of the reaction. To demonstrate the effect of this kind of inadequacy
in the experimental design, the analysis 18 repeated omitting the last four
observations in Table 8.2.1. As shown in Fig. 8.2.3, over the ranges studied, the
contours for y, alone and ¥3 alone do not now close. Nevertheless, quite precise
estimation is possible using ¥z and v, together and the addition of y, Improves
the estimation further.
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Fig. 8.2.3 99.75% H.P.D. regions for 8, and #,, excluding the last four observations. :

Precautions in the Estimation of Comumon Parameters

Even in cases where only a single response is being considered, caution is
needed in the fitting of functions. As explained in Section 1.1.4, fitting should b
regarded as merely one clement in the iterative model building process. The
appropriate attitude is that when the model is initially fitted it is tentatively
entertained rather than assumed. Careful checks on residuals are applied in 2
process of model criticism to see whether there is reason to doubt iy
applicability to the situation under consideration. :

The importance of such precaution is even greater when several responst
are considered. In multivariate problems, not only should each response model
be checked individually but they must also be checked for overall consister
The investigator should in practice not revert immediately to a joint analy
of responses. He should:
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I} check the individual fit of each response,
7) compare posterior distributions 10 apprais
mation from the various responses (an asp

Chapter 9).
Only in those cases where he is 8
consistency shalt he revert to the join

e the consistency of the infor-
ect discussed in more detail in

atisfied with the individual fit and with the
t analysis.

43 LINEAR MULTIVARIATE MODELS

-variate Normal model above,
assume anything specific about the form of the m expectation functions 1. In
particular, they need not be linear in the parameters"f nor does it matter whether
or pot some parameters appear in more than one of the expectation functions.

Many interesting and informative special cases arise if we suppose the expectation
functions to be linear in the &’s. n, the linear results

Moreover, as will be see
can sometimes SUPPLY adequate local approximations for models non-linear in
{he parameters. From now

In discussing the general m we have not needed to

on then we assume that

E(yy = 1:(Eus 0) = xz,,nﬁ,-, i=1,....m U¥= 1.1 (8.3.1)
where
0, = (B1p - B, b
and
X’(uf) = (xuli, veey Xyugis =m0 xuk;i)
with
)
Xugi = -5
08,
independent of all the &'s.
The n % k, matrix X; whose uth Tow is X{un Will be called the derivative matrix
for the ith response.
Our linear m-variate model may now be written as
"= )_{191 + &y
&i = Xiei + 8 (8.3.2)
&m = Xmem+8m'

hould be noted.

of this mode of writing the model s
functions of the

Certain characieristics
[n particular, it 18 clear that while the elements of X will be

y noninf ormative

1 Although, so that 2 uniform density can represent an approximatcl r
ter transformations in terms of

prior and also to assist iocal linear approximation, parame
nearly linear, will often be employed.

which the expectation function is MOTE
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elements of the vector input variables &,;, they will in general not be proportiona
to the elements of £, themselves. Thus if

Bilog &y + 82 8ups éufi.:'

E(yui) = é H
u2i
i
hen P log ¢ and o St Susi
wli = T 20 =TT
' fuZi ! ‘:uZi

8.3.1 The Use of Linear Theory Approximations when the Expectation is Nonlineai
in the Parameters

The specific form of posterior distributions which we shall obtain for the linea:
case will often provide reasonably close approximations even when the
expectation functions m, is nonlinear in 8. This is because we need only tha
the expectation functions are approximately linear in the region of the parametei
space covered by most of the posterior distribution, say within the 95% H.P.D
regiont For moderate #, this can happen with functions that are highly
nonlinear in the parameters when considered over their whole range. Then, in the
region where the posterior probability mass is concentrated (say the 95/
H.P.D. region), we may expand the expectation function around the mode 8,

E(yui) =Ny = ni(guis 6:) + 21 xugi (egi - égi)= (833
g=

where _ M
wgi aﬂgi Bi=ﬁi,

which is, approximately, in the form of a linear model. Thus, the posterior
distributions found from linear theory can, in many cases, provide clost
approximations to the true distributions. For example, in the univariate cast
(m = 1) with a single parameter 6, the posteriror distribution in (8.2.24) would b
approximately ’

p(@1y) o [vs® + (Ex) (0 — 8§17 (8.34)
where
_ A n(é,, 0)
= — I: — E w g 2 d y = —-—--Ew-ww- ,
v=mn ” [ye — n(., )] an X, B s
so that the guantity SZia _ 4
M (3.3.5_)
5

would be approximately distributed as 10,1, v).

t A possibility that can be checked a posteriori for any specific case.
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1, as in the case in which multivariate of univariate least squares is appropriate,
able for the linear case but not for

on may be used iteratively to find

whe
4 convenient method of calculating the Ps is avail

the corresponding nonlinear situation, the linearizati
s for the nonlinear gituation.
§, with a

the
For example, in the univariate model containing a single parameter

we can write approximately

E(Zuo) = (B - Bo)xm

firsl guess 8o
(8.3.6)

where
on(&, 0
Zyo = Yu — i (éua B{)) and x, = ﬂ_a_a_
8=6o
we obtain an estimate of the correction

Applying ordinary least squares to the model,

i — 0, and hence hopefulty an improved “guess” @4 from
Tz,0X
p. =8, + iR (8.3.1
! 0 Tx?

This is the well-known Newton-Gauss method of iteration for ponlinear least squares,
Box (1957, 1960), Hartley (1961), Marquardt (1963), and under favorable conditions

{he successive iterants will converge to 8.
Multivariate Model

In general, the joint distribution of 8 and T is given DY (8.2.17) and the
marginal distribution of § is that in (8.2.23) quite independently of whether
n{E.. ;) is linear in @, or not. For practical purposes, however, it is of interest
lo consider a number of special cases.
For orientation we reconsider for
discussed earlier in Section 2.7,

8.3.2 Special Cases of the General Linear

a moment the linear univariate situation
y=X0+¢, (8.3.8)
where y is a nx 1 vector of observations, X a nxk matrix of fixed elements, 0
a k x 1 vector of parameters and g a nx 1 vector of errors. In this case,

0
p(@®; gt | y) (02)”&“” exp [— iiz) ], 2 >0, —om<8<o, (8.3.9)

and
p@ly) [s@1 " T ®= 8 < o, (8.3.10)

The determinant }S(8)} in (8.2.23) becomes the single sum of squarcs
s(0) = (y — X8 v — X8

In this linear case, we may write
50) = (n — kys* + (@ =y XXO = o), (8.3.12)

(8.3.11)
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where A
(n—Kkis?=(y—9(y=-9=-X0F-Xo
and, assuming X is of rank k,
0= (XX)"1 Xy
0 that, writing v=un — k,
L 0 —-0XX®0 -9

vs?

—L(v+k)
p®ly)ec [1 ] , —w<B<ow. (83.13)

The posterior distribution of @ is thus the & dimensional #,[8, s>(X'X)™%, v]
distribution. Further, integrating out 8 from (8.3.9) yields the distribution of a2,

vs?

p(e? | y) o (6B F " Vexp (_ Zr—i), ¢ >0, {8.3.14)
so that o%/(vs?) has the y, ? distribution. All the above results have, of course,
been already obtained earlier in Section 2.7.

It is clear that the general linear model (8.3.2) which can be regarded as the
multivariate generalization of (8.3.8) need not be particularized in any way. The
matrices X,, ..., X,, may or may not have elements in common; furthermore,-
the vectors of parameters 0,, ..., 8, may or may not have elements in common.
Using sampling theory, Zellner (1962, 1963) attempted to study the situation
in which the X; were not assumed to be identical. The main difficulty with his
approach was that the minimum variance estimator for ¢ involves the unknown K,
and the estimators proposed are “optimal” only in the asymptotic sense.

Cases of special interest which are associated with practical problems of
importance and which relate to known results include: ' .

a) when the derivative matrices X; = ... =X, = X are common but the
parameters 8., ..., 0,, are not,

b) when 8, = ... = 0,, but the matrices X,, ..., X,, are not, and

c) when 0, = ... =0, and X, = ... = X,

In the remaining part of this chapter, we shall discuss case (a). The problem
of estimating common parameters which includes (b) and (c) will be treated in
the next chapter.

8.4 INFERENCES ABOUT § FOR THE CASE OF A COMMON DERIVATIVE
MATRIX X

The model for which X, = ... =X, =X (so that k, = ... =k, = k) and
8, # ... # 0, has received most attention in the sampling theory framework
—see, for example, Anderson (1958). From the Bayesian point of view, the
problem has been studied by Savage (196la), Geisser and Cornfield (1963),
Geisser (1965a), Ando and Kaufman (1965), and others. In general, the
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B4

in (8.3.2) can now be written
y=X8+¢
fyl=0X1 [01+ fel

axm nxk Lxm nxm

multivariate model
(8.4.1)

jon beneath the matrices indicates that y is an rXm matrix of

where the notat
0 is a kxm matrix of parameters and & an nXm

m-variate observations,

matrix of errors.
The model would be appropriate for example if say & 2P factorial experiment

had been conducted on a chemical process and the output ¥y = product yield,
1, = product purity, ¥3 = product density had been measured. The elements
of each column of the common matrix X would then be an appropriate sequence
of 4+ 1's and —1s corresponding t0 the experimental conditions and the “effect”
parameters 8; would be different for each output. In econometrics, the model
(8.41) is frequently encountered 1n the analysis of the reduced form of

simultaneous equation systems.
We pote that the kxm matrix of parameters

?11 (?11 Qam
B = 'f_Jgi i?gi é_gm (8.4.2)
Bkl Bki Bkm
can be written in the two alternative forms
0
( (8.4.3)

9 =10, .0 0=

where @, is the ith column vee
simplicity, we ghall assume throu

8.4.1 Distribution of 8

Consider the elements of the 77X matrix S(0) = {5y

/
. )}

(kY

tor and 0, is the gth row vectof of 8. For
ghout the chapter that the rank of X is k.

