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Abstract: Every year tens of thousands of refugees are resettled to dozens of host countries. While
there is growing evidence that the initial placement of refugee families profoundly affects their
lifetime outcomes, there have been few attempts to optimize resettlement decisions. We integrate
machine learning and integer optimization into an innovative software tool, Annie Moore, that
assists a US resettlement agency with matching refugees to their initial placements. Our software
suggests optimal placements while giving substantial autonomy to the resettlement staff to fine-
tune recommended matches, thereby streamlining their resettlement operations. Initial backtesting
indicates that Annie can improve short-run employment outcomes by 22%–38%. We conclude by
discussing several directions for future work.
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1. Introduction

In 2018 there were 20.4 million refugees—the highest number ever recorded—under the mandate

of the United Nations High Commission for Refugees (UNHCR) (UNHCR 2019b). Of those, the

UNHCR considers 1.44 million refugees to be in need of resettlement—permanent relocation from

their asylum country to a third country (UNHCR 2019a). The number of cases submitted by the

UNHCR for resettlement in 2018, however, was just over 81,000, with fewer than 56,000 refugees

departing for resettlement (UNHCR 2019a). Refugees in need of resettlement are particularly

vulnerable: a quarter are survivors of torture and a third face persecution in their country of

origin (UNHCR 2019a, Annex 3). Currently, most refugees departing for resettlement are Syrians

who seek asylum in Turkey, Lebanon, and Jordan, but there are also thousands of resettled refugees

from the Democratic Republic of the Congo, Iraq, Somalia, and Myanmar.

Dozens of countries, including the United States (US), Canada, the United Kingdom (UK),

Australia, France, Norway, and Sweden, resettle refugees (for refugee allocation mechanisms across

countries, see Moraga and Rapoport (2014) and Jones and Teytelboym (2017b)). There is am-

ple empirical evidence that the initial placement of refugees within the host countries determines

their lifetime employment, education, and welfare outcomes (Åslund and Rooth 2007, Åslund and

Fredriksson 2009, Åslund et al. 2010, 2011, Damm 2014, Ferwerda and Gest 2017). Therefore, en-

suring the best initial match between the refugee family and the community is crucial for social,

economic, and humanitarian perspectives. Even so, resettlement capacity offered by communities

is rarely being used to maximize either the welfare of refugees or of the host population.

This paper integrates machine learning and integer optimization into a software package that we

call Annie Moore (Matching and Outcome Optimization for Refugee Empowerment), named after

Annie Moore, the first immigrant on record at Ellis Island, New York in 1892. Annie is, to the best

of our knowledge, the first software designed for resettlement agency pre-arrival staff to recommend

data-driven, optimized matches between refugees and local affiliates while respecting refugee needs

and affiliate capacities. Annie was developed in close collaboration with representatives from all

levels of the US resettlement agency HIAS (founded as the Hebrew Immigrant Aid Society), where

the first version was deployed in May 2018. It was presented in August 2018 to the US Department

of State and all staff at HIAS, with new features being regularly added.

We combined techniques from operations research, machine learning, econometrics, and inter-

active visualization to create Annie. The software is distinctive in that it blends rigorous analysis
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with careful attention to the detail of the day-to-day resettlement process for resettlement staff.

As such, Annie integrates the generation of data-informed recommendations with substantial end-

user autonomy by the end-user. This flexibility empowers staff to focus more of their resources

on refugee families that might be more challenging to match (for example due to complex medical

conditions). Backtesting indicates that Annie would have been able to increase employment out-

comes among refugees resettled by HIAS in 2017 by between 22% and 38%, depending on the con-

straints activated by the agency staff. Annie also alleviates inefficiencies in the manual matching

process, and holds much promise for future impact in refugee resettlement—both domestically and

abroad—as well as for new applications, such as asylum matching.

The paper proceeds as follows. Section 2 describes the specific context of refugee resettlement in

the US, and places our work in the greater context of humanitarian operations problems. Section 3

sets up the integer optimization model that guides the matching recommendations. In Section 4 we

explain how we estimate counterfactual employment probabilities from data. Section 5 discusses

the backtesting we conducted to validate our approach. Section 6 describes the implementation and

features of our software, while Section 7 concludes and points to many directions for further work.

Appendices include detailed data descriptions, estimation procedures and diagnostics, and a variety

of experiments using different objective functions and testing the sensitivity of our modeling.

2. Background Context and Previous Work

Annie helps HIAS to resettle refugees in the US, so we briefly describe the US resettlement program.

2.1 Refugee Resettlement in the United States

The US has historically been, by a wide margin, the world’s largest destination of resettled refugees,

with 22,491 arriving in 2018, down from 53,716 in 2017, and 84,994 in 2016 (in this manuscript, all

references to years of refugee data are presented in terms of the fiscal year, that is from October

1 through September 30) (U.S. Department of State 2020). In terms of refugees resettled per

capita (calendar year), the US trails a number of countries including Sweden, Norway, Canada,

New Zealand, Iceland, and Australia. The US Refugee Admissions Program (USRAP) resettles US

refugees and is managed by the Bureau of Population, Refugees and Migration (PRM) of the US

Department of State, with the assistance of the US Citizenship and Immigration Services (USCIS)

of the US Department of Homeland Security, and the Office of Refugee Resettlement (ORR) of the
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US Department of Health and Human Services (HHS). Alongside the UNHCR and the International

Organization for Migration, these agencies coordinate identifying refugees, conducting security

checks, and arranging for travel funding from the refugees’ destinations.

The actual matching of refugees to their initial placements is delegated to nine resettlement

agencies, previously known as voluntary agencies. In addition to HIAS, these agencies include

Church World Service (CWS), Ethiopian Community Development Council (ECDC), Episcopal

Migration Ministries (EMM), International Rescue Committee (IRC), Lutheran Immigration and

Refugee Service (LIRS), US Conference of Catholic Bishops (USCCB), US Committee for Refugees

and Immigrants (USCRI), and World Relief (WR). HIAS handles around 5% of all refugees in

the US, resettling 2,038 refugees in 2017 and 3,844 refugees in 2016. The resettlement agencies

are responsible for developing their own networks of affiliates in local communities that welcome

refugees and help them integrate into a new life in the US. Affiliates offer resettlement capacity

voluntarily, although affiliate capacity is monitored and approved by the US government. There are

currently around 360 affiliates in approximately 200 local communities across the US, and HIAS

operates 20 of them at the time of this writing.

Resettlement agencies match refugees to affiliates during the resettlement process largely by

hand. Resettlement staff from each agency meet weekly to select, in round-robin fashion, from a

pool of “cleared for arrival” refugee cases. Each case consists of an immediate family of one or more

members (we use case and family interchangeably). A significant portion (roughly one third) of

these are free cases, that is, they have no relatives in the US. Such cases are especially vulnerable, as

the absence of family support exacerbates the challenges of lacking language skills and independent

financial means. Thus, the responsible agency must carefully leverage its affiliate network to inform

their case selection. After each agency selects their set of weekly cases, staff manually assess—

on a one-by-one basis—the feasibility and fit of cases to locations in their network. In addition

to integration factors such as language and nationality feasibility, the fit between the affiliate and

the family depends on various community capacities, such as available placement capacity, housing

availability, slots for English language instruction, and employment prospects.

This manual process creates multiple inefficiencies that motivated the development of Annie.

First, it is organizationally demanding for HIAS staff to keep in mind various support attributes

such as languages, nationalities, family composition, and medical needs for all affiliates. This

information overload at times results in not meeting the needs of refugees and in stretching the

provision capacity of the affiliates. Second, while established indicators exist to assess the degree to
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which a refugee has successfully integrated into their new surroundings, estimating and optimizing

these welfare outcomes manually is prohibitive. Established indicators include employment and

economic sufficiency, developed social networks, and civic engagement activities like voting (see,

e.g., Ager and Strang 2008, Lichtenstein et al. 2016). Hence, refugees are often not placed to the best

available affiliate even according to well-defined outcome metrics. Third, inefficiencies arise from

processing refugees case-by-case, in sequential fashion, rather than matching all arriving refugees

to affiliates simultaneously. We show that Annie resolves or mitigates each of these inefficiencies.

2.2 Related Literature

Our work builds on a number of contemporary studies in humanitarian matching systems. One

recent example is a tool to match children in state custody to families for adoption used by the

Pennsylvania Adoption Exchange (Slaugh et al. 2016). Bansak et al. (2018) first proposed to use

machine learning and linear programming for refugee resettlement based on employment data from

the US and Switzerland. Using a similar dataset to theirs, we expand on their estimation techniques,

while extending their optimization methods. Our integer optimization model extends the multiple

multidimensional knapsack model for refugee matching (see also Delacrétaz et al. (2019), Trapp

et al. (2018), and Nguyen et al. (2019)). However, as we focus on outcome optimization, our work

differs substantially from papers that suggested preference-based matching systems for refugee

resettlement (Moraga and Rapoport 2014, Jones and Teytelboym 2017a, Andersson and Ehlers

2017, Aziz et al. 2018, Roth 2018, Delacrétaz et al. 2019, Nguyen et al. 2019).

Placement optimization in refugee resettlement shares many common features with other prob-

lems in humanitarian operations (Pedraza-Martinez and Van Wassenhove 2016, Besiou et al. 2018).

Typical challenges in this sector include severe lack of resources—financial, labor, time, and data—

as well as complex decision environments. The refugee resettlement decision environment includes

refugees as well as local communities, non-profit organizations, donors, and federal, state and lo-

cal governments. Hence, similar to other humanitarian operations problems, placement optimiza-

tion also diverges from the traditional stance of optimizing a single financial metric, and may con-

sider alternative objectives such as those based on equity (see, e.g., Besiou and Van Wassenhove

2020, Cao et al. 2016, Çelik et al. 2012). Refugee resettlement is perhaps most differentiated by its

particular exposure and sensitivity to shifting political climates and attitudes, both domestic and

abroad. This volatility generates significant uncertainty with respect to the operating and plan-

ning environments of resettlement agencies.
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3. Integer Optimization for Refugee Resettlement

We formulate the operational challenge of matching refugee families to local communities, or affil-

iates, presently solved manually by resettlement agencies, using mathematical optimization.

3.1 Formal Problem Setup

We use i, j, k, and ` as indices for family (case), member, service and affiliate, respectively.

For any placement period, let F =
{
F 1, F 2, . . . , F i, . . . , F |F|

}
be the set of refugee families

to be placed. Each family F i is a set of refugees consisting of one or more members, F i ={
f i,1, f i,2, . . . , f i,j , . . . f i,|F i|

}
. For clarity of exposition, we refer to member j of family F i as f ij .

Denote as N i
w the set of working-age refugees in family F i, where N i

w ⊆ F i. Denote the set of

all refugees as R =
⋃

i∈{1,2,...,|F|}

⋃
j∈{1,2,...,|F i|}

{
f ij
}

. Moreover, let the set of affiliates (localities) to

which families are resettled be L =
{
L1, L2, . . . , L`, . . . L|L|

}
.

A family F i requires various capacitated services from a set S =
{
S1, S2, . . . , Sk, . . . S|S|

}
. The

needs of family F i are summarized by vector si, where sik denotes the required units of service k.

The set S may include services such as raw weekly refugee processing capacity at affiliates, slots

in foreign language instruction (such as ESL), school seats for children in the family, and housing

availability. For every service Sk of local affiliate L`, at most s̄`k units may be filled by families

placed in affiliate L`. There may also be a requirement of at least
¯
s`k units of the service Sk to be

filled by the families placed in affiliate L` (we assume
¯
s`k ≤ s̄`k); in practice, nonzero lower bounds

exist for certain services, such as ensuring regular, positive refugee placement in affiliates.

For every family F i and local affiliate L`, let binary variable zi` equal 1 if family F i is matched

to affiliate L`, and 0 otherwise. Let ai` ∈ {0, 1} indicate whether family F i can be feasibly placed

in affiliate L`. The value of ai` is a priori determined by evaluating the compatibility of family F i

with various binary community support services at affiliate L`, such as language and nationality,

as well as large family and single parent support conditions (should these be present in the family).

We denote these community support services as binary services.

We attribute to each refugee-affiliate match a single number called the quality score. The

function q : R × L → R≥0 defines quality score qij` for any f ij ∈ R and any L` ∈ L. We are

interested in the scenario where q represents the employment outcome of refugee f ij in affiliate L`

and can be estimated from data using observable affiliate and family characteristics. In Section 7 we

discuss the sole use of employment data to generate these estimates (indeed, no other data related
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to integration outcomes is systematically available). We aggregate the refugee level quality scores

qij` of each family F i and affiliate ` into a case-level value (or weight) vi`. The primary means of

aggregation that we consider is the sum of individual scores over each family vi` =
∑|F i|

j=1 q
ij
` (SUM).

Discussions on alternative interpretations of case-level quality scores can be found in Appendix D.

3.2 Placement Optimization

We now present integer optimization problem RefMatch, represented by (1a)–(1e):

maximize

|F|∑
i=1

|L|∑
`=1

vi`z
i
` (1a)

subject to

|L|∑
`=1

zi` ≤ 1, ∀ i, (1b)

¯
s`k ≤

|F|∑
i=1

sikz
i
` ≤ s̄`k, ∀ `, ∀ k, (1c)

zi` ≤ ai`, ∀ i, ∀ `, (1d)

zi` ∈ {0, 1}, ∀ i, ∀ `. (1e)

Objective function (1a) maximizes the total value over all matched families to affiliates. Constraint

set (1b) ensures that families are placed in at most one affiliate. Constraint set (1c) ensures that

lower and upper bounds are respected for all capacitated services and affiliates. Constraint set (1d)

ensures that family-affiliate matches can only occur when the affiliate can support the needs of the

family, that is, the necessary binary services exist. Variable domains are specified in (1e). Finally,

let z? be the optimized match outcome, that is, the optimal solution representing the assignment

of families to affiliates that optimizes objective function (1a).

While integer optimization problem RefMatch bears similarity to a variety of knapsack-like

problem classes, we are unaware of another application of this particular form:

• When |S| = 1,
¯
s`k = 0 ∀ `, and sik = 1 ∀ i, the optimization problem can be solved via linear

programming (Bansak et al. 2018).

• When |S| = 1 and
¯
s`k = 0 ∀ `, it is the NP-hard multiple 0–1 knapsack problem which features

multiple knapsacks and items that consume integer resources for the knapsack in which they

are placed (Martello and Toth 1980).

7



• When |L| = 1 and
¯
s`k = 0 ∀ k, it is the NP-hard multidimensional 0–1 knapsack problem which

features knapsack items that consume integer resources along multiple dimensions (Fréville

2004).

• When
¯
s`k = 0 ∀ `, k, it is the NP-hard multiple multidimensional knapsack problem and

combines features of both, that is, multiple knapsacks along multiple dimensions (Song et al.

2008). If in addition,
∑|L|

`=1 z
i
` = 1 ∀ i, it is the NP-hard multiple-choice multidimensional

knapsack problem (Hifi et al. 2004); in our setting, there is no requirement (in theory) for

every family to be placed in an affiliate.

Integer optimization problem RefMatch generalizes the multiple multidimensional knapsack

problem of Song et al. (2008), as it allows for positive lower bounds
¯
s`k for any services and affiliates.

The existence of such lower bounds differentiates it from the multiple multidimensional knapsack

problem, as it may lead to infeasibility. The formulation is valid over any operational period. Due

to its generality, our model can be customized to specific refugee resettlement settings. Section 5

shows the results of testing the sensitivity of our model under three different scenarios. First, we

test the effect of relaxing upper bounds (1c) for the number of total resettled refugees. Second, we

test the effects of lower bounds (1c) expressed as distributional requirements (such as minimum

average case sizes across affiliates) and as lower bounds on the total number of resettled refugees.

We also consider the effects of relaxing the binary service constraints (1d). We discuss alternative

models and objective functions and conduct sensitivity checks in Appendices D, E, and F.

4. Estimation of Counterfactual Employment Probabilities

We use the estimated probability of employment of refugee f ij in each affiliate L` as a measure of

quality score, or:

qij` = E [yij | Xij , `] ,

where yij is (binary) outcome data indicating employment status of refugee f ij within 90 days of

arrival in the United States, and Xij is a set of observable refugee characteristics and quarterly

macroeconomic variables. We use national employment ratio and unemployment rate as macroe-

conomic variables, which are common to all refugees arriving in a given quarter. Further details on

the available data appear in Appendix A.
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Using expected potential outcomes rather than stated preferences for our counterfactual analysis

creates two challenges. First, yij is unobserved for incoming refugees. Second, even for past

refugees we only observe yij |xij`? , that is, employment status of refugee f ij in `?, the affiliate to

which they were actually assigned in the data. We do not observe the corresponding potential

outcome distribution yij | xij` ∀ ` 6= `?. Moreover, the functional form connecting yij , Xij , and `

is unknown. Specific synergies may exist between refugee characteristics and affiliates that affect

refugee integration. Following Bansak et al. (2018), we thus exploit machine learning approaches

to compute q̂ij` , the estimated probability of employment of refugee f ij in affiliate L`. Using data

on refugees arriving between 2010 and 2016, we estimate both semi- and non-parametric functions

f̂` : R → R≥0 such that q̂ij` = f̂`(Xij). We then test the performance of these models on refugees

arriving in 2017.

In the estimation process we only use free cases, which are those refugees (individuals or families)

that the resettlement agency can assign to any of the affiliates. We therefore exclude refugees

with pre-existing family ties, which are almost always pre-assigned to the affiliate where their pre-

existing connection resides. This choice restricts the samples we use to train and test the models

to 2,486 and 498 refugees , respectively.

While it may be tempting to increase the number of available observations for model estimation

by including all refugees resettled by HIAS, the additional refugees will likely differ from the free

cases to which Annie will be applied, and including them in the estimation might introduce bias and

likely overestimate existing synergies for free cases. For example, because of pre-existing networks,

family reunifications enjoy particular advantages (Edin et al. 2003, Patacchini and Zenou 2012)

that would bias our estimates. By restricting our sample to free cases, we align the sample used

for estimation with the sample on which Annie will be applied.

We estimate effects on employment for the seven (out of twenty) affiliates receiving at least 200

refugees up to 2016, and aggregate the remaining affiliates into a single partition `0. In a parametric

approach, it is possible to estimate a fully saturated logit model for employment where flexible

transformations of refugee characteristics Xij are interacted with `− 1 affiliate dummies. Such an

approach would, however, estimate an overly complex model, with poorly identified coefficients,

and therefore yield poor predictive properties.

We thus use two alternative machine learning models. First, we introduce a Least Absolute

Shrinkage and Selection Operator (LASSO) constraint to the interacted logit model to reduce

model complexity. The single LASSO hyper-parameter disciplines both main and interaction terms
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with the same weight, biasing them towards zero (and thus biasing predictions towards the mean).

Second, we follow Bansak et al. (2018) and estimate a Gradient Boosted Regression Tree (GBRT),

an iterative ensemble of classification trees. We set the hyper-parameters of these models via 5-

fold cross-validation on our training sample (we internally calibrate constraint strength for LASSO,

and the learning rate and pre-pruning level for GBRT). We choose hyper-parameter values for each

model by maximizing the area under a Receiver Operating Characteristic (ROC) curve.

We benchmark both models against the performance of a näıve constant estimator (see, e.g.,

Bansak et al. 2018), as well as two second-best standards. The first benchmark model is a standard

logit model that includes all variables in Xij , but does not attempt to estimate affiliate-specific

effects. The second benchmark model is a logit model with no LASSO constraint, where Xij

interacts with all ` affiliates. Table 1 shows that both LASSO and GBRT outperform the second-

best benchmarks by over 20% in terms of misclassification error when applied to 2017 refugees.

With respect to the constant-logit benchmark used by Bansak et al. (2018) we obtain a 37% and

34% improvement using LASSO and GBRT respectively, which is comparable to the 28% they

obtain in their US data. The area under the ROC is highest for LASSO, but overall both models

exhibit similar predictive power.

Insert Table 1 Here

Insert Figure 1 Here

LASSO, however, produces slightly more stable and well-calibrated predictions, particularly for

observations with high predicted employment probabilities. We obtain these results by bootstrap-

ping the distribution of predictions for each data point in the test set given assignment of refugee

f ij to `?. In each of a thousand iterations, we re-sample with replacement the training dataset,

re-estimate each model and compute a new predicted probability of employment. The right pan-

els of Figure 1 show the 5th to 95th percentiles of the prediction distributions for each data point

in the test sample. The left panels show the distribution of bootstrapped interquartile ranges for

each data point.

LASSO tends to produce more narrow predictions for refugees with high baseline probability

of employment, which are highly relevant for the quantification of employment gains. LASSO is

also better calibrated than GBRT—with 159 employed refugees in our test set, whereas the sum of
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predicted employment probabilities given assignment of refugee f ij to `? is 157.93 for LASSO, it is

only 142.96 for GBRT (calibration plots appear in Appendix B). Thus, while using either model

has very similar consequences for optimal refugee assignment, in the remainder of the paper we

quantify employment gains given the quality scores predicted by LASSO (and in Appendix C, we

replicate employment gains under the predictions of GBRT).

5. Counterfactual Optimization Outcomes

We now describe the counterfactual impact of using our integer optimization problem RefMatch.