8,8} of (8.2.4). When

X, =.. = X,= X, we can write
Sij(giaaj) = (y; — X8) (v — X6
= (y, - X0) (v; X0)+ 0 — 8y X'X(8 — 8) (8.4.4)
pares estimates of 8,i=1 .7

where 8, = (X'X)7*X'yi is the least sq
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Consequently,

S(8) = A + (8 — 0 X'X(6 — 9), (8.4.5)
where 0 is the k x m matrix of least squares estimates

i V4
.(1)

0=106,..0,..06,1= f;g] , (8.4.6)
L
and A is the m xm matrix
A ={a;}
with . .
ag; = (¥ — X0) (y; — X8, L,j=1..,m, 8.4.7)

that is, A is proportional to the sample covariance matrix. For simplicity, we
shall assume that A is positive definite. From the general result in (8.2.23), the
posterior distribution of 8 is then

pO]y)cc |A+ (08— 0y X'X@® -0, —o<8<wo (543)

As mentioned earlier, when there is a single output (m = 1), (8.4.8} is in the form
of a k-dimensional multivariate ¢ distribution. The distribution in (8.4.8) is a
matric-variate generalization of the ¢ distribution. It was first obtained by
Kahirsagar (1960). A comprehensive discussion of its properties has been given
by Dickey (1967b).

8.4.2 Posterior Distribution of the Means from a m-dimensional Normal
Distribution

In the case k = | where each 8, consists of a single element and X is a nxl
vector of ones, expression (8.4.8) is the joint posterior distribution of the
m means when sampling from an m-dimensional multivariate Normal distribution
N,(0,L). In this case

Il
~—~
|
-
=
o
3
-

0=(f,...0,...8,) O

XX=n and g;= Y Gu— IO — ) (8.4.9)

u=1
where
l "

V= ; u§1 Yui-
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The paswrior distribution of 8 can be written
p@1y) oc 1A + n@ — 8y (® - )i
I +nA (O gy @-0H" - ® <8 < . (8.4.10)
We now make use of the fundamental identty
L -PQi=iL— QP (8.4.11)

where 1, and L are, respectively, Lxkandalx! identity matrices, Pisakx!
matrix and Q 1s 2 Ix k matrix. Noting that (0 — 6) is a Lxm vector, we
immediately obtain

p{0)y)oc [t +n(® — AT - 0y, Cw< <o, i=hoom
(8.4.12)

which is a m-dimensional &y 1o,n Hn — m) rAn— m] distribution, 2 result

first published by Geisser and Cornfield (1963). Thus, by comparing (8.4.12)

with (8.3.13), we see {hat both when m = 1 and when k = 1, the distribution in
(8.4.8) can be put in the multivariate ¢ form.

3.4.3 Some Properties of the Posterior Matric-variate ¢ Distribution of &

When neither m nor k 1s equal to one, it is not possible to express the
d{stribution of @ as a multivariate ! distribution. As Wwe have mentioned, the
distribution in (8.4.8) can be thought of as a matric-variate extension of the

t distribution. We now discuss some properties of this distribution.

Two equivalent Representations of the Distribution of ©
It is shown in Appendix A8.3 that, for v > 0,

f iIm + A'l(ﬂ _ G)l Xﬂx(e _ g)l—%(v+k+m—1) 4o
—w P>

= c(m, k,v) XX AT, (8.4.13)
where

v=n-—(k+m)+1,

. mk
e(m, k, v} = [l r.__—-——-"‘m[%(v —Fim= Dl (8.4.14)

and T (b} is the generalized Gamma function defined in (8.2.22). Thus,
p(8]y) =T[elm, ke, W17 XX AT, + AT O—8)Y X'X(O— gy ro Y,
(8.4.15)

— o < @< o
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and we shall say that the &k xm matrix of parameters 9 is distributed as
fem[0, (X’X)7%, A, v]. Note that by applying the identity (8.4.11), we can write
Lo+ A0 — 0 X'X(0— 0)) = |I, + (XX) (0 — 0)A~1 (0 — By (3.4.10)

so that in terms of the mxk matrix 8’ the roles of m and & on the one hand
and of the matrices (X'X) ™! and A on the other are simultaneously interchanged.
Thus, we may conclude that if

0~ 1,0, (XX)"1 A v],

then

8 ~ 1[0, A (XX, v]. (8.4.17)
Tt follows from these two equivalent representations that '
elk, m,v) = clm, k, v),
D3+ k= 1) Ly [3v + m = 1)]

LAV +k+m—-1] L3 +k+m— )]

that s,

(8.4.18)

Marginal and Conditional Distributions of Subsets of Columns of 0

We now show that the marpginal and conditional distributions of subsets of the
m columns of 8 are also matric-variate ¢ distributions. Let m = m, + m, and
partition the matrices 8, 0, and A into

.Amz
02 1

0= [91* iez* ]k:

Then:
a) conditional on 8, ., the subset B, is distributed as

Bas ~ T, (B0, B4 Agy g, v + ), (8.4.20)

where

H!= (XIX)WI -+ (91* - 91*)A1_l1 (91* V 61*)’=
0,0 =05, + (8 — 0, 0AT A,

A22~1 = Azz - A21 A1~11 AIZ-
b) B, is distributed as
O1s ~ fim, 1814, (X'X)71, Ay, 0]

To prove these results, we can write
0 —-DATIO - B = 0, — 0, *)A1—11(919f — 0,

+ (B, — §2*3A521v1(92* ~ 8.
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Inferences abo

The geterminant 0B the right—hand side of (8.4.16) can now be written
g, (X0 0 a0 — Oy = L+ XX 8,5 — 01087 Gra 8,41
% |+ HiOzy — §,0A77, 05 — B (8.4.23)

$ubslitu{ing (8.4.23) into (8.4.15), we se€ that, given 84 the conditional distribution

ol 0.4 is

pi()l*'[el*,!’) o I + H(®2, — 62*)1\—2_21-1(9% — 8,1 ~dtvekameh)

o Ly, T Agll-l(ez* - §2*)]H(Blﬂ= - 62*)1 —3i( ) T

—op < By, < 0 (8.4.24)

From (8.4.13), the normalizing constant i$
[C(mzs k; v+ ml)]ﬂ IH\.MZIZ iAEZ{I
-1

the k x m, matrix of parameters 0, is distributed as fim; (05,117

\#12. (8.4.25)

Thus, given @14
A ¥+ my). For the marginal distribution of 04 SIDCE

p@{y)
B = - 3
IJ( 1*13’) p(QZ*lﬁl*, ¥)

use of (8.4.23} through (8.4.25) yields

p0, |y oo [T i+ (XKD 8, — 00)ATT B

o Ly, + AT Orx — B, X X0 «— b, ETEETY,

— Gl*)f\~%(v+k+m—1)

o < B, <® (8420

That is, the k X my matrix of parameters 8% is distributed as

fim; L0150 &XX)y LA vl

Marginal Distribution of @ particular Column of ©

In particular, by setting niy =} in (8.4.21), the margin

8,, =08 is the k-dimensional multivariate distribution

pi, 1) e [1 + api (@ — 85 X'X(0; — gy, - e 8, < o0,
(3.4.27)

al distribution of

where a,, = Ay is MOW @ scalar, that is, 83~ t,‘.[@l,v*lall (X%l
_ By mere relabeling we may copclude that the marginal distribution of the
ith column of 8 in (8.4.2) 18

P8 y) e [1 + gt (B — b) X'X(6 — 1o, — @< 9, < 0.
(8.4.28)

Tt will be moted that this distribution 18 identical to that obtained 1in
cept that in (8.3.13)

(83.13) when only a single output was considered, €%
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v=n—k, but in (8428) v=n—k—-(m-—1) In a certain sense, the
reduction of the degrees of freedom by m — 1 is not surprising. In adopting the
multivariate framework, m(m—1)/2 additional parameters o; (i #j) are
introduced. A part of the information from the sample is therefore wutilized to
estimate these parameters and (m — 1) of them (G115 s Osim1)s Tigi+ 1)> -3 Tim)
are connected with ;. We may say that ‘one degree of freedom is lost’ for each of
the (m — 1) additional parameters.