We create test scenarios that result from varying three constraint sets. To quantify the impact of

optimally reassigning refugees to affiliates, we use the employment probabilities for each affiliate

estimated in Section 4. We compute the counterfactual gain in employment relative to our pre-

diction from the LASSO model for 2017. Since our prediction is very close to the actual employ-

ment values—the LASSO model predicts 157.93 employed refugees versus 159 who were actually

employed in the testing data—our optimization is a meaningful counterfactual exercise.

Our objective function (1a) maximizes the total expected number of employed refugees. Our

binary service constraints (1d) are: language, nationality, single-parent, and large-family support.

We set the capacity constraints (1c) for each affiliate relative to the observed capacity in 2017.

Moreover, we specify minimum average case sizes to enforce distributional constraints via the lower

bounds in (1c). We vary the following three factors to create our test scenarios.

Affiliate capacity. Affiliate capacity is federally approved, but can be exceeded by up to 10%

without further pre-approval. Moreover, a common aim of the agencies is to fill at least 90% of

the approved capacity at each affiliate. In 2017, somewhat unusually, approved capacity was much

higher than the observed number of arriving refugees. We therefore use the observed placements

at each affiliate to set sensible counterfactual capacities. We test three values: {observed capacity

with no lower bound; 110% of the observed capacity with no lower bound; and 110% of observed

capacity with a lower bound of 90% of observed capacity}.

Binary service constraints. In the observed 2017 placements, binary service constraints were

violated 38 times (26 language constraints, 1 nationality constraint, 8 single-parent constraints, and

3 large-family constraints), representing approximately 12% of resettled cases. However, binary

service constraints, especially language constraints, can be important to ensure successful refugee

11



integration. We therefore test two values: {binary service constraints are activated (ON), binary

service constraints are not activated (OFF) }.

Minimum average case size in each affiliate. A placement that maximizes the total expected

number of employed refugees could potentially pack many single-refugee cases or large-family cases

into the same affiliate. This could be seen as unfair by the agencies, reduce support for resettlement,

and stymie refugee integration. Therefore, to capture such equity considerations, we experiment

with the implementation of a minimum average case size in each affiliate. The average case size

in our 2017 test dataset across all affiliates is 2.55. We therefore test five values: {no minimum

average case size, observed minimum average case size at each affiliate, 2, 2.5, 3}.

In total, we have 3 × 2 × 5 = 30 counterfactual test scenarios. Akin to Bansak et al. (2018),

we conduct our experiments using capacity levels for the period of one year. All experiments were

run on a laptop computer with an Intel(R) Core(TM)i5-8365U 1.60GHz processor and 16GB RAM

running 64-bit Microsoft Windows 10 Enterprise. The Gurobi Optimizer v9.0.0 (Gurobi 2020) and

Python 3.7.4 was used for all counterfactual optimization testing in Section 5, and the optimality

gap tolerance parameter MIPGap was set to 0. We summarize our results in Table 2.

Insert Table 2 Here

Insert Figure 2 Here

First, note that without minimum average case size constraints, the gain in employment from opti-

mization is over 30% in all scenarios. As Figures 2(a) and 2(b) show, the employment probability

distribution after optimization (almost) first-order stochastically dominates the pre-optimized esti-

mated distribution. Therefore, the estimated probabilities of employment increase for all refugees

after optimization. Moreover, Figure 3 shows that employment rates rise in nearly two-thirds of

the affiliates after optimization. Table 2 further indicates that, if we do not impose binary ser-

vice constraints, they are violated for around a quarter of the refugees—a rate much higher than

in the test data (approximately 12%). However, the presence of binary service constraints and of

increasing capacity has a fairly small impact on employment gains. Indeed, because in some cases

our model leaves some refugees unplaced (meaning that they would need to be placed manually by

agency staff), our employment gain estimates should be even higher.
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Insert Figure 3 Here

However, in these scenarios the optimization suggests rather unequal placement. Figure 4

compares the distribution of average case sizes in each affiliate to the distribution under our second

counterfactual optimization which produces the largest variance in average case sizes. Figure 5(a)

shows that without distributional constraints, many single-person cases are placed in just three

affiliates that offer a high probability of obtaining employment to many types of refugees. Other

affiliates get much larger cases on average. This allocation may not be acceptable to a resettlement

agency. Thus, we evaluated the placement optimization by enforcing minimum average case size

constraints. At low values (up to 2.5) and at observed 2017 average case size values, the optimization

is still able to realize employment gains of well over 20% (see also Figure 5(b)). This is extremely

encouraging because it shows that our optimization performs well even under tight distributional

constraints. However, at high average case sizes, the constraints bind harder and either reduce the

performance of the model substantially (by not placing many refugees), or simply cause infeasibility.

It should be noted that these are precisely the instances for which many cases and refugees are

unplaced, thus causing reduced optimal objective function values and corresponding gains.

Insert Figure 4 Here

We report the runtime as the time (in seconds) to both build the optimization model and solve it

to global optimality using Gurobi (Gurobi 2020). It can be immediately observed that for the entire

FY17 dataset (839 refugees / 329 cases / 498 working-age refugees / 20 affiliates), the combined

build and solve times in Gurobi finish in well under one minute (actually, under 30 seconds), with

a median combined runtime of less than four seconds.

Insert Figure 5 Here

Overall, our optimization produces a substantial gain in employment, ensures that refugee

binary services are better satisfied, and important distributional considerations can be respected.

Moreover, the resettlement agency may impose any subset of the binary service constraints, or

introduce constraints on the number of refugees with certain regional origins (although regional

constraints were formerly officially considered in US placements, they are no longer specified).
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It is worth emphasizing that the space of objective functions and constraints that the resettle-

ment agency can impose within our model is much richer than what we have presented here. For

example, the agency could select a different employment objective function, such as maximizing

the sum of maximum employment probabilities within every matched case. In Appendix D we pro-

vide further experiments that optimize over several reasonable (including equity-based) measures

based on derived from the individual refugee-level quality scores qij` ; we find that all perform fairly

well with respect to gains in employment. Further details on these experiments can be found in

Appendix D.

We also recognize that there is inherent uncertainty in the modeling environment with respect

to estimating the quality score q̂ij` for each f ij in affiliate L`. In Appendix E, we investigate how

the objective function changes under our optimized placement outcome z? when we resample q̂ij`

from the estimated distribution. In particular, we observe that the refugee allocation determined

by our approach produces stable employment gains, and that these employment gains are not

artificially inflated by uncertainty in the estimation of employment probabilities. The average

expected employment given uncertainty in our predicted probabilities is within 2% of that obtained

in our original backtesting for almost all of the considered scenarios.

Finally, we note that these outcomes were obtained by optimizing placement of all refugees in

FY17 without splitting into multiple periods, that is, over the entire year (n = 1), on par with ex-

periments reported in Bansak et al. (2018). While desirable, experiments with n > 1 placement pe-

riods in a given year introduced some additional nuances that required equally detailed implemen-

tation strategies. Even so, we present such experiments in Appendix F. The key takeaways include

that increasing the number of periods to n ∈ {4, 12, 52} (that is, quarterly, monthly, and weekly)

for placing refugees, and thereby allowing for the innate arrival stochasticity present in FY17 data,

reveal encouraging results. While gains are indeed largest for n = 1, our methods perform very

well for n = 4 and n = 12, and respectably even for n = 52. We refer the reader to Appendix F for

additional details.

6. Operationalizing Placement Software at US Resettlement

Agency

Integer optimization and machine learning hold great promise of solving the operational challenge of

improving placement outcomes in refugee resettlement. While these methods offer significant value,
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expertise is needed for successful implementation. In the private sector, this expertise is readily

available. On the other hand, operations research in humanitarian environments, including refugee

resettlement, typically feature significant challenges, such as lack of human and financial resources,

lack of exposure to technology, and data scarcity. Humanitarian and non-profit organizations must

be responsive to crisis events, immediate needs, and changes in political and donor climates. These

realities can make it fairly prohibitive for resettlement agencies to be proactive in pursuing, and

implementing, advanced technological innovations.

Successful integration of operations research methods in a humanitarian environment requires

cultivating and sustaining partnerships with stakeholders that include both management, as well

as practitioners that will use the technology. The authors of this paper worked closely with many

dedicated members of staff at HIAS for many months to develop Annie into an innovative, inter-

active optimization environment for refugee resettlement. Our close working relationship built a

level of rapport that allowed us to understand and remedy real operational challenges faced by re-

settlement staff. We believe these are key elements for creating a successful software solution for

improving humanitarian operations.

6.1 Technologies Involved in the Creation of Annie

Annie represents the confluence of several open-source technologies, critical for this resource-

constrained environment. In particular, the integer optimization problem RefMatch is modeled

entirely within the PuLP Python modeling environment (Mitchell et al. 2020) and solved using the

CBC (COIN-OR 2020) solver. The machine learning models described in Section 4 are based on

the Python scikit-learn package. We chose to develop the interactive environment of Annie as a

web application. The back-end is implemented in Python 3 using the Flask framework, with Jinja2

as the templating engine (Ronacher 2020). The front-end is a combination of HTML, CSS, and

JavaScript. We made this choice of technology because it is modern, stable, accessible, and easy

to build upon. The only installation that is needed is (the free) Python 3 and some freely available

packages and libraries. Moreover, it is a light technology: The front-end operates entirely within

a browser rather than as a downloadable, executable file. By combining core open-source integer

optimization and machine learning technology within a flexible, modern interface, we were able to

achieve a completely free, lightweight software solution for HIAS.

Insert Figure 6 Here
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6.2 Interactive Optimization

Representing overall match quality in objective function (1a) is by no means trivial. Employment

probabilities for refugees will always be estimated with error margins (see Appendix E for experi-

ments and related discussions around uncertainty in employment probability estimation, and cor-

responding sensitivity of match outcomes). Even if the employment probabilities could be perfectly

estimated, any algorithmic solution should be carefully evaluated before actual implementation, as

the overall livelihoods of refugees are at stake. Therefore there is a need for an interactive optimiza-

tion environment, where resettlement staff can interact with various facets of the problem context.

Without compromising on the insights afforded by the theory and data, Annie was designed to ac-

commodate the real needs of the practitioner. The purpose of developing Annie as an interactive

optimization tool is to translate advanced analytical methods into effective decision tools (see, e.g.,

Meignan et al. 2015). The user of Annie is intimately involved in the matching process and can

fine-tune the optimization results. We believe that Annie strikes the right balance. Our close in-

teractions with HIAS allow us to iteratively develop and test multiple versions of the software via

remote updating. Moreover, our predictive models can be refined as more data on 90-day employ-

ment outcomes arrive over time.

6.3 Features of Annie

Operationally, Annie optimizes for the expected number of employed refugees throughout the net-

work of affiliates at HIAS. Alternative objective functions, such as those discussed in Appendix D,

can be easily implemented.