On the other hand, it is somewhat puzzling that if we ignored the
multivariate structure of the problem and treated y, as the output of a univariate
response, then on the basis of the noninformative prior p(8;, o) «c 05!, we
would obtain a posterior multivariate ¢ distribution for 8, with (m — 1) additional
degrees of freedom. This would seem to imply that, by ignoring the information
from the other (m — 1) responses ¥i....,¥i—1,¥i+1s s ¥ INOTE precise
inference about 8, could be made than when all the m responses were considered
jointly. This phenomenon is related to the “paradox” pointed out by Dempster
(1963) and the criticisms of the prior in (8.2.14) by Stone (1964). '

The above implication is admittedly perplexing, and further research is needed
to clarify the situation. We feel, however, that the multivariate results presented
in this chapter are of considerable interest and certainly provide a sensible basis
for inference in the common practical situation when (n — k) is large relative to m,

Distribution of O Expressed as a Product of Multivariate Dfsrributio;z_s

We note that for the partition in (8.4.19), if we set my =m — 1 and m,; =1,
then from (8.4.20) the conditional distribution of By, = 0,, given 6, =
[GI! AR em—]_]: iS

0, ~ £ [, (v 4+ m—D7* Gtz -y B Ly + m=1], (8.4.29)

where
12 Gm—1) = LUPRT

From the marginal distribution of 8, = [0,,..,0, 3 in (8.4.21) if we
partition 8, into [0 6, ,] where 8, =[8,,...,8,_,], it is clear that the
conditional distribution of 8,,_,, given @,,, is again a k-dimensional multivariate
¢ distribution. It follows by repeating the process m — 1 times that, if we express
p(01y) as the product

P(B i Y) = p(ei [ Y)p(BZ | 01! Y) "‘P(Bm 1 91: ""em—la Y): (8430)

then each factor om the right-hand side is a k-dimensional multivasiate
t distribution. 5

Marginal and Conditional Distributions of Rows of 8 _
Results very similar to those given above for column decomposition of O can
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U qow be obtained for the TOWS of 0. Consider the partitions
k2

ki ) " N ks ka2
@ = [0y i Bysdm o = [B5)s O2pelm (8.4.31)

k1 k2

Cuu 9‘-?-}"‘ k,+k, =k
L] 1 2 ]

ka2

where it is to be remembered that B}, are the first k, rows and (2« the remaining

ki, TOWS of 8. Since the mX i matrix @ i8 distributed as L@ A (X’X)'l, v,

it can be readily shown that

a) given B
9(2)* o~ tn‘lkz (G(l}*ﬂ G, C22'19 v + k!.)! (8.432)
where
Ciza ™ Cyy — Cas erxl Ci2,
d 6(2)* = G(l)* + (By= — g(x)*) C]_ll Ciz
an

G=A+ O~ éu)*) Cit Oy — 6(1)*)'A

b) Marginally,
. Oy ~ foss oy A C1o (8.4.33)
or equivalently,
01y ~ ium [8,y% Ci1- A, vl
¢} The gth row of 9, 8, is distributed as
(8.4.34)

@ -1
Oy~ tw (802 ¥ Cag A,v]

where ¢y, is the (gg)th element of C.
d) The distribution of @ can alternatively be gxpressed as the product

p@\y) = POy | Y)P(B(Z) | 81y y) G |81y - Q-1 Y)s (8-4-35)

where, parallel to (8.4.30), each factor on the right-hand side is an m-dimensional

multivariate ¢ distribution.

Comparing expression (8.4.34) with the result in (8.4.12), we sec that, as was
ihe case with a column vector of 8, the two distributions are of the same form
except for the difference in the «degrees of freedom.” They now differ by (k — 1)
simply because an additional (k — 1) “input variables” are included in the model.

Marginal Distribution of a Block of Elements of ©

Finally consider now the partitions
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It follows from (8.4.21) and (8.4.33) that the k, X m; matrix of parameters |
is distributed as
911 ~ tk;ml(ﬂlla C11, A11, v). (8.4.

The marginal distributions of 8,;, 0,;, 85, and indeed that of any block
elements of 8 can be similarly obtained, and are left to the reader.

In the above we have shown that the marginal and the conditio
distributions of certain subsets of ® are of the matric-variate ¢ form. This
however, not true in general. For example, one can show that neither the margi
distribution of {(0,,, 8,,) nor the conditional distribution of (0,,, 8,,) g
(0,,, 9,,) is a matric-variate ¢ distribution. The preblem of obtaining expl
expressions for the marginal and the conditional distributions in general is qu
complex, and certain special cases have recently been considered by Dr
and Morales (1970} and Tizo, Tan, and Chang (1970).

Means and Covariance Mairix of @
From (8.4.28), the matrix of means of the posterior distribution of 0 is

E®) =0 (8.4
and the covariance matrix of 9, is

a

Cov () = _""2 XXy, i=1,..,m (8.4.

v
For the covariance matrix of 0, and 8;, with ne loss in generality we consi
thecase i =1 and j = 2. Now
E®; —0,)(0, -8, = 5(91 - él)e}fa (8, — 0,)".
1 2 1 -

If we set m; =2 in (8.4.2]) and perform a column decomposition of the k&
matrix 8, = [8,,8,], it is then clear from (8.4.20) that

E (8, — 92) =a;i a;, (0, — 91)
0210,
so that, as might be expected,

a2

E((-), - g1) (92 - 62)’ = v _ 2

(X'X)" 1., (8.4.

Thus,

6, — 6, & v R a1 (X’X)_l fapy (X’X)Al
£ g gy 100001 = S [ e

1 [311 a1z

] ®X'X)t (84
v—2

Q12 Haz
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g4

¢ @ denotes the Kronecker product—see Appendix A8.4. In general, if

dite the elements of 8 and 0 as
® = (0, ..., 8n) & = @,.... 0, (8.4.422)

whe
we W

where © and © are kmx 1 vectors, then

1

Cov (@) = E(@© — &) (@ - 0) = — AR XX)Th (8.4.42b)

By a similar argument, if we write

0, = O o 8, o, = O 00, (8.4.432)

then

L S (XXTE A (8.4.43b)

Cov (@) =

v

[.inear Transformation of 8
lel P be a kyxk(ky= k) matrix of rank K,
matrix of rank 77,. SUppost  is the ky XMy matrix of
from the linear sransformation

(8.4.44)

o =P0Q.
[PGQ,P(X’X)"P’,Q’AQ,\)]. The proof is left

and Q be a mXny (m, < n)
random variables obtained

Then & is distributed as Iym;
as an exercise for the reader.

Asymptotic Distribution of 8

When v tends to infinity, the
multivariate Normal distribution,

distribution of @ approaches 2 km dimensional

lmp(B]y) = (\/ﬁ)—mkli—-llkﬁ iX’X\"’"Z

x exp[ — ptrETHE - 0y XX®-8) —*=< 0 <o, (BA445)
where
£ =v'A,
and we shall say that, asymptotically, 0~ Ny l0.2@ (XX
To see this, In (8.4.15) let
Q=vA 'O~ ay X'X© — 0.
—$-1 @ -8 XXO - .
Then, we may write
(8.4.46)

I, + y-lol =T14 + y71AD
i=1
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where (4., ..., 4,,) are the latent roots of Q. Thus, as v— <o

1 m
lim |L, + v Q| E D = exp ( -5 &-)
i=1

v—+aoo

=exp(— 1trQ).
Since
rQ=(®-OLE'aXEX)O -06) (8.4.47
where @ and @ are the km » I vectors defined in (8.4.42a), and noting that

£l e XX = | ETHXX,

the desired result follows at once.

It follows that
E@) =0, Cov(®=%2gXX)™ (8.4.482

or, alternatively, R
E®©) =0, Cov(®,)=(XX)'ek (8.4.48b

where (®,0) and (O,,®,) arc defined in (8.4.42a) and (8.4.43a), respectively

8.4.4 H.P.D. Regions of 0

Expressions (8.4.28) and (8.4.34) allow us to make inferences about a specifi
column or row of 0. Using properties of the multivariate ¢ distribution, H.P.D
regions of the elements of a row or a column can be easily determined.

We now discuss a procedure for the complete set of parameters 9, whict
makes it possible to decide whether a general point @ = 8, is or is not include
in an H.P.D. region of approximate content (1 — a). ’

It is seen in expression (8.4.15) that the posterior distribution of @ is ¢
monotonic increasing function of the quantity U(0), where

|A|

— -1 AV W’ _ B 41'
A+ (8—8y X’X(B—é)i_lI”A+ (0 — 0y X'X(0—0)"" (844

U(0) =

Consequently, the parameter point 8 = 8, lies inside the (1 — &) H.P.D. regio!

if and only if :
Pr{U® >U®) |y} < (1 —a), (8.4.50

8.4.5 Distribution of U(0) i

To obtain the posterior distribution of U(0) so that (8.4.50) can be caloulated
we first derive the moments of U(8). Applying the integral identity (8.4.13) th
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smient of U(8) is found to be
c{m, k,v - 2h)
el{m, k,v)

m F[%(v—l-{-s)-f—h]l“[—%(v—1+k+s)j
- szlf[%(v—1+s)]l“[%(v”1+k+s)+h}

(8.4.51)

From (8.4.46) and (8.4.49) it follows that U = U(0) is a random variable
‘defined on the interval (0, 1) so that the distribution of U is uniquely determined
by its- moments. Further, expression (8.4.51) shows that distribution of U is a
function of (m, k,v). Adopting the symbol Uy, to mean a random variable
whose probability distribution is that implied by the moments in (8.4.51), we

j'havc" the following general result.

Theorem 8.4.1 Let 8 be a k x m matrix of constants, X'X and A be, respectively,
‘2 kxk and a mxm positive definite symmetric matrix of constants, and
v > 0. If the k x m matrix of random variables

0~ t, I8, (X’X)_l, A, v],
_ then

U@ ~ Upiwy
where

U@ =L+ A @ -0/ XX@®-8"

As noted by Geisser (1965a), expression (8.4.51) correspond exactly to that
for the Ath sampling moment of U(8) in the sampling theory framework when
0 are regarded as fixed and y random variables. Thus, the Bayesian probability
P:{U(8) > U(,) |y} is numerically equivalent to the significance level associated
with the null hypothesis 8 = 8, against the alternative 00,

Some Distributional Properties of U vy
Following the development, for example, in Anderson (1958), we now discuss some
properties of the distribution of Uggyy It will be noted that the notation U, .
here is slightly different from the one used in Anderson. Specifically, in his notation,
vis replaced by v + m — 1.

a) Since from (8.4.18) c(k, m,v) = c(k, m,v), the hth moment in (8.4.51) can be
aleernatively expressed as

* I“[%(v—l+t)+h]1"[%(v—1+m+z‘)]

h - 4.52
EU® 19 = U feio — Tyt~ 1 sma0 s i O

By comparing (8.4.51) with (8.4.52), we see that the roles played by m and k can
be interchanged. That is, the distribution of U, ) 18 identical to that of Uy m)- In
other words, the distribution of U = U(0) arising from a nmultivariate model with m
output variables and k regression coefficients for each output is identical to that from a
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multivariate model with & output variables and m regression coefficients for each output,
With no loss in gencrality, we shall proceed with the m-output model, i.e., the
Ui r. distribution.

b) Now (8.4.51) can be written

" -1+ k yv—145 k
E(Ui iy =118 y-ore +h,—) B ﬁ———,~), (8.4.53)
s=1 2 2 2 2

where B(p,q) is the complete beta function. The right-hand side is the Ath moment of
the product of m independent variables xy, ... %y, having beta distributions with

parameters

v—~14+s5 k
_ =, s=L.,m
2 2

1t follows that U is distributed as the product x; ... xg,.

¢) Suppose m is even. Then we can write {8.4.33) as

20— 1 k y—1+2t k
/ B[M+h,?]3(w+h,—)
2

y m 2 2 p
EU* Y =[] (8.4.54)
t=1 y+2—-1) k y—14+2r k
|ttt B l————— .
2 2 2 2
Using the duplication formula
JnT(2p)
T'(p +HT(P =—2—2;_1_ (8.4.55)
s0 that
B(p -+ 4.9) B(p,q) = 2°4 B(2p, 29) B(g,9), . (8.4.56)
we obtain
w2 Bly +2(f — 1+ k)&
Ey =]] b+ i (8.4.5T;

t=1 B[V + 2(1‘ - 1): k]
= E{z3-.- Zifz)h:
where z, ..., 77 a1€ m{2 independent random variables having beta distributions with::

parameters [v + 2(z — 1, k], 1 = 1, ..., mf2, respectively, Thus, U is distributed as the .
product z7 -+ 22,

The Casem =1,
When m =1 so that v =n — k, it follows from (8.4.53} that, U has the beta
distribution with parameters [(n — k)/2, k/2] so that the quantity {(n — k) (1 — )k V)
is distributed as ¥ with (k, n — k) degrees of freedom. This result is of course to b_f_?
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since for m =1, we have |A| = (7 — kys?, where

mwc{cd,
P=m—k -~ ),

o (hal

( 1 — U) (n —k ) _ @ — &) X'X(® — 3)) (8.4.58)
U k ks*

which, from {2.7.21), has the F distribution with (k. n — k) degrees of freedom.

The Case mi = 2. .
k — 1 and from (8.4.57) p1? is distributed as a beta variable

Whenm =2,V =1 —
k — 1,k). Thus, the quantity

with parameters (1 —
L U =k 1 o N —_— n—k—1
!\—“Ufﬁ“—) (————*—) =(I,+A 9 — 0y X'X(0 - - 1)(___%——4)
(8.4.59)

has the F distribution with [2k, 2(» — k — 1)] degrees of freedom.

8.4.6 An Approximation to the Distribution of U for General m

f U is complicated, sec €.8. Schatzoff (1966)
an approximation method following
(8.4.51), we make the substitutions

For m 2 3, the exact distribution 0
ard Pillai and Gupta (1969). We now give
Bartlett (1938) and Box (1949). In expressiot

— ¢vlogl, = — hi($ V)

M
by=%(s— 1) (8.4.60)

x = v, a.=3@+k—-1 and

where ¢ is some arbitrary positive number, SO that

|

E(U*|y) = E(|¥)
n T(x+a) Thex(-20+xd-0)F b 8.461)
For 4 by Thox(l — 20 +x(0 = @)+ a] o

fl_'l terms of the random variable M, (8.4.61) is then its moment-generating
function. Taking logarithms and employing Stirling’s series (see Appendix
A22), we obtain the cumulant generating function of M as

s=1

r=

ko () = — %k-log (1—20)— ilm,m 13, (846D

where

_ =y < — _ -
U= S (G s'; (B, i[x(1 — ¢} + b By [x(1 — ¢) + a1}
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and B,(z) is the Bernoulli polynomial of degree r and order one. Ti
asymptotic expansion in (8.4.62) is valid provided ¢ is so chosen that x{1 —
is bounded. In this case, w, is of order O[{¢x)""] in magnitude.

The series in (8.4.62) is of the same type as the one obtains in (2.12,1:
for the comparison of the spread of k Normal populations. In particular, tl
distribution of M = — ¢v log U can be expressed asa weighted series of x” densitie
the leading term having mk degrees of freedom.

The Choice of ¢

It follows that, if we take the leading term alone, then to order O[(¢x)']:
O[(¢$1v) '] the quantity ‘
M=~ ¢vloglU (846

is distributed as xZ,, provided iv(l — ¢) is bounded. In particular, if +
take ¢ =1, we then have that M = — vlogU is distributed approximate
28 Xk
For moderate values of v, the accuracy of the y* approximation can |
improved by suitably choosing ¢ so that ¢, = 0. This is because when w; =
the quantity M will be distributed as x2; to order O[(¢4v)"*]. Using the fa
that
B(ny=2"—z+1% {8.4.6

it is straight forward to verify that for w; = 0, we require
1 .
=1 +E(m+k——3). (846

This choice of ¢ gives very close approximations in practice. An examp
with v =9, m =k =72 will be given later in Section 8.4.8 to compare tt
approximation with the exact distribution,

It follows from the above discussion that to order O[($3v)™%],

Pr{U(®) > U@®,) !y} = Pr{xi: < — ¢vlog U(B,)} (8.4.6i
with

1
2v

log U(B,) = — log |1, + A~ (8, — 8) X'X (8, — 0)|

which can be employed to decide whether the parameter point 6 = @, it
approximately inside or outside the (1 — «) H.P.D. region.

8.4.7 Inferences about a General Parameter Point of a Block Submatrix of 6
In the above, we have discussed inference procedures for (a) a specific coluH:l:
of 8, (b) a specific row of 8, and (c) a parameter point 0, for the complete set © {
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some problems, we may be interested in making inferences about the
s belonging to 2 certain block submatrix of 8. Without loss of

aramete
sider only the problem for the kXM matrix 8;; defined

;cncrality we COon
o (8.4.36). From (8.4.37) and Theorem 8.4.1 {on page 449), it follows that the
quantity '

U@,y = ¥ AT (0 — 0,1) Cii 04y “'611)|-l (8.4.67)

This distribution would then allow us to decide

s distributed as Uiy
whether a particular value of 8, lay inside or outside 2 desired H.P.D. region.

In particular, for my > 2and k, > 2, wemay then make use of the apprommation

- ¢y vlog U®,,) ~ sznlkl! (8-4-68)

where

1
¢1:1+§;(m1+k1"'3),

5o that the parameter point 0110 lies inside the (1 — «) HP.D. region if and

only if
PrilU@y) > U(0,,,0 1Y) = Pritmn < ¢yviog U@, <3~ ). (8.4.69)

£4.8 An Dlustrative Example

An experiment was conducted to study the effect of temperature on the vield
d the by-product ¥» of a chemical process. Twelve runs were

of the product y; an
made at different temperature settings ranging from 161.3°F to 195.7°F. The

data are given in Table 8.4.1.

The average temperature employed 18 T 177.86. We suppose 2 model
‘o be entertained whereby, OVEI the range of temperature explored, the
relationships between product yield and temperature and by-product yield and

temperature were nearly linear SO that to an adequate approximation

E()’n) = 911 + 621xu9

E(y,s) = 012 + 022%w u=1,..,12 (8.4.70)
where x, = (T, — 1}/100, the divisor 100 being introduced for convenience in
Ccftlcuiation. The parameters f,, and 12 will thus determine the locations of the
vield-temperature lines at the average temperature T while 8,, and fz2 will
fepresent the slopes of these lines. The experirnental runs were set up
independently and we should therefore expect experimental errors to be indepen-

However, in any particular run, we should expect the

dent from run fo Fub.
error in y; to be correlated with that in yp since slight aberations in reaction
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Table 8.4.1
Yield of product and by-product of a chemical process

Temp. °F Product y,  By-product y,

161.3 63.7 20.3
164.0 59.5 24.2
165.7 61.9 18.0
170.1 63.8 20.5
173.9 66.1 20.1
176.2 70.4 17.5
177.6 70.0 18.2
181.7 73.7 15.4
185.6 74.1 17.8
189.0 79.6 13.3
193.5 . 711 16.7
195.7 22.8 14.8

conditions or in analytical procedures could simultaneously affect observat;
of both product and by-product yields. Finally, then, the tentative model w:

Yur = 011X + 02150 + 8y

Yur = 012x,1 + O25%,5 + &4, (8.4
where x,, = x,, and x,; =1 is a dummy variable introduced to “‘carry”
parameters #,; and 0,,. It was supposed that (g,,, ¢,,) followed the bivar
Normal distribution N,(0, ). '

Given this setup, we apply the results arrived at earlier in this section tom
inferences about the regression coeflicients

B — |:9]_1 912] — [91 , 02] - [ El)] (84

921 922 (2}

against the background of a noninformative reference prior distribution
6 and I
The relevant sample quantities are sumimarized below:
n=12 m=k=2
12 0
0 0.14546

0 6.8750

0.0833 0
o | R

| c-axm-|
64

_[ 61.4084 —38.4823] - [0.0474 0.0496]
T | —38.4823 36.7369 0.0496  0.0792
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o [71.1417 18.0666 L. iy
= =, 0,1= “‘]_
b [54.4355 —20.0933] [_“’ 2] [

The Rited lines . .
611 + le(T—' T-)X loﬁz

8,5 + B:0(T — T)% 1072

I

F1
92
ropether with the data are shown in Fig. 8.4.1. As explained earlier, in a real data

analysis, W€ should pause at this point to criticalty examine the conditional infer-
ence by study of residuals. We shall here proceed with further analysis SUppOSINg

\hat such checks have proved satisfactory.

i

r ¥y

80

0

® Preducty,

60  By-producty,

T -

160 170 180 190 200

Fig_- 8.4.1 Scatter diagram of the product ¥y and the by-product ¥2 togetber with the best
fitting lines.