Insert Figure 7 Here

The Load Data view is depicted in the rear left of Figure 6, where the optimization environment

can be configured for the matching process, including the activation of binary support services.

The matching results can be seen in the View Results view depicted in the front right of Figure 6,

where the total expected number of employed refugees is prominently displayed near the top.

Insert Figure 8 Here

The output of the matching engine results in cases being optimally assigned to affiliates, depicted

with user-friendly tiles. Figure 7 displays both case and affiliate tiles. Case tiles show language,
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nationality, and other attributes unique to the family, whereas affiliate tiles show support features

offered by affiliates, along with the ability to quickly adjust capacity. Clicking on the tiles expands

their size to reveal detailed information at a quick glance. Case tiles can be moved to other affiliates

as desired. Figure 8 illustrates the ability to dynamically view changes in the match scores as

refugee case tiles are moved from one affiliate to the next. Moreover, the total expected number of

employed refugees is also dynamically updated at the top of the View Results view. Hence, at a

glance, the effect of moving cases to alternative affiliates is easily and clearly visualized.

Insert Figure 9 Here

Perhaps the most important feature of Annie is its ability for interactive optimization. Resettle-

ment staff may interact with intermediate solver output in a manner that progresses toward even-

tual convergence of a finalized assignment of refugee cases to affiliates. This is facilitated through a

lock icon on the case tile that resettlement staff can click, which locks desired case-affiliate matches.

Figure 9 depicts this capability.

When locked, that case is temporarily “assigned” to that affiliate, and is literally unable to

be moved elsewhere until unlocked. After locking certain case-affiliate matches (this essentially

assigns zi` = 1 for family F i and location L`), any remaining unlocked cases may be rematched,

with affiliate capacities adjusted down from any locked cases, via a color-coded gray reoptimize

button that indicates the non-optimized state (see Figure 9). Thus, any “final” matches can be

locked, and all remaining cases can be rematched using the remaining available capacity.

Insert Figure 10 Here

We also enable cross-referencing. Cross-referencing occurs when refugee cases are linked to

other cases that a) have previously been resettled to a specific local affiliate, or b) are among the

pool of cases that are presently to be resettled to the same affiliate (note that these are cases with

US ties, as previously described in Section 4). In either case, Annie visually depicts cases that are

associated with a) an affiliate or b) other cases via unique yellow borders upon hovering over a large,

boxed X icon, for associated case tiles. For any two cases i, i′ that are cross-referenced, Annie sets

zi` = zi
′
` for all local communities L`; and if i, i′ are cross-referenced to a particular local community

`′, Annie sets zi`′ = zi
′
`′ only for local community L`′ . Figure 10 depicts an example where two cases

are cross-referenced not only to one another (e.g., adult siblings), but also to an affiliate.
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Insert Figure 11 Here

If a case tile is moved into an affiliate but there is a lack of compatibility between this case and

the new affiliate in terms of binary community support services, the background color of the case

becomes red as an indication, and an exclamation mark icon appears in the bottom left of the case

tile (see Figure 11). Hovering over this exclamation mark icon displays a new list that shows the

unsupported needs for that particular case-community match.

Throughout the development process, we have firmly maintained that Annie is a tool that aug-

ments the perspective of resettlement staff at HIAS. That is, matches generated by Annie are sug-

gestive in nature. HIAS has complete discretion to match and rematch cases according to their ex-

pert judgment. In this way, we allow for the best of both worlds: leveraging the strengths of mod-

ern computational technology—machine learning, integer optimization, and interactive visualiza-

tion—while arming human decision-makers with all available information to facilitate the decision-

making process.

7. Conclusion

Refugee resettlement is a complex humanitarian challenge that requires insights from a number

of disciplines, including operations research, statistics, economics, political science, and sociology.

Much work is urgently needed to improve the livelihoods of resettled refugees and the communities

into which they integrate. In this paper, we show how combining tools from machine learning,

integer optimization, and interactive visualization can improve refugee outcomes within the US.

We introduce the innovative software tool, Annie Moore, that assists the US resettlement agency

HIAS with matching refugees to their initial placements. Our software suggests optimal placements

while giving substantial autonomy for the resettlement staff to fine-tune recommended matches.

Because Annie matches on refugee employment outcomes, we expect refugees to more quickly

integrate economically into each affiliate, as well as make more productive economic and societal

contributions such as creating new jobs and generating tax revenues, benefitting local communities.

Annie has analytically enhanced the placement decision-making process at HIAS, having largely

eliminated the inefficiencies of the former manual placement process. The operational process of

placing refugees has improved considerably, enabling resettlement staff to place greater emphasis

on cases that need greater attention, such as those with severe medical conditions.
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Technological solutions, including machine learning and integer optimization, have enormous po-

tential to help tackle humanitarian operations problems, such as placement optimization in refugee

resettlement. While the humanitarian sector offers many opportunities for impact, any solution

must properly account for the severe lack of resources—including financial, labor, time, and data.

These factors must be carefully considered in designing solutions, to afford the best opportunity

of effecting change. Particular solution design features that we advocate include being lightweight,

open-source, and designed with the end-user in mind by incorporating important aspects of their

regular operations.

There are several directions for further work. First, as is often the case in the humanitarian con-

text, data has been difficult to obtain due to a severely resource-constrained environment. Indeed,

data collection appears to be under-prioritized across the resettlement agencies. We used the only

existing outcome data from previous US placements, namely a refugee-specific binary indicator for

employment measured 90 days after arrival. While we went through great efforts to make the most

out of the available data, the relative lack thereof necessarily hampered our prediction ability. Fur-

ther work could apply our techniques to data on other outcomes, such as longer-term employment,

physical and mental health, education, and household earnings. Unfortunately, at the time of writ-

ing, no data on these objectives for resettled refugees arriving in the US appears to be systemati-

cally available. However, we anticipate to be able to better process other constraints like free-form

text fields to discern whether refugees require medical accommodations such as wheelchair access.

Second, while annual approved arrival capacities exist for affiliates, refugees arrive stochastically

over the course of a year. Therefore, it is important to schedule the arrival of refugees given the

partial information about future arrival over the course of the whole year. Andersson et al. (2018)

tackle this problem in the Swedish context.

Third, it is interesting to consider which features of local areas offer the best potential to host

refugees. For example, we could analyze to what extent local unemployment or community demo-

graphics affect refugee outcomes. This could help refugee agencies target areas for new affiliates.

Fourth, the social objective considered in this paper is to maximize employment. Even if it

can be argued that “there is no single, generally accepted definition, theory or model of immigrant

and refugee integration” (Castles et al. 2002, p.114), it is also clear that there are key aspects

of integration beyond employment. Ager and Strang (2008), for example, argue that there are

ten established integration indicators, including health, housing, and education. This additional

information—such as housing information, social networks, or new job opportunities—likely exists
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to at least some degree at the local community level, and could prove very useful in supplementing

the decision process. Moreover, regular and sustained engagement of local communities and asso-

ciated stakeholders can also produce valuable insights that augment decision outcomes (see, e.g.,

Johnson et al. 2018). So, while 90-day binary employment outcomes are at present the only data

available to estimate future integration outcomes, additional integration factors may be possible to

integrate in the future, and we thus leave the analysis of such models for future research.

Fifth, recent theoretical work on refugee matching (Aziz et al. 2018, Delacrétaz et al. 2019, Jones

and Teytelboym 2017a, Olberg and Seuken 2019) suggests that preferences of refugees should be

explicitly taken into account, because refugee families themselves know best where they would like

to settle and where they are most likely to thrive. Refugee preferences could ideally be collected

during the refugee pre-arrival orientation using a questionnaire that elicits how refugees might

trade off features of areas (such as climate, urban versus rural, crime, amenities, and quality

of schools). Unfortunately, refugee preferences are not elicited either by UNHCR or by the US

Department of State. In any case, the consideration of refugee preferences should be handled

with care. Including preferences while optimizing for a particular observable outcome can in itself

be problematic (Biró and Gudmundsson 2020), and it is also unclear how preferences should be

elicited based on the reported information. Allowing refugees to report complete preferences may

also be overly challenging. Hence, although it is clear that the approach we adopt has room for

improvement, we believe it to be a reasonable approach in line with the growing evidence that the

initial placement of refugee families greatly affects lifetime employment which, in turn, profoundly

alters lifetime welfare (Åslund and Rooth 2007, Damm 2014, Ferwerda and Gest 2017).

A final challenge with eliciting refugees’ preferences—and a main theme in the book by Roth

(2016)—is that agents often find it “unsafe” to report true information. Rather than strategically

misrepresenting information to “game” the system, agents may be reluctant to report complete

information simply because a lack of knowledge on how the information will used, how it will be

spread, or trust that the reported information will be used in their best interest. This is surprisingly

often the case even in applications where the outcome has a large impact on future welfare and life

quality, such as in school choice (Abdulkadiroğlu and Sönmez 2003) and kidney exchange (Roth

et al. 2004). It is in general difficult to design systems where all agents find it “safe” to report

true and complete preferences (see, e.g., Alcalde and Barberà 1994, Barberà and Jackson 1995,

Roth 1982, Sönmez 1999). Recent work on refugee matching with preferences also indicates that it

can be difficult to design matching systems in which refugees have no incentive to misreport their
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preferences (e.g. Andersson and Ehlers 2017, Delacrétaz et al. 2019).

Annie has primarily been developed to assist HIAS in their initial refugee placements, and there

is significant potential to expand to additional resettlement contexts, both within the US, as well as

beyond—the most direct being with other US resettlement agencies which face analogous placement

decision challenges. Annie could be used to help improve placement in the (Syrian) Vulnerable

Persons Resettlement Scheme operated by the British government between 2015 and 2020. A

recent report by the UK Independent Chief Inspector of Borders and Immigration recommended

that the Home Office “improve the geographical matching process” of refugees in this resettlement

scheme (Bolt 2018, p. 12). In Sweden, asylum seekers who enter are temporarily placed at Migration

Board accommodation facilities in anticipation of either a deportation order or a residence permit.

If a residence permit is granted, the legal responsibility for asylum seekers (such as finding housing

and schooling) is transferred from the Migration Board facility to one of the 290 municipalities in

Sweden (43,745 such transfers were made in 2018). This system is, in a sense, a version of refugee

resettlement in which asylum seekers are resettled within Sweden. While the current Swedish system

is not based on sophisticated matching techniques, a recent report by the Swedish Government (SOU

2018, p. 280) recommends that carefully designed optimization and matching systems should

be adopted (indeed, Annie could be adapted for the Swedish context; the authors of this paper

have already presented the first version of Annie at the Swedish Ministry of Finance for potential

adoption). Finally Annie may, for example, be adapted for distributing asylum seekers who are

currently at reception centers in host countries (such as Germany, or the southern border of the US).
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Appendices

A Data Appendix

We obtain anonymized data on all individual refugees relocated by HIAS between 2010 and 2017.