Inferences about 8, = (811 #21)
\évheﬂ interest centers primarily on the parameters 8, for the product yi, W€
ave from (8.4.28) that

p(B;|y) o [61.4084 + 0, — 0,) X'X(8, — 81"
that 55, a bivariate {01, 6.825(X'X)" 1, 9] distribution. Since the matrix X'X
is diagonal, 0,, and 8,5 are uncorrelated (but of course not independent).

1172 (8.4.74)
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Figure 8.4.2a shows contours of the 50, 75 and 95 per cent H.P.D. regio
together with the mode 8,, from which overall conclusions about 8, may be draw

74

72 -

70 —

68 —

By~
30 40 50 60 70 20

(a)

Fig. 8.4.2a Contours of the posterior distribution of 8,, the parameters of the produ
straight line.

straight line.

Inferences about B, = (6,5, 03;)
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g4

408(X'X)" 1, 9] distribution.  Again, the parameters 0,2 and
f,, are uncorrelated. The 50, 75 and 95 per cent FL.P.D. contours together with
{he mode 8, for this distribution are shown in Tig. 8.4.2b. The contours have
exuctly the same shape and orientation as those in Fig. 8.4.2a because the same
x'X matrix is employed; the spread for 6, is however smaller than that for 8,

since the sample variance from ¥, is less than that from ¥;.

which i8 & 12[@2,

fnferences about B2y = (B4, 022)

jn problems of the kind considered, interest often centers On 0y = (031, 022)
which measure respectively the slopes of the yield/temperature lines for the product
and by-product, From (8.4.34), the posterior distribution of 83 18

P02y |y)ec [6.875 + 0 — é{z))’A_ 1(9(2} - 9(2))]-1”2s (8-4-76)

0.764A, 9] distribution. Figure .43 shows the 50, 75 and
with the mode 8;2). Also shown in the same figure
d t(bz2: 28.05, 9) and the

that is, @ !1[9(2),
95 per cent contours to gether
arc the marginal distributions 1(B,,,46.90,9) an

-20
50%
0 75%
95%
~40
plinly)

30 40 50 60 70

Fig, 8,43 Contours of the posterior distribution of 82y and the associated marginal

distributions for the product and by-product data.
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corresponding 95 per cent H.P.D. intervals for 8,, and #;,. Figure 8.4:
summarizes, then, the information about the slopes (#,,,8,,) coming from the
data on the basis of a noninformative reference prior. The parameters are
negatively correlated; the correlation between (6,4, 0,,) is in fact the sample
correlation between the errors (&,;, &40)

a2
F IS = T3 — 0.81. (8-4.77
L2 (a1 azz)lfz , )

It is clear from the figure that care must be taken to distinguish between
individual and joint inferences about (0;,,0;;). It could be exceedingly

misleading to make inferences from the individual H.P.D. intervals about the
parameters jointly (see the discussion in Section 2.7).

Joint Inferences about 0

To make overall inferences about the parameters [8,,8,], we need to calculat
the distribution of the quantity U() defined in (8.4.49). For instance, suppose
we wish to decide whether or not the parameter point

70 17
0, =[0,5 , 0501 = 65 —30 (8.4.7%)
lies inside the 93 per cent H.P.D. region for 8. We have
N - 31.8761 —0.6108
0 — ! - — 4,
® = 0)X'X(6 - 9) [—0.6108 27.9272] (8.4.79)
so that
Al 775.0668 :
UB,) = A = = 0.1720, (8.4.80)

[A + (8, — B)'X'X(0, — )|  4503.8878

Since m = 2, we may use the result in (8.4.59) to calculate the exact probabilitjii_j
that U{0) exceeds U(0,). We obtain :

Pr{U(®) > UB) | v} = 1 — Lior7ro (9,2) = 1 — 0.0022 = 0.9978.  (8.48

From (8.4.50), we conclude that the point 8, lies outside the 95 per cent H.F,
region of 8. Note that while the point 8, = (8,,,8,,) is excluded from !
95 per cent region, Figs. 8.4.2a,b show that both the points 0;, and &
included in the correspending marginal 95 per cent H.P.D. regions. This s
to illustrate once more the distinction between joint inferences and mar
inferences.

Approximating Distribution of U = U(0)
It is informative to compare the exact distribution of U(0) with




(8.4.59), the exact distribution of U is found to be

1
p(U) = EE—(Z—Q’)‘U&S (1 - Ui, 0<U<x<1.

Using the approximation given in (8.4.63) to (8.4.65), we find

¢ = 1%, dv =295 M= —9.5logU
and pOM) = IMexp(— 3M), O0<M< .
This implies that the distribution of U is approximately

p(U) = (22.5625) (= log YU, 0<U <1,

Table 8.4.2 gives a specimen of the exact and the approximate densities of U
calculated from (8.4.82) and (8.4.84). Although the sample size is only 10, the

apreement is very close.

Table 8.4.2
Comparison of the exact and the approximate distributions of Uforn=12andm=k =2
()

U Exact Approximate
0.05 0.00098 0.00089
0.10 0.00973 0,00924
0.20 0.08900 0.08683
0.30 0.30098 0.29731
0.40 0.66947 0.66548
0.50 1.16498 1.16239
0.60 1.69708 1.69718
0.70 2.10935 2.11244
0.80 2.17561 2.18045
0.90 1.59706 1.60130
0.95 0.95220 0.95478

8.5 SOME ASPECTS OF THE PISTRIBUTION OF £ FOR THE CASE OF A

COMMON DERIVATIVE MATRIX X

We discuss in this section certain results pertaining to the posterior distribution

of the elements of the covariance matrix X = {o;1.F

t Fp? the important problem of making inferences about the latent roots and vectors of &
which is not discussed in this book, see Geisser {1965a) and Tiao and Fienberg (1969).

Some Aspects of the Distribution of £

..app.roﬁmation-in (8.4.63) using the present example (v =9, m=£k = 2). From

459

(8.4.82)

(8.4.83)

(8.4.84)
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8.5.1 Joeint Distribution of (0, L)

When the X,’s are common, the joint posterior distribution of (8, L) in (8.2.1
can be written

PO, T y)ec [T HOTRIM eyp {— 1r ETHLA + (0 - 0YX'X(0 - )]},
—w<b<w, >0 (8.5,

where v=n— (k + m)+ 1 and use is made of (8.4.4) and (84.5). T
individual and joint inferences about (6.5, 6,,). It could be exceeding
distribution can be written as the product p(8,Z[y) = p(0 | L, y) p(E| y).

Conditional Distribution of 8 given &
Given I, we have that
pO|L,y)xcexp[—$urE™ 1 (O XX - 0], —w <0 <w, (85

which by comparison with (8.4.45), is the km-dimensional Normal distributi
N[0 Z® (XX)™1]. (8.5,

Marginal Distribution of & ‘

Thus, the marginal posterior distribution of X is

p(E|y)oc B @ M exp(— trE7'A), I >0, (8.5.
From the Jacobian in (8.2.13), the distribution of 2™+
PE Yo B texp(— $rETMA),  ETH>0, (8.5,

which, by comparing with (8.2.20), is recognized as the Wishart distributi
W, (A™',v) provided v > 0. The distribution of X in (8.5.4) may thus be call
an m-dimensional “inverted” Wishart distribution with v degrees of freedm
and be denoted by W, '(A,v). From (8.2.21) the normalizing constant for t
distributions of £ and 27 i

!Al%(v+m"1) 2—-}m(v+m~1) |:1—~m(v + 1121 — 1)] #1. (85

Note that when m = 1 and v = n — k the distribution in (8.5.4) reduces
an inveried ¥? distribution, :

—i(n— 411
P(GulY)OCO'lfM" HZJEXP(“ 5 ), o5 >0,
011

which is the posterlor distribution of ¢* = =01 with data from a univa

multiple regression problem (see Section 2.7).
From the results in (8.5.1), (8.5.3), (8.54) and (8 4.15), we have
following useful theorem.
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I % m matrix of constants, X'X and A be, respectively,
e definite symmetric matrix of constants, and v > 0.
the elements of the k x m matrix 0 and the mxm

neorem 8.5.1 Let dbea
ixlk and a mxm positiv
{ the joint distribugion of
e definite symmetric mairix X is

~grHlE2m) ayp (- -}_tr}:.-l[A + (0 -0y XX - o,

osiliv

p(0,51¥) o X

hen, (a) given I, 0~ N0, E® X%, B T~ WoL(A,v) and (©)

B~ £l B (X’X)_l, A, v].