We focus on free cases, that is, refugees that can be freely allocated across affiliates as they have no

pre-existing family ties. As stated in the main text, we use refugees arriving until 2016 to train our

models, and those arriving in 2017 as a test sample. Note that the quota-relevant year starts on

October 1. Therefore, 2017 refugees are those arriving from October 1 2016 to September 30 2017.

After the split, we observe 2,486 refugees in the training sample and 498 refugees in the test sample.

What follows is a list of data features and definitions.

• Arrival Date: The years span 2010 through 2017, inclusive.

• Case Number: This is an anonymized, unique identifier for each family; in total, there are

1,896 families and 5,326 refugees.

• Relationship Code: The relationship to the principal applicant for each individual in a

family; these include Principal Applicant (PA), Husband (HU), Wife (WI), Daughter (DA),

Son (SO), Stepdaughter (SD), Stepson (SN).

• Gender Code: Genders include Male and Female.

• Nationality: There are 33 nationalities represented.

• Language: There are 133 languages represented, with proficiency levels for reading, speak-

ing, and writing.

• Education Level: Levels include kindergarten, primary, intermediate, secondary, technical

school, pre-university, university, professional, and graduate school.

• Medical Condition: There are at least 31 types of medical conditions.
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• Treatment Urgency: There are several levels indicating the degree of treatment urgency,

including Ongoing, Immediate, Urgent.

• Urgency Code: This is how fast the case must be assured by the resettlement agency.

Values include both normal and expedited (such as medical, protection, etc.).

• Affiliate: This is the local community to which family is resettled.

• Employed: This is a binary value indicating whether the refugee was employed 90 days after

arrival.

• Age Upon Arrival

Summary statistics for the above features include:

• Average case size: The average size differs among nationalities, affiliates, and year of

arrival. Across all cases, the average size is approximately 2.809.

• Average age: The average age is approximately 23 years; 42.81% of refugees are under the

age of 18, 55.97% are between 18 to 64, and 1.22% are beyond 64 years of age.

• Total number of nationalities: The refugees originate from 33 different nationalities;

96% of which derive from 13 countries.

• Total number of languages: There are 133 different languages among all refugees.

• Fraction with tertiary education: 6.04% of all refugees (10.57% of adult refugees) have

a tertiary education.

To estimate counterfactual employment probabilities (Section 4 of the paper), we recode and trans-

form some of the observed features. From Relationship Code we create an indicator of being

a single parents, and a counter (censored at 5) of the number of children in the household. From

Language we obtain an indicator for English speaking and a counter of the number of languages

spoken. From Medical Condition we create an indicator for whether the refugee suffers from

any medical condition, and a counter (censored at 5) of the total number of medical conditions re-

ported. We recode Education Level into four groups (less than secondary schooling, secondary

schooling, advanced—but not college—degrees, and university and college level degrees). Finally,

we use the primary Nationality to group refugees in their area of origin (Africa, Middle East,
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Asia, or Other; note that we classify Oman, Lebanon, Iraq, Yemen, Iran, Bahrain, Syria, Qatar,

Jordan, Kuwait, Israel, U.A.E. and Saudi Arabia as Middle East rather than Asia to better differ-

entiate refugees from the Arabian peninsula and those from East Asia). For estimating LASSO, we

also manually construct interactions between these variables and add a second order polynomial in

age. The full list of features used in the LASSO and GBRT models appears in Tables 3 and 4.

To correctly account for changes in the average level of employment over time, we add to the

data quarter-specific macro-economic variables, that is, average US employment level (adjusted for

seasonality) and average unemployment rate (not adjusted by seasonality). Note that we add non-

adjusted unemployment rates to capture seasonality in employment probabilities; whether we adjust

employment ratios or unemployment rates for seasonality does not matter for our predictions. In

the interacted logit and LASSO models these macro variables do not interact with affiliates, as

their purpose is simply to adjust the varying average employment level of refugees over time.
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B Machine Learning Models: Procedure and Diagnostics

As stated in the main text, we restrict our data to refugees arriving between 2010 and 2016 for

training our models, and test them on data for refugees arriving in 2017. For LASSO, we build a

series of feature interactions, and then again fully interact this data matrix for each of the seven

affiliates receiving at least 200 refugees until 2016. We standardize each feature such that it ranges

from 0 to 1 in the training data (we use maxima and minima of the training set to standardize the

test set). We use 5-fold cross-validation targeting the in-sample area under the Receiver Operating

Characteristic (ROC) curve to tune model hyper-parameters.

Figure 12 shows Receiver Operating Characteristic (ROC) curves for LASSO, GBRT, and all

benchmark models in the test data. ROC curves plot the achievable fraction of true positives as a

function of the admissible false positives. The higher the fraction of true positives achievable for

a given fraction of false positive is, the better is the performance of the model. Thus, curves to

the northwest of the graph dominate the others. The graph shows that both LASSO and GBRT

produce higher AUC-ROC than the benchmark models.

Insert Figure 12 Here

For both the GBRT and LASSO models, Figure 13 also shows calibration plots, depicting the

average number of employed refugees in the test set for given predicted probabilities of employment.

It is apparent that the predicted probabilities of employment after 90 days can be high for refugees

and range from zero to approximately 0.8. This range of predicted probabilities for the US is in

stark contrast with that observable in Europe, where predicted probabilities of employment rarely

exceed 0.5 (Bansak et al. 2018). LASSO is well calibrated up to very high predicted probabilities,

for which in the test data we observe a lower rate of employment than predicted. This behavior is

primarily due to our out-of-sample extrapolation using macro-economic data for the affiliates for

which we have little data. Without the inclusion of macro data as model features both LASSO and

GBRT models are better calibrated, but tend to under-predict average employment levels.

Insert Figure 13 Here

The remainder of this Appendix reports normalized feature (Gini) importance scores for GBRT

and model coefficients for LASSO. Note that these scores and coefficients, while broadly indicative
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of the amount of explanatory power contained in each feature, should not be taken as direct

measures of feature relevance, especially as most features in our data are strongly correlated with

one another. This point is particularly relevant for LASSO coefficients. While we standardize

all model features such that they range from zero to one in the training sample, their standard

deviation varies considerably.

Moreover, LASSO constraints penalize coefficients different than zero. Given two strongly

correlated features contributing similarly to the outcome predictions, a strong enough LASSO

constraint will force one of the two associated coefficients to be equal to zero, and rely solely on

the other feature for prediction. While this selection often improves the predictive performance of

the model by reducing model complexity, it does not imply that the feature whose coefficient was

pushed to zero has no predictive power at all. This selection simply implies that the information

carried in that feature could be expressed as a function of other features without a strong loss in

the in-sample explanatory power.

Insert Table 3 Here

Insert Table 4 Here
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C Counterfactual Optimization Outcomes for GBRT

The outcomes from optimizing the SUM objective: vi` =
∑|F i|

j=1 q
ij
` using estimates q̂ from the GBRT

model are detailed in Table 5, which is organized in the same manner as Table 2. The baseline

employment levels when considering the actual (manual) placements of cases to affiliates in the

data is 142.96 when using the GBRT model.

Insert Table 5 Here
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D Exploration of Alternative Objective Functions

Optimizing the placement of cases to affiliates allows for multiple interpretations for translating

the individual refugee-level quality scores qij` into a case-level value (or weight), vi` for each family

F i and affiliate `. While we prioritize vi` =
∑|F i|

j=1 q
ij
` (SUM) for the case-level quality score vi`

appearing in (1a), as mentioned in Section 5 other reasonable interpretations exist. These include

vi` = maxj q
ij
` (MAX); vi` = minj q

ij
` (MIN); and vi` = 1/|N i

w|
∑

j∈N i
w
qij` (MEAN), which because

they position vi` ∈ [0, 1], are more appropriately interpreted as information about the case. We now

conduct a formal study of these alternatives and explore the associated tradeoffs.

Defining vi` = maxj q
ij
` (MAX) assigns to vi` the highest employment likelihood of the members

in family F i for affiliate L`. Correspondingly, maximizing
∑|F|

i=1

∑|L|
`=1 v

i
`z

i
` is interpreted as empha-

sizing placements of families into communities according to their most employable member. Alter-

natively, taking vi` = minj q
ij
` (MIN) assigns to vi` the lowest employment likelihood of the mem-

bers in family F i for affiliate `. Then, maximizing
∑|F|

i=1

∑|L|
`=1 v

i
`z

i
` produces outcomes whereby

each member of every placed family can do at least as well as the lowest employment likelihood

of the family. We note that both MAX and MIN have equity connotations: while the former at-

tempts to maximize the number of families in which at least one refugee is likely to gain employ-

ment, the latter seeks to maximize the number of families in which all of the adults have some

chance of getting employment. Finally, defining vi` = 1/|N i
w|
∑

j∈N i
w
qij` (MEAN) assigns to vi` the

average employment likelihood of the (working-age) members in family F i for affiliate `. Maximiz-

ing
∑|F|

i=1

∑|L|
`=1 v

i
`z

i
` in this context can be interpreted as placing families into communities so as to

ensure that the sum of mean likelihoods is as high as possible.

Insert Table 6 Here

Insert Table 7 Here

Insert Table 8 Here

The outcomes from optimizing using the MAX, MIN, and MEAN objectives are presented in

Tables 6, 7, and 8, which are organized in the same manner as Table 2. Using the actual FY17 data,

the count of cases for which at least one refugee was employed within 90 days was 151, whereas the
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baseline employment levels when evaluating the actual (manual) placements of cases to affiliates

using these alternative objectives are 137.61 for MAX, 97.57 for MIN, and 117.49 for MEAN.

Overall, they exhibit similar performance to the SUM objective that is detailed in Table 2. With

the exception of one test scenario for the MIN objective (at 62.74 seconds), all combined build and

solve runtimes complete in well under one minute. We observe that the same test scenarios seem

to perform comparatively well across all of the objectives. That said, for the MEAN objective

some test scenarios approach and even exceed 40% gains. Unsurprisingly, the gains for the MIN

objective are comparatively lower, and for a few of the scenarios with very restrictive constraints

(e.g. minimum average case size of 3), negative gains are apparent in some of the objectives.

Importantly, these low gain scenarios are precisely the instances for which many cases and refugees

remained unplaced, thus excluding their contribution in the objective.

Insert Table 9 Here

Table 9 reports how the optimal solutions obtained by optimizing using the SUM, MAX, MIN,

or MEAN objectives perform with respect to being evaluated in the alternative objectives, for each

of the 30 test scenarios. In particular, we organize Table 9 so that for each of these objectives,

one can readily compare the objective function values for the various optimal solutions. We also

report the percent loss in objective function value from using an optimal solution to an alternative

objective function.