§.5.2 Some Properties of the Distribution of X

Consider the partition

mi ma
L,i5

= _.__1._1..=_A.}%.}m1, o, =m 8.5.8
[Enézn . mAme T (53

We now proceed to obtain the posterior distribution of (T, 9, T), where

Q=L 22121—11212
and {8.5.9)
T=XiZ:2
it is to be remembered that i is the covariance matrix of the m, etrroIs
(Euty oo Bamy)s SE and T are, respectively, the covariance matrix and the
m, % m, matrix of “regression coefficients” for the conditional distribution of

the remaining m, €ITOTS (Bugny+ 132+ £,m) iV (8415 -os Eymy ) Denoting

mj ma

A A
= { o 11{\ ", Agpy = A2z ™ Az Aﬁl Ajz (8.5.10)

and
T= Ai_kl A,

it can be readijly shown that

a) £,, is distributed independently of (T, £2),

b) T, ~ Wit (Arsv), (8.5.11)

c) Q ~ Wi (Agzs v + 1) (8.5.12)

4 T ~ 1y (B ATE, Agzess V o+ P10): (8.5.13)
U(T) = [T, + Aza (T — TY Ay (T =D

(8.5.14)

~ Umgmy,y 1may
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The above results may be verified as follows. Since L is positive definite, wi
express the determinant and the inverse of X as

[E] = [Ey,| 1€2
£ = [11] M, @
¢ :0
where

TR'T | — TQ7!
PR A o '
Expression (8.5.15) may be verified by showing L% = 1. Thus, the distributi
(8.5.4) can be written ‘
PP e [IE,1Q] ¥ ™ exp (—dr LA —$trMA),  Z >0 (8
For fixed T, it is readily seen by making use of (A8.1.1) in Appendix AS.1 th
Jacobian of the transformation from (X ,, Xj,;) to (T, £2) is
3(E:5. 5,2
o(T,8)
Noting that M doces not depend on Z,,, it follows from (8.5.16) and (8.5.17) the
is independent of (T,£2) so that

p(E LT,y = p(T,L&INpE; | Y) (&

= Iﬁlﬂmzo it

where
AT, Q| y) o |[Q~F ™ exp (—$trMA), >0, —w<T<w &
and
PE |y oo |By W exp (— Je B A, By >0 @8
Thus, X,, is distributed as the inverted Wishart given in (8.5.11).
From (8.5.10) and (8.5.15), we may express the exponent of the distributi
(8.5.19) as
tr MA = tr (TQ ' T'A;; — TQ 4, —Q7'T'A; +0O7A5)
= @ Ay + (T — VA (T - D] (¢
In obtaining the extreme right of (8.5.21), repeated use is made of the fac

tr AB = tr BA.
Thus,

P(T,Q1y) oo [ "2 +Fm*2md exp f L ir Q71 [Agy + (T — TyA,, (T — DY
—w<T<w, &

where v = v + m,, which is in exactly the same form as the joint distributi
(£.8) in (8.5.1). The results in (8.5.12) and (8.5.13) follow by application of Th
8.5.1 (on p. 461). Further, by using Theorem 8.4.1 (on p. 449), we obtain (8.5.1:
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pistribution of O11
By setting 712y = 1 in (8.5.11), the distribution of o1, is

[41
oy, | Poc o exp (f - ) ¢y1 > 0, (8.5.22)
200,

ay? distribution with v =17 — o — (m — 1) degrees of freedom. Comparing
with the univariate case in (8.5.7), we see that the two distributions are identical
except, a8 expected, that the degrees of freedom differ by (m — 1). The difference
i« of minor imporiance when m is small refative to 7 = & but can be appreciable
otherwise—see the discussion about the posterior distribution of 8; ip (8.4.28).

It is clear that the distribution of @, the ith diagonal element of I, is given

by simply replacing the subscripts (1,1) in (8.5.22) by (&, i).

The Two Regression Matrices EI T, and pASED
The m, x m, matrix of “regression coefficients”™ T =X} L,, measures the
dependence of the conditional expectation of the errors (Eum +1y ey By} OT
(6,0, vy Eury)- FTOM theE posterior distribution of T in (8.5.13) the plausibitity
of different values of the measure T may be compared in terms of eg. the
H.P.D. regions. In deciding whether 2 parameter point T =Ty lies inside or
outside a desired H.P.D. region, from (8.5.14) and (8.4.66) one may then
calculate

br (U(D) > UTQ) v} = Pt {iumy < — & 0+ ) 108 UMy (8.523)
where
m1 + mz - 3
P g e ———
qb 2 (V + ml)
In particular, if To = 0 which corresponds to X1z = 0, that is, (Buss - s Eumt)
are independent of (Eypmy+ 1) ++» fum’ then

o |Al
Uy =0 = 3T (8.5.24)

Consider now the my % my matrix of “regression coefficients”
7, = %71 5, (8.5.25)

It is clear from the development leading to (8.5.13) and (8.5.14) that by
interchanging the roles of m, and Mz, We have
7~ o, (L A2z AsrsV T my) (8.5.26)
where
7= Agzl Azl Ao = Ay A A;21 A,
and .
U(Z) = T, + AT, (Z— LY Ay (L — VA
(8.5.27)

~ U(ml,mz,\r+mz)'
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Thus, in deciding whether the parameter point Z, is included in a desired
H.P.D. region, we calculate

Pr{U(Z) > U(Zy)|y) = Pr {x,ﬁzml < = ¢ (v + my)log U(Zy)} (8.5.28)
where m, +my — 3

r1=1+
4 2 (v + my)

In particular, if Z, = 0 which again corresponds to L,, = 0, then

|Al
|41l {Azal

Although U(Z; = 0) = U(T, = 0) the probabilities on the right-hand
sides of (8.5.23) and (8.5.28) will be different whenever m, # m,. This is not a
surprising result. For, it can be seen from (8.5.18) that the distribution of T i3
in fact proportional to the conditional distribution of X given I,
Inferences about the parameter point X,, = 0 in terms of the probability
Pr{yi,.,< —¢' (v+m)logU(T, = 0)} can thus be interpreted as made
conditionally for fixed £;,. That is to say that we are comparing the plausibility
of E;, = 0 with other values of I, in relation to a fixed X,,. On the other harnd,
in terms of Pr {yp,m, < — ¢" (v + m;)log U(Z, = 0)}, inferences about L,, =0
can be regarded as conditional on fixed E;,. Thus, one would certainly not expect
that, in general, the two types of conditional inferences about X, = 0 will be
identical.

U(Z, = 0) = (8.5.29)

8.5.3 An Example

For illustration, consider again the product and by-product data in Table 8.4.1. .
The relevant sample quantities are given in (8.4.73), i

When interest centers on the variance o, of the error &, corresponding
to the product y,, we have from (8.5.22)

&,y ~ 61.4084 x5 (8.5.30)

Using Table II {at the end of this book), limits of the 95 per cent H.P.DD. interva
of logo,, in terms of a,; are (3.02, 20.79).
Similarly, the posterior distribution of ¢,, is such that

022 -~ 36.7369 x;z (85.31

and the limits of the corresponding 95 per cent H.P.D. interval are (1.81, 12.44
From (8.5.13), and since m; =m, =1, the posterior distribution 9
T = o7'0,, is the univariate ¢(T,s?, v,) distribution where

T=ajla,=—0627, v, =10,
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and o, — G128
52 =vytail ez, = a1y = G2/t ,0206.
Thus, T + 0.627
I~y (8.5.32)

0.143
able TV at the end of this book, limits of the 95 per cent Hro.

o that from T
interval are (—0.95, — 0.31). In particular, the parameter point 67 0 =10

(uu!'responds to Gyp = 0) I8 excluded from the 95 per cent interval.
Finally, from (8.5.26) Z = 032012 18 distributed as 1(Z, 53, v,) where

5 = aa, =—10% V27 10
and
2 1 -1 ayq aia/dz2
2=v; d220112 % G T 127722 = 0.0574.
¥y X gz
Thus,
2105 . (8.5.33)

interval are (—1.38, — 0.52) and the point

Lintits of the 95 per cent H.PD.
r, from (8.5.14), (8.5.27), (8.5.32) and

rydo,, =0 Is again excluded. Furthe
(8.5.33)
Pr{U(T) > U |y} = Fr (U@ =M

% that inferences about g1z =0 in terms of cither T of 7 are identical, This
is of course to be expected since, for this example, my = M2 = 1.