As can be observed in Table 9, in general the optimal solutions to alternative objective functions

perform quite well across all experiments—typically experiencing a loss of only a few percent when

comparing SUM, MAX, and MEAN. The exception is the MIN objective, where more variation

is observed—either in the high single digits or low double digits, up to a max of 16.9% under

the test scenario with observed capacity, minimum average case size of three, de-activated binary

service constraints, and evaluating the optimal solution to the MAX objective in the MIN objective.

With respect to the MIN objective, unsurprisingly the evaluation in the MIN objective of optimal

solutions obtained from optimizing the MEAN objective seem to perform best, with all percent

losses in the single digits.
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E Counterfactual Optimization Experiments with Uncertainty around Predic-

tions

In this section we allow for uncertainty in the modeling environment as it pertains to estimating the

quality score for each refugee and affiliate. We evaluate the performance of our optimized placement

outcome z? with respect to alternative objective functions sampled from the same distribution of

estimated probabilities. In other words, we hold the optimal refugee allocation fixed, and evaluate

the change in employment gains as we perturb and allow for errors in the estimated employment

probabilities.

The bootstrapping approach described in Section 4 generated 1,000 sets of models that predict

alternative employment probabilities for each refugee-affiliate pair. This exercise generates 1,000

objective functions, all of which have slightly different quality scores than that of the objective

function obtained from the original estimated q̂ij` quality scores. To assess the performance of our

optimization with respect to the uncertainty in predicted employment likelihoods, we then evaluate

the optimized placement outcome z? using each of the 1,000 bootstrapped instances for each of the

thirty test scenarios.

We obtain a distribution of employment gains, which we would expect to produce lower em-

ployment gains on average than if our employment probabilities were predicted exactly, as in this

latter case the optimal allocation is obtained using optimization. Nonetheless, this exercise shows

that our approach produces remarkably stable employment gains even under uncertainty.

Insert Figure 14 Here

Figure 14 depicts box plots for 10 of the 30 scenarios for which there were feasible solutions.

These box plots show the distribution of employment gains given uncertainty in our predicted em-

ployment probabilities, holding the optimal allocation fixed. The figure shows that the performance

of z? clusters tightly around the median values, and is well within the first and third quartiles. The

performance of z? exceeds the median since it was obtained using optimization. However, the av-

erage employment gains under uncertainty are very near (within 2% for most scenarios) to those

obtained assuming that the predicted probabilities were at their means. We can therefore conclude

that optimal allocations computed by our approach produce stable employment gains.
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F Counterfactual Optimization Experiments with Multiple Placement Periods

To evaluate the performance of our approach with respect to inherent uncertainty in refugee arrivals,

we consider counterfactual optimization of the SUM objective with n > 1 placement periods in

FY17 data. Specifically, we consider n = {4, 12, 52} placement periods over the 30 test scenarios,

and compare with n = 1, that is, the results detailed in Table 2.

Given the limited size of the data, such experiments introduced some nuanced challenges that

required creative handling. In particular, larger values of n may cause insufficient per-period ca-

pacities at certain affiliates to accommodate certain families having many members. This situation

is further compounded by single-person families that have relatively high employment likelihoods,

that are simply able to fill (pack) the available capacity at affiliates that offer superior employment

prospects. Note that this was rarely the case under manual placements: affiliate capacity was reg-

ularly exceeded for any given period, so long as later periods use respectively less capacity.

Therefore, in the following experiments we incorporated some guidelines to accommodate the

above challenges. All refugee families that are unplaced in a given period are included in the next

placement period. For each period, the total period capacity over all affliates is set to the number

of arriving refugees for that placement period, in addition to any unplaced refugees from earlier

periods. The per-period capacity for each affiliate is then obtained by simply scaling the total

period capacity by the affiliate’s annual observed proportion (and rounding to the nearest integer).

For any placement period, if any affiliate has already reached its annual capacity, its capacity for

the present and future placement periods is set to zero, and the proportional share of per-period

capacity is evenly distributed among other affiliates that have not yet used their annual capacity.

Insert Table 10 Here

Table 10 details the results of our experiments and is organized in the same manner as Table 2,

with each row reporting one of the 30 test scenarios. There are four sets of columns, each of which

reports the total expected employed refugees, percent gains over the predicted baseline of 157.93,

and number of unplaced cases and refugees. The first set of columns repeats these values first

reported in Table 2, whereas the last three report these values for n = 4, n = 12, and n = 52,

respectively.

As can be seen in Table 10, the percent gains with respect to predicted employed refugees

(157.93) remain high for n = 4 and n = 12. In particular, for the routine operational scenario that
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the second row embodies of using observed capacity, no minimum average case size constraints,

and activated binary service constraints, we see that the gains drop only slightly from 31.86% for

n = 1, to 30.52% for n = 4, and then again to a respectable 27.67% for n = 12. The earlier

described effect of insufficient per-period capacities begins to be noticed for n = 52, which is why

a percent gain of only 16.10% is achieved, and also why there are many more unplaced cases and

refugees. In general, greater numbers of unplaced refugees and cases naturally lead to lower gains,

which may even be negative in extreme scenarios. With greater numbers of refugees to be placed,

we naturally would expect these gains to be higher.
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Training data Test data

Misc. error Misc. error Recall (1) Precision (1) AUC-ROC

Constant 0.259 0.319 0.000 0.000 0.500
Logit 0.240 0.263 0.491 0.609 0.790
Logit (by affiliate) 0.177 0.281 0.547 0.561 0.769
LASSO 0.159 0.201 0.453 0.637 0.799
Gradient boosted tree 0.129 0.209 0.396 0.624 0.791

Note: Misclassification error is the proportion of observations incorrectly classified. Recall measures the proportion

of correctly predicted employed refugees among refugees actually employed (true positives over true positives plus

false negatives). Precision measures the proportion of correctly predicted employment cases among all predicted

employment cases (true positives over true positives plus false positives). All of these measures refer to a binary

classification with a threshold set at the standard value of 0.5. Because our measure of quality scores uses predicted

probabilities of employment, this specific threshold does not affect optimal allocations. AUC-ROC measures the

area under the Receiver Operating Characteristic Curve for each model (ROC curves appear in Appendix B).

Table 1: Model performance.
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Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (157.93)

St Dev in Avg Case Size
Across Affiliates

# of Unplaced
Cases / Refugees

#of Affiliates
Violating 90% Capacity

# and % of Cases/Refugees
Violating Constraints

Build and Run
Time (s)

Observed None Off 213.02 34.89% 1.29 0/0 0 70/209 (21.28%/24.91%) 0.48
Observed None On 208.25 31.86% 1.35 3/10 1 0/0 (0.00%/0.00%) 0.36
Observed 2 Off 206.28 30.61% 1.04 1/1 0 81/220 (24.62%/26.22%) 0.92
Observed 2 On 202.03 27.92% 1.17 2/9 1 0/0 (0.00%/0.00%) 0.93
Observed 2.5 Off 196.76 24.59% 0.33 1/1 0 97/265 (29.48%/31.59%) 5.43
Observed 2.5 On 192.95 22.17% 0.14 3/7 0 0/0 (0.00%/0.00%) 3.87
Observed 3 Off 172.83 9.43% 0.65 78/86 6 71/217 (21.58%/25.86%) 7.78
Observed 3 On 169.64 7.42% 0.65 79/89 6 0/0 (0.00%/0.00%) 4.97
Observed Observed Off 199.34 26.22% 0.84 2/2 0 81/232 (24.62%/27.65%) 5.40
Observed Observed On 195.65 23.89% 1.09 4/8 1 0/0 (0.00%/0.00%) 2.80
≤ 110% None Off 218.06 38.07% 1.40 0/0 1 71/199 (21.58%/23.72%) 0.78
≤ 110% None On 212.96 34.84% 1.42 2/9 2 0/0 (0.00%/0.00%) 0.55
≤ 110% 2 Off 212.39 34.48% 1.16 0/0 2 75/226 (22.80%/26.94%) 1.09
≤ 110% 2 On 207.72 31.53% 0.95 2/9 3 0/0 (0.00%/0.00%) 0.85
≤ 110% 2.5 Off 202.75 28.38% 0.38 0/0 1 87/222 (26.44%/26.46%) 5.19
≤ 110% 2.5 On 198.84 25.90% 0.66 3/7 3 0/0 (0.00%/0.00%) 3.23
≤ 110% 3 Off 177.51 12.40% 0.00 78/86 5 65/191 (19.76%/22.77%) 5.66
≤ 110% 3 On 174.27 10.34% 0.90 79/89 6 0/0 (0.00%/0.00%) 3.58
≤ 110% Observed Off 204.27 29.34% 0.83 0/0 3 81/207 (24.62%/24.67%) 6.35
≤ 110% Observed On 200.49 26.95% 1.07 3/7 4 0/0 (0.00%/0.00%) 8.03

[90%, 110%] None Off 218.06 38.07% 1.36 0/0 0 68/189 (20.67%/22.53%) 1.23
[90%, 110%] None On 212.91 34.82% 1.14 1/2 0 0/0 (0.00%/0.00%) 1.01
[90%, 110%] 2 Off 212.39 34.48% 0.95 0/0 0 72/194 (21.88%/23.12%) 1.40
[90%, 110%] 2 On 207.58 31.44% 1.05 2/6 0 0/0 (0.00%/0.00%) 1.67
[90%, 110%] 2.5 Off 202.75 28.38% 0.32 0/0 0 79/198 (24.01%/23.60%) 6.57
[90%, 110%] 2.5 On 198.81 25.89% 0.61 2/3 0 0/0 (0.00%/0.00%) 5.95
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 204.26 29.34% 0.86 5/5 0 74/200 (22.49%/23.84%) 24.71
[90%, 110%] Observed On 200.36 26.86% 1.10 6/7 0 0/0 (0.00%/0.00%) 12.60

Table 2: Results of counterfactual employment optimization under various scenarios using the SUM objective and LASSO model.
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Gini Importance

age 0.243
male 0.057
education level 0.065
case size 0.042
number of children 0.039
continent 0.069
affiliate 0.176
number of conditions 0.054
number of languages 0.024
English speaking 0.020
urgency code 0.010
primary applicant 0.022
unemployment rate (unadjusted) 0.131
employment ratio 0.049

Note: The table shows the normalized importance measure for each feature in the Gradient Boosted Regression

Tree model. The coefficients sum to one. These measures are calculated as the average across all trees of mean

decrease impurity scores for each node in which a given feature serves to split the data.

Table 3: Feature importance in the Gradient Boosted Regression Tree (GBRT) model.
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Baseline
Affiliate

C
Affiliate

F
Affiliate

I
Affiliate

K
Affiliate

N
Affiliate

Q
Affiliate

R

age 0.277 0.923
male 1.289 -0.055 0.288
medical condition -0.647 -0.505 0.037 -0.207
case size 0.922 -0.056
number of children -1.966 -0.243 -0.295
single parent 0.438 0.030 0.083 -0.832
number of conditions -0.417 -0.797 -0.416
number of languages 0.153 0.007
English speaking 0.225 0.183 0.108 0.114 0.208 0.130 -0.032
urgency code -0.334 0.715 -0.276
age2 -2.050 -0.103
primary applicant 0.136 -0.147 -0.021 0.637 0.040 0.642
education level 1-less than secondary 0.134 0.125
education level 2-secondary 0.051 -0.318 -0.016 0.435
education level 3-advanced 0.719
education level 4-university 1.003 0.680
continent Asia -0.140
continent Middle east -0.639
continent other -0.400 1.236 0.278 1.424 0.613
1.education level#1.male 0.004 0.390 0.568
2.education level#1.male 0.120 0.203 0.022
3.education level#1.male -0.195
4.education level#1.male 0.017 -0.001
c.number of children#1.male 1.134 -0.218 -0.122
c.age#1.male
1.primary applicant#1.male -0.076 -0.367
1.single parent#1.male -0.655 1.105
c.number of conditions#1.male 0.096 -0.220 0.213
unemployment rate (unadjusted)
employment ratio 0.939
constant -0.974 -0.289 1.805 0.713 0.208 0.373

Note: The table shows the estimated nonzero coefficients in the LASSO model. The first column shows the baseline
coefficients of the model, while the other columns show the estimated interactions with each of the seven affiliates
for which we observe at least 200 refugees before 2017.

Table 4: Estimated coefficients in the LASSO model.

40



Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (143)

St Dev in Avg Case Size
Across Affiliates

# of Unplaced
Cases / Refugees

#of Affiliates
Violating 90% Capacity

# and % of Cases/Refugees
Violating Constraints

Build and Run
Time (s)

Observed None Off 175.62 22.85% 1.47 0/0 0 59/198 (17.93%/23.60%) 0.45
Observed None On 174.08 21.77% 1.60 2/3 0 0/0 (0.00%/0.00%) 0.41
Observed 2 Off 167.59 17.23% 0.77 1/1 0 75/195 (22.80%/23.24%) 0.94
Observed 2 On 166.21 16.26% 0.83 1/2 0 0/0 (0.00%/0.00%) 1.03
Observed 2.5 Off 159.32 11.45% 0.33 2/2 0 81/185 (24.62%/22.05%) 6.97
Observed 2.5 On 157.93 10.47% 0.14 3/4 0 0/0 (0.00%/0.00%) 7.03
Observed 3 Off 142.18 -0.55% 0.00 80/92 6 53/137 (16.11%/16.33%) 10.57
Observed 3 On 141.23 -1.21% 1.07 81/95 9 0/0 (0.00%/0.00%) 9.84
Observed Observed Off 161.68 13.09% 0.85 2/2 0 70/163 (21.28%/19.43%) 7.34
Observed Observed On 160.33 12.15% 0.84 2/3 0 0/0 (0.00%/0.00%) 6.81
≤ 110% None Off 178.71 25.01% 1.76 0/0 3 57/179 (17.33%/21.33%) 0.85
≤ 110% None On 177.12 23.90% 1.34 1/2 1 0/0 (0.00%/0.00%) 0.73
≤ 110% 2 Off 171.96 20.28% 1.61 0/0 4 57/155 (17.33%/18.47%) 1.41
≤ 110% 2 On 170.57 19.31% 1.04 1/2 1 0/0 (0.00%/0.00%) 1.25
≤ 110% 2.5 Off 163.33 14.25% 0.12 0/0 1 84/197 (25.53%/23.48%) 6.25
≤ 110% 2.5 On 161.93 13.27% 0.36 2/3 2 0/0 (0.00%/0.00%) 6.32
≤ 110% 3 Off 145.20 1.57% 0.65 80/92 5 66/177 (20.06%/21.10%) 8.14
≤ 110% 3 On 144.19 0.86% 1.07 81/95 6 0/0 (0.00%/0.00%) 6.53
≤ 110% Observed Off 164.79 15.27% 0.99 0/0 3 80/191 (24.32%/22.77%) 11.41
≤ 110% Observed On 163.44 14.33% 1.03 2/3 4 0/0 (0.00%/0.00%) 7.01

[90%, 110%] None Off 178.71 25.01% 1.27 0/0 0 53/154 (16.11%/18.36%) 0.81
[90%, 110%] None On 177.12 23.90% 1.22 1/2 0 0/0 (0.00%/0.00%) 1.14
[90%, 110%] 2 Off 171.96 20.28% 1.12 0/0 0 62/183 (18.84%/21.81%) 1.71
[90%, 110%] 2 On 170.57 19.31% 0.96 1/2 0 0/0 (0.00%/0.00%) 1.19
[90%, 110%] 2.5 Off 163.33 14.25% 0.32 0/0 0 72/189 (21.88%/22.53%) 4.09
[90%, 110%] 2.5 On 161.93 13.27% 0.33 2/3 0 0/0 (0.00%/0.00%) 8.83
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 164.79 15.27% 0.83 4/4 0 70/181 (21.28%/21.57%) 19.75
[90%, 110%] Observed On 163.44 14.32% 0.86 5/6 0 0/0 (0.00%/0.00%) 13.59

Table 5: Results of counterfactual employment optimization under various scenarios using the SUM objective and GBRT model.
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Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (137.61)

St Dev in Avg Case Size
Across Affiliates

# of Unplaced
Cases / Refugees

#of Affiliates
Violating 90% Capacity

# and % of Cases/Refugees
Violating Constraints

Build and Run
Time (s)

Observed None Off 184.68 34.21% 1.33 0/0 0 55/160 (16.72%/19.07%) 0.48
Observed None On 180.98 31.52% 1.28 3/10 0 0/0 (0.00%/0.00%) 0.36
Observed 2 Off 173.98 26.43% 0.81 1/1 0 76/205 (23.10%/24.43%) 0.92
Observed 2 On 171.22 24.43% 1.16 3/10 1 0/0 (0.00%/0.00%) 0.93
Observed 2.5 Off 163.18 18.58% 0.36 4/4 0 90/222 (27.36%/26.46%) 5.43
Observed 2.5 On 160.98 16.98% 0.20 3/7 0 0/0 (0.00%/0.00%) 3.87
Observed 3 Off 138.74 0.82% 0.65 79/89 8 54/153 (16.41%/18.24%) 7.78
Observed 3 On 137.27 -0.25% 0.00 80/92 6 0/0 (0.00%/0.00%) 4.97
Observed Observed Off 166.41 20.93% 0.84 2/2 0 83/222 (25.23%/26.46%) 5.40
Observed Observed On 164.30 19.39% 1.08 5/6 1 0/0 (0.00%/0.00%) 2.80
≤ 110% None Off 188.36 36.88% 1.29 0/0 2 68/214 (20.67%/25.51%) 0.78
≤ 110% None On 184.55 34.11% 1.31 2/9 3 0/0 (0.00%/0.00%) 0.55
≤ 110% 2 Off 179.45 30.41% 1.11 0/0 3 70/188 (21.28%/22.41%) 1.09
≤ 110% 2 On 176.23 28.06% 1.11 2/9 4 0/0 (0.00%/0.00%) 0.85
≤ 110% 2.5 Off 168.34 22.33% 0.34 0/0 3 85/199 (25.84%/23.72%) 5.19
≤ 110% 2.5 On 166.02 20.64% 0.59 2/3 6 0/0 (0.00%/0.00%) 3.23
≤ 110% 3 Off 142.64 3.66% 0.00 79/89 5 66/205 (20.06%/24.43%) 5.66
≤ 110% 3 On 140.99 2.45% 0.65 80/92 5 0/0 (0.00%/0.00%) 3.58
≤ 110% Observed Off 170.47 23.88% 1.05 0/0 4 83/210 (25.23%/25.03%) 6.35
≤ 110% Observed On 168.28 22.28% 1.09 2/3 4 0/0 (0.00%/0.00%) 8.03

[90%, 110%] None Off 188.36 36.88% 1.32 0/0 0 60/176 (18.24%/20.98%) 1.23
[90%, 110%] None On 184.49 34.07% 1.28 1/2 0 0/0 (0.00%/0.00%) 1.01
[90%, 110%] 2 Off 179.45 30.41% 0.97 0/0 0 73/183 (22.19%/21.81%) 1.40
[90%, 110%] 2 On 176.14 28.00% 1.05 1/2 0 0/0 (0.00%/0.00%) 1.67
[90%, 110%] 2.5 Off 168.34 22.33% 0.34 0/0 0 78/198 (23.71%/23.60%) 6.57
[90%, 110%] 2.5 On 166.02 20.64% 0.33 2/3 0 0/0 (0.00%/0.00%) 5.95
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 170.47 23.88% 0.89 5/5 0 73/204 (22.19%/24.31%) 24.71
[90%, 110%] Observed On 168.24 22.26% 1.10 6/7 0 0/0 (0.00%/0.00%) 12.60

Table 6: Results of counterfactual employment optimization under various scenarios using the MAX objective and LASSO model.