_Pr il > 437y (8539

§5.4 Distribution of the Correlation Coefficient p12

The two regression matrices £} E,, and L4 E,; are measures of the dependence

{or association) between the two set of responses  (Yuts oy Vumy) 2nd

Dy 1s ++ -2 V- When interest centers at the associatiop between two
¢ association is the

specific responses ¥, apd Yup the most natura] measure o
correlation coefficient pij = aij/(aﬁajj)”l. Without loss of generality, we now

consider how inferences may be made about pi2-
— 2 in the distribution of &,, In (8.5.11), we can follow the

By setting my =
development in Jeffreys (1961, p- 174) 10 obiain the posterior distribution of the

correlation coefficient py2 88

[+ ]

plply)c (1 — pz)%(“'z)J. o (m + —:U— - 2pr)""“’ dov, _1<p<l,
4]

(8.5.35)
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where p = p,,,

iz

F=py, = ——=___
L2 (ai; ‘1'22)1!2

is the sample correlation coefficient, and the normalizing constant is

21 — PHOt 0T 4 1)/[7‘:“2 r(%) r( 4 ’; ! )]

It is noted that this distribution depends only upon the
coefficient r,

sample correlat;

To see this, for my = 2, the posterior distribution of the elements
L in 8.5.11) is

P(011,625,0,5 ¥} ac (11022 (1 — pz)]w{;wz)

(011,022, Gys)

S T T
2 =pY Loy 6y (00,07 |
011 >0, 02, >0, 61405 > 07, (85

where from (8.5.6), the normalizing constant is,

2
(anﬂzz — afz)(v+1)/2/{2(v+l) TL.L"Z H F[%(V +7 - l)]}
i=1

We now make the transformation, due to Fisher (1915),

2
011022\ Y/ Ty1ay;\1/2 012
x = | —-——2== R 0 = | —..== , = — {8.5.3
@102 Ta2814 (01,035)

The Jacobian is

(01,04, 013}

= 2a,, 64,(6,, 0,,)1?
o, ) 11G22(Gy; 039

-80 that the distribution of (x,, p) is

1 1
p(x,CU,,O f ¥y} oc a- pZ)%(v+4)mk1x—(v+2J exp | ~ o+ — - 2,0?’):[
21 — P2 )x (03] !

w>0, x>0, —l<p<l (85

Upon integrating out x,

1 —(vi1)
p(cu,ply)oc(l—pz)ﬂ""z)a}_l(m+——2pr) w>0, —1l<p<
@

from which we obtain the distribution of p given in (8.5.35).
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35

e Special Case When r =0

Tl
0, the distribution in t

When F =

2.5.35) reduces to

plplr=0)0c(— pemn, —l<p <1, (8.5.41)
mmetric at g = 0, and 1s identical

f r on the null hypothesis that p = 0.

which is 8Y in form to the sampling
distripution O In this case, if we make
the rransformation
t
(8.542)

— ———
p (V + ll)l,'z ?

then the distribution of ¢ is
p(6y e (1 + t7]

<o that the quantity 7 is distributed as #0,1, V).

y) Y, — <1< %,

The General Case Whenr # 0

In general, the density function (8.5.35
functions of ». With the availability of

) cannot be expressed In terms of simple
a computer, 1t can always be evaluated

by numerical integration, however. To illustrate, consider again the bivariate

product and py-product data introduced in Table 8.4.1. Figure §.5.1 shows

the posterior distribution of p calculated from (8.5.35). For this example
¢=0and r= —081. The distribution is skewed to the right and concentrated
les out values of

rather sharply about its mode at p = — 0.87; it practically TG
p exceeding — 0.3.

piely)

0.2

Fig. 8.5.1 Posterior distributions of p for the product and by-product data.
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Series Expansions of p(p!y)
The distribution in (8.5.35) can be put in various different forms. In particular,
it can be expressed as

(1= p

where

@ 1 {14+pr P (25— 1)
Sv(p,r)='1+2ﬁ( ) )s=1(v+s+%)

i=1

is a hypergeometric series, and the normalizing constant is

(1 — PO [T + 1)]2/[20—%} r(%) r(" ; 1) (v + %)].

To see this, the integral in (8.5.35) can be written

o 1 ~(v+1) o 1 —=(v+1)
J w ! [w—}-— —2pr] doJ=2J w ! [m+—-2pr] deo . (8.5.44)
4] [} 1 w . )

On the right-hand side of (8.5.44), we may make the substitution, again due to Fisher,

_ 1=pr _ o+ Q)] —1
Ho + (o] —pr 3o + Qjo)] ~ pr

1 +1)2 1( 121
.—-mm"—_w——=’
4 @ 4 o

Ju

= o (1 — 0 @21 — 1 + pru]' 2 — pr)2 (8.5.45)
o

(8.5.45)

o=

Noting that

we have

so that

(Q-pypeP rt a—wy

1— 31+ gy, —1<p<l
G o e UG g

plply)

Expanding the last term in the integrand in powers of » and integrating term by et
each term being a complete beta function, we obtain the result in (8.5.43).
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we remark here that an alternative scries representation of the distribution of p
zan be obtained as follows. In the integral of (8.5.35), since

i —(v+1)
@t (a) + o 2pr) e (@ ~ 2pro + 17T, (8.5.48)

by completing the square in the second factor on the right-hand side of (8.5.48), we can
write the distribution in (8.5.35) as :

{1 _pZ)—%(v—zl w (w __p,,)l —{¥+1)
pply) IW{) , w i+ W deo (8.5.49)

Upon repeated integration by parts, the above integral can be expressed as a finite
ceries involving powers of [(1 —pr)/ (1 + pr)]¥* and Student’s ¢ integrals. The
density function of p can thus be calculated from a table of ¢ distribution. This
process becomes very tedious when v is moderately large so its practical usefulness
is limited.

The series S,(p,7) in (8.5.43) has its leading term equal to one, followed by

terms of order v~ % 1=1,2,.... Whenv is moderately large, we may simply
ake the first term so that approximately
. i— pZ)%(v—Z) o
LM TPl . —l<p<], 8.5.5
plely) Tyt P (8.5.50)

whete ¢ is the normalizing constant
2 -2
a1 1 (1_p)%(v .)
-1 (1 - pr)w%

Although evaluation of ¢ would still require the use of numerical methods, it is
much simpler to calculate the distribution of p using (8.5.50) than to evaluate
the integral in (8.5.35) for every value of p. Table 8.5.1 compares the exact
distribution with the approximation using the data in Table 8.4.1. In spite of
the fact that v is only 9, the agreement is very close.

Tt is easily seen that the density function (8.5.50) is greatest when p is near 7.
However, except when r = 0, the distribution is asymmetrical.

The asymmetry can be reduced by making the transformation,

¢ dp.

1
{ =tanh~'p = %log—lj;—%, (8.5.51)

due to Fisher (1921). Following his argument, it is found that { is approximately
Normal

5r
1 L.
N[tanh r 2(v+1)’(v+) ]
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Setting m = 2, k=1 so that v=n—2, the distribution in (8.5.43) is
identical to that given by Jeffreys for the case of sampling from a bivariate
Normal population. Finally, we note that while we have obtained above the
distribution of the specific correlation coefficient p = p,,, it is clear that the
distribution of any correlation Pt # o Is given sunply by setting r = r;
ayf(@; a;;)"* in (8.5.35) and its associated expressions.

Table 8.5.1
Comparison of the exact and the approximate distributions of p for v = 9and r = —0.8]
2(ply)

p Exact Approximate
—0.98 0.2286 0.2283
—0.96 1.2164 1.2150
—0.54 2.4867 2.4844
—0.92 3.515% 3.5134
—0.90 4,1200 4.1180
-0.88 43281 4.3271
—0.86 4,2448 4.2448
—0.84 3.9782 3.9790
—0.82 3.6141 3.6157
—0.80 3.2127 3.2149
—0.70 1.5182 1.5210
—0.60 0.6584 0.6603
—0.50 0.2853 0.2863
—0.40 0.1260 0.1267
—0.30 0.0569 0.0572
—0.20 0.0261 0.0263

8.6 A SUMMARY OF FORMULAE AND CALCULATIONS FOR MAKING
INFERENCES ABOUT (0, L)

Using the product, by-product data in Table 8.4.1 for illustration, Table 8.6.1 belo
provides a short summary of the formulae and calculations required for makin
inferences about the elements of (8, L) for the linear model with common derivativ
matrix defined in (8.4.1). Specifically, the model is

y=X0+z=¢

where y = [¥,, ..., ¥,.] is a % m matrix of observations, X is a # x k matrix of fi
elements with rank k, 0 =1[0,,...,0,] is a kxm matrix of parameters 2
&= [£4), ..., &) 15 @ mxm matrix of errors. It is assumed that £, u =1,
are independently distributed as N, (0, E).




8.6

]

" From (8.4.1), @

7. Inferences about

Inferences about (8, p3

A Summary of Formulae and Calculations for Making

Table §.6.1

tions for the linear modely = XB + &

summarized calcula

4.4y, (8.4.7) and (8.4.13), pbtain
n=12, v-—“n-—(m+k)-{—1=9

m=2, k=2,

12 0 R pos O
X'’X = . c=xl=

0 0.15 0 6.88

71.14 18.07

= XXy Xy= o A={ay}t Li=bLoo
XXy 2y {54.44 —20.09 lagh &) "

( X6y€ <6 4 A [ 61.41 —38.48
(v —X0)(y;— X0, an = -
az} Yi L yJ 7 ——38.48 3674

a specific column 0T row of §:
Writing
b (e
9 =[0,...0.3=]: 6=10,,...0.1=
w0
then from (8.4.28) and (8.4.34),

PO
Bi"‘-’tk ei,—‘*:—lC,‘V), i=1,...,m,

and

. €
B(H) ~ Im(e(g),—%}g—A,v) . g=1 . k.

Thus, for i=1 and g=2

71.14 008 9
0, ~1 , 6.83 X . 9
54.44) - 0 6.88

54.44 61.41 —38.48
9(2} ~ Il » 0.76 x N 9.
20.09 --38.48 36.74
de if a general parameter point 8 lies inside or

3. HLP.D. regions of 8: To decl
outside the (1 —2) 11.P.D. region, from (8.4.63) and (8.4.66

—gvlog U~ Y

), use the approximation

where
myk—3

U=U®) = Al A+ (@O0 xx@—O) "t and ¢
e the 1—o region if

s0 that 0, lies insid
—gvlog U®p) = y 2 (mke, ).
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Table 8.6.1 Continued
For the example, ¢p==19/18. Thus, if

70 17
0, = . then Ue)=0.17
o= las o) (0)
and the point lies inside the 1 —¢ region if
—9.510g0.17 = 16.7 < x*(4, %).
4. H.P.D. regions for a block submatrix of 8: Let

y mz My iz

o — [.‘_‘?_1_1__5.49‘;9_,] ky - [911952] o
921 .5‘022 ko 821 ::922 ka
my ma 31 ka

A [ A Az ] m c- [_‘9;1_5_9_15_]:”
Ay VA o, Coy i Caz iy,

To decide, for example, if the parameter point 8,, , lies inside or outside the
(1—a) H.P.D. region for 8, ,, use the approximation in (8.4.68),

dvlog U®) ~ X;,ki,

UO,1) = [Ag] [Ags + OBy, ~8,,)C1' 8y, —6,,)] !
and ¢, =14+ (1/2v}{my -+ky - 3), so that 0y, , lies inside the (1 —o) region if
—¢yviog U®, o) < 2 (myky, o),
Thus if my =k, =1, 8,; =70, then ¢;=17/18 and

where

(70 —71.14)*

U0y, 0=70) = 61.41 | | 61.41
F1,0=70 /[ T o0

] = 0.79,

so that 8, , lies inside the (1 —e) region if
—8.510g0.79 = 2.0 < ¥2(1, ).

Note that since m, =k, =1, exact results could be obtained and the above is for
illustration only.

5. Inferences about the diagonal elements of X :
From (8.5.22)

ffﬁ""a;sxv_zs i=1,..,m
Thus, for i=1, o, ’“‘61-41)(;2

6. H.P.D. regions for the “regression matrix” T: Let

.......... i;_,_‘.,,“‘ T:Efllzu,

my

A22-1 =4y - A21A1_11A12

T=A1_11A12s
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a1

Table 8.6.1 Continued
To decide if a parameter point Ty lies inside or outside the (1—a) H.P.D.
region, from (8.5.23), use the approximation

—_ d){(V + ml) log ur) ~ X?le

where
e Amy—3
d)’ =1+ __{___3——
2(v 4 my)
and

UT) = Agzal [Agzs + T =T A -~
<o that T, lies inside the region if
—¢'(y+my) log U{(Tg) < 2 (rmy iz, 0).
Thus, for my =my =1, &' (v m)=9.5, Ay =21 =12.63 and T=0.63.
{f Ty=0, then
U(T,=0) = 12.63/[12.63 + (0.63)* x 61.41]=0.34
and the point To=0 will lie inside the (1 —¢r) region if
—95log0.34 =103 < $2(1, 0.
Note that (1) U(0)=1A{IAl |As,1) ", and (D since m, =m,=1, exact results
are, of course, available. ‘
7. inferences about the correlation coefficient 0;° Use the approximating distri-
bution in (8.5.50),

a- 293002
p(ply)ocW —1<p=<l,
where
Thus, p=p; and "'—""i_i:aijf(anajj)ln, Lj=1,...,m
(1_'02)35 —1l<p=<l

p(piy) < r—f——-—(l I

The normalizing constant of the distribution can be obtained by numerical

integration when desired.

APPENDIX AS8.1
The Jacobians of Some Matrix Transformations

We here pive the Jacobians of some matrix sransformations useful in

multivariate problems. In what follows the signs of the Jacobians are jgnored.

a) Let X be a kxm matrix of km distinct random variables, It A and B
be, respectively, a Lk and mxXm matrices of fixed elements. If

7, ~AX, Z,=XB 7, = AXB,
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then the Jacobians are, respectively,

o7,
ax

= |AI"B[Y. (AS8.L

8z,
X

= |Af", ‘

— B |2
’ X

b) Let X be a mxm symmetric matrix consisting of im{m + 1) distin
elements and let C be a m xm matrix of fixed elements. If

Y=CXC(C,
then

oY
]ﬁ = IC]m+1- (AS.I.:

For proofs, see Deemer and Olkin (1951), based on results given b
P. L. Hsu, also Anderson (1958, p. 162).

¢) Let X be a mxm nonsingular matrix of random variables and Y = X~
Then, '

= —-Y—Y, (A8.13
z

where z is any function of the elements of X.
Proof: Since XY =1, it follows that
X aY

¢

Hence

Y X
—=— —1Y.
0z Y(@z)

The Jacobians of two special cases of X are of particular interest.

'a) If X has m? distinct random variables, then from (A8.1.1)

‘%{ e (A%.]

b) If X is symmetric, and consists of im(m + 1) distinct random variabl
then from (A8.1.2)

aY m+1
la_x =
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ENDIX A82

nt of the Informati

3 Determina
btain the determinant of the infor
Normal distribution N A E) T

(2my ™™ B expl— TS aE VIl DA Byl
— oo < y < 00,

on Matrix of !
mation matrix of &~
he density 1s

i for the

now ©
; 1mensional

p(y I, EB) =
(A8.2.)

Y e L

{ai;} and Tt = (o), =1
Taking

“3ym)l= P’ = (}‘J.i, "'&#m)rs 2 =
+ 1) distinct elements.

¥ (and 7Y consists of im{m
function, we have

erey = (1 -
assume that

oarithms of the density
T AV (y—ny. (A82D)

p=- %bg (2m) + 1108 ="

log
g log p with respect to G =1, s =
ologp 11 21z

—553’=3~‘§I\'f—a§j—-(ya—m)(yj-#j).

gt = @i where o
ght-hand side of (A8.2.3)Is simply 301

;fferentiatin
(A8.2.3)

it follows that the first

i i the cofactor of ¢,
rivatives

Since aE~ M/
term on the 11 Thus, the second de
‘are
atlogp 1 8oy i = 1M iz
J (k o ‘ ; 1) } (A8.2.4)
2 - -

T T 3 8at
gt do 2 do
ant of the information matrix is propo_rtional to

allogPHoc\ oz \ (A8.2.5)

Consequently, the determin
-1 == _ E —_—TT
lf(E )II \ \60_13 86“ az-l

From (A8.1.5), we have that
(A8.2.6)

az‘ — 2m+1
oz~ ==

APPENDIX AS8.3
The Normalizing Constant of the tkm[ﬁ, XXy LA, ) Disiribution

Tet @ be a kxm matrix of variab We now show that
J‘ I, + ATH(O - 8y X'X(0 - )
—o < B<®

= c(m. k, WixX

les.

\—%(v+k+m*1)d9

er/l \A—l\-kﬂ.,
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where v > 0, 8 is a kxm matrix, XX and A" are, respectively, a kxk and a
m x m positive definite symmetric matrix,

L0+ m = 1]
L3+ &+ m— 1)]
and T',(b) is the generalized Gamma function defined in (8.2.22).

Since X’X and A are assumed definite, there exist a kxk and a mxm
nonsingular matrices G and H such that

c(m, k,v) = [THI™

XX= G'G and A™'=HH, (A8.3.2)
Let T be a &k xm matrix such that
T = G(6 — O (A8.3.3)

Using the identity (8.4.11) we can write
L.+ A™'0 —0)'X'X(0 -0 =L, + H'(® — ) 'G'G® ~ O)H| = |, + T'T

= |L, + TT'L (A8.3.49)
From (AB.1.1) the Jacobian of the transformation (A8.3.3) is
aT
| = |G = XX AT, (A83.5)
Thus, the integral on the left-hand side of (A8.3.1} is
X' X[ HAT TR g, (A8.3.6)
where :
O = f T, + TT/|"0+ktm=10 g, (A8.37)
—w<T<m

Let T = [t,,...t,] =[T,t,] where t; is a kx 1 vector, i=1,...,m. Then,
Iy -+ T} = [k + TyTY A+ 6,0,

(A8.3.8)
= I + T, T4 [ + to (I + T, T ¢,,1.

It follows that

Qe = f T, + T, T | 730 **4m=D g 4T, (A8.3.9)
—w Ty <

where
. =J [1+t,@ + T, T, 30w 1+
—o < Ly, e

From (A2.1.12) in Appendix A2.1,

Iy +m ~ 1)]
v+ k+m—1)]

4n = [TDH]* L + T, Ty V2
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AB4 .
Thus, F3o -+ m— DI

0n= WP FryG 4 T r = 17 2"
where

On-1= _[ L + TiTsl_%(Hm—ZH) dr,.
—eo <Ty <

The result in (A8.3.1) follows by repeating the process n = 1 times.

APPENDIX A8.4

The Kronecker Product of Two Matrices

We summarize in this appendix some properties of the Kronecker product of

1wo matrices.
Definition: If A isa mxm matrix and B is a nxn matrix, then the Kronecker
product of A and B in that order is the (mn) % (mn) matrix
allB e almB
A@B=]:
amlB ammB
Properties:

) (ABY =A'@F
11} If A and B are symmetric, then A®B is symmetric.
iii) When A and B are non-singular, then
(A®@B) ' = ATl@B™!

VMurA®B=trAtrB
v) |[A® Bl = |Al" |B[™
Vi) If C is a mx m matrix and D is a

(A+C@B=A®B+C®B

1% n matrix, then

and
(A@B)(C®D)= (AC) @ (BD).