42



Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (97.57)

St Dev in Avg Case Size
Across Affiliates

# of Unplaced
Cases / Refugees

#of Affiliates
Violating 90% Capacity

# and % of Cases/Refugees
Violating Constraints

Build and Run
Time (s)

Observed None Off 120.60 23.60% 1.23 0/0 0 58/160 (17.63%/19.07%) 0.46
Observed None On 118.17 21.12% 1.22 1/2 0 0/0 (0.00%/0.00%) 0.43
Observed 2 Off 109.42 12.15% 0.86 1/5 0 75/210 (22.80%/25.03%) 10.75
Observed 2 On 107.38 10.06% 0.78 4/11 1 0/0 (0.00%/0.00%) 3.27
Observed 2.5 Off 98.27 0.72% 0.33 1/5 0 84/242 (25.53%/28.84%) 30.56
Observed 2.5 On 97.12 -0.46% 0.19 7/19 1 0/0 (0.00%/0.00%) 11.66
Observed 3 Off 76.14 -21.96% 0.00 88/116 10 55/176 (16.72%/20.98%) 14.07
Observed 3 On 75.38 -22.75% 0.65 88/116 7 0/0 (0.00%/0.00%) 9.00
Observed Observed Off 101.60 4.13% 0.85 2/3 0 83/238 (25.23%/28.37%) 19.68
Observed Observed On 100.45 2.95% 0.84 7/19 1 0/0 (0.00%/0.00%) 8.46
≤ 110% None Off 120.99 24.00% 1.32 0/0 1 66/189 (20.06%/22.53%) 0.33
≤ 110% None On 118.57 21.52% 1.22 1/2 3 0/0 (0.00%/0.00%) 0.34
≤ 110% 2 Off 111.57 14.35% 0.82 0/0 1 71/206 (21.58%/24.55%) 5.75
≤ 110% 2 On 109.52 12.25% 0.86 1/2 4 0/0 (0.00%/0.00%) 1.09
≤ 110% 2.5 Off 101.15 3.67% 0.32 0/0 1 83/223 (25.23%/26.58%) 14.18
≤ 110% 2.5 On 99.84 2.33% 0.29 6/15 3 0/0 (0.00%/0.00%) 6.83
≤ 110% 3 Off 77.61 -20.46% 0.00 89/119 4 58/178 (17.63%/21.22%) 6.95
≤ 110% 3 On 76.98 -21.11% 0.65 89/119 5 0/0 (0.00%/0.00%) 5.45
≤ 110% Observed Off 103.67 6.26% 0.90 0/0 2 78/223 (23.71%/26.58%) 19.99
≤ 110% Observed On 102.52 5.07% 0.91 7/19 3 0/0 (0.00%/0.00%) 8.32

[90%, 110%] None Off 120.99 24.00% 1.15 0/0 0 68/195 (20.67%/23.24%) 0.44
[90%, 110%] None On 118.57 21.52% 1.16 1/2 0 0/0 (0.00%/0.00%) 0.54
[90%, 110%] 2 Off 111.57 14.35% 0.79 0/0 0 73/215 (22.19%/25.63%) 8.31
[90%, 110%] 2 On 109.52 12.25% 0.89 1/2 0 0/0 (0.00%/0.00%) 1.36
[90%, 110%] 2.5 Off 101.15 3.67% 0.32 0/0 0 93/247 (28.27%/29.44%) 14.36
[90%, 110%] 2.5 On 99.70 2.18% 0.33 3/5 0 0/0 (0.00%/0.00%) 40.22
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 103.67 6.26% 0.83 1/1 0 84/229 (25.53%/27.29%) 62.74
[90%, 110%] Observed On 102.44 5.00% 0.86 5/9 0 0/0 (0.00%/0.00%) 37.80

Table 7: Results of counterfactual employment optimization under various scenarios using the MIN objective and LASSO model.
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Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (117.49)

St Dev in Avg Case Size
Across Affiliates

# of Unplaced
Cases / Refugees

#of Affiliates
Violating 90% Capacity

# and % of Cases/Refugees
Violating Constraints

Build and Run
Time (s)

Observed None Off 163.81 39.42% 1.39 0/0 0 65/200 (19.76%/23.84%) 1.62
Observed None On 160.67 36.75% 1.30 2/9 0 0/0 (0.00%/0.00%) 0.49
Observed 2 Off 151.73 29.14% 0.79 3/3 0 77/219 (23.40%/26.10%) 2.43
Observed 2 On 149.16 26.96% 1.06 3/10 1 0/0 (0.00%/0.00%) 1.46
Observed 2.5 Off 140.19 19.32% 0.45 4/4 0 91/245 (27.66%/29.20%) 12.60
Observed 2.5 On 138.07 17.51% 0.46 5/6 0 0/0 (0.00%/0.00%) 8.57
Observed 3 Off 115.36 -1.81% 0.00 80/92 7 60/186 (18.24%/22.17%) 5.92
Observed 3 On 113.87 -3.08% 0.65 81/95 5 0/0 (0.00%/0.00%) 3.66
Observed Observed Off 143.51 22.15% 0.85 2/2 0 79/220 (24.01%/26.22%) 7.52
Observed Observed On 141.50 20.44% 0.84 4/10 2 0/0 (0.00%/0.00%) 4.46
≤ 110% None Off 166.39 41.62% 1.40 0/0 1 63/191 (19.15%/22.77%) 0.66
≤ 110% None On 163.17 38.88% 1.47 2/9 2 0/0 (0.00%/0.00%) 1.16
≤ 110% 2 Off 156.33 33.06% 1.48 0/0 4 72/210 (21.88%/25.03%) 1.42
≤ 110% 2 On 153.41 30.57% 1.40 2/9 2 0/0 (0.00%/0.00%) 1.38
≤ 110% 2.5 Off 144.58 23.06% 0.32 0/0 1 88/228 (26.75%/27.18%) 13.24
≤ 110% 2.5 On 142.31 21.12% 0.34 2/3 2 0/0 (0.00%/0.00%) 5.34
≤ 110% 3 Off 118.41 0.79% 0.00 80/92 4 64/193 (19.45%/23.00%) 7.34
≤ 110% 3 On 116.85 -0.55% 0.90 81/95 9 0/0 (0.00%/0.00%) 6.30
≤ 110% Observed Off 146.87 25.00% 0.90 0/0 4 69/198 (20.97%/23.60%) 10.13
≤ 110% Observed On 144.83 23.27% 0.99 2/3 5 0/0 (0.00%/0.00%) 7.52

[90%, 110%] None Off 166.39 41.62% 1.38 0/0 0 57/162 (17.33%/19.31%) 1.32
[90%, 110%] None On 163.16 38.87% 1.26 1/2 0 0/0 (0.00%/0.00%) 1.42
[90%, 110%] 2 Off 156.33 33.06% 0.94 0/0 0 79/215 (24.01%/25.63%) 1.53
[90%, 110%] 2 On 153.39 30.56% 0.99 1/2 0 0/0 (0.00%/0.00%) 1.76
[90%, 110%] 2.5 Off 144.58 23.06% 0.34 0/0 0 88/242 (26.75%/28.84%) 14.74
[90%, 110%] 2.5 On 142.31 21.12% 0.33 2/3 0 0/0 (0.00%/0.00%) 5.20
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 146.87 25.00% 0.83 1/1 0 88/240 (26.75%/28.61%) 8.88
[90%, 110%] Observed On 144.76 23.21% 0.86 2/3 0 0/0 (0.00%/0.00%) 12.13

Table 8: Results of counterfactual employment optimization under various scenarios using the MEAN objective and LASSO model.
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Relative to SUM Objective Relative to MAX Objective Relative to MIN Objective Relative to MEAN Objective

Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

SUM MAX (% loss) MIN (% loss) MEAN (% loss) MAX SUM (% loss) MIN (% loss) MEAN (% loss) MIN SUM (% loss) MAX (% loss) MEAN (% loss) MEAN SUM (% loss) MAX (% loss) MIN (% loss)

Observed None Off 213.02 207.64 (2.53%) 193.82 (9.02%) 209.80 (1.51%) 184.68 180.63 (2.19%) 169.90 (8.01%) 183.10 (0.86%) 120.60 116.14 (3.70%) 117.85 (2.28%) 118.91 (1.40%) 163.81 161.00 (1.71%) 162.47 (0.82%) 152.73 (6.76%)
Observed None On 208.25 203.85 (2.11%) 192.89 (7.37%) 205.40 (1.37%) 180.98 177.16 (2.11%) 168.67 (6.80%) 179.03 (1.08%) 118.17 114.53 (3.08%) 115.40 (2.35%) 116.63 (1.30%) 160.67 157.93 (1.70%) 159.18 (0.92%) 151.23 (5.88%)
Observed 2 Off 206.28 201.65 (2.24%) 181.75 (11.89%) 201.73 (2.20%) 173.98 170.38 (2.07%) 158.94 (8.64%) 172.04 (1.11%) 109.42 102.17 (6.63%) 101.14 (7.57%) 102.86 (6.00%) 151.73 149.70 (1.34%) 150.18 (1.02%) 141.15 (6.97%)
Observed 2 On 202.03 197.48 (2.25%) 181.13 (10.34%) 197.70 (2.14%) 171.22 168.16 (1.79%) 158.25 (7.58%) 169.35 (1.10%) 107.38 100.48 (6.43%) 99.93 (6.94%) 100.98 (5.96%) 149.16 147.60 (1.05%) 147.79 (0.92%) 139.62 (6.40%)
Observed 2.5 Off 196.76 191.02 (2.92%) 173.53 (11.81%) 192.09 (2.37%) 163.18 159.43 (2.30%) 150.87 (7.54%) 161.25 (1.18%) 98.27 88.12 (10.32%) 88.63 (9.81%) 90.22 (8.19%) 140.19 137.47 (1.94%) 138.05 (1.53%) 131.79 (5.99%)
Observed 2.5 On 192.95 187.22 (2.97%) 170.86 (11.45%) 187.03 (3.07%) 160.98 157.47 (2.18%) 147.91 (8.12%) 158.99 (1.24%) 97.12 87.53 (9.87%) 87.94 (9.45%) 89.89 (7.44%) 138.07 135.70 (1.71%) 136.14 (1.39%) 129.42 (6.27%)
Observed 3 Off 172.83 167.26 (3.22%) 147.03 (14.93%) 167.45 (3.11%) 138.74 134.78 (2.85%) 124.41 (10.33%) 136.52 (1.60%) 76.14 63.52 (16.57%) 63.28 (16.90%) 66.02 (13.29%) 115.36 112.37 (2.59%) 113.10 (1.96%) 106.07 (8.05%)
Observed 3 On 169.64 163.72 (3.49%) 146.33 (13.74%) 164.45 (3.06%) 137.27 134.28 (2.18%) 124.00 (9.66%) 134.58 (1.96%) 75.38 63.19 (16.17%) 63.67 (15.54%) 65.53 (13.07%) 113.87 111.49 (2.09%) 111.85 (1.78%) 105.28 (7.55%)
Observed Observed Off 199.33 193.90 (2.73%) 177.11 (11.15%) 193.66 (2.85%) 166.41 162.79 (2.18%) 153.71 (7.63%) 164.50 (1.15%) 101.60 92.63 (8.82%) 92.41 (9.05%) 94.47 (7.02%) 143.51 141.11 (1.67%) 141.63 (1.31%) 134.62 (6.20%)
Observed Observed On 195.65 190.42 (2.67%) 175.11 (10.50%) 190.19 (2.79%) 164.30 161.05 (1.98%) 152.96 (6.90%) 162.38 (1.17%) 100.45 92.03 (8.38%) 91.64 (8.77%) 93.09 (7.33%) 141.50 139.48 (1.43%) 139.72 (1.26%) 133.56 (5.61%)
≤ 110% None Off 218.05 212.38 (2.60%) 197.89 (9.25%) 215.37 (1.23%) 188.36 184.24 (2.18%) 172.78 (8.27%) 186.45 (1.01%) 120.99 117.57 (2.83%) 118.21 (2.30%) 119.21 (1.47%) 166.39 163.98 (1.45%) 165.04 (0.81%) 154.64 (7.06%)
≤ 110% None On 212.96 208.12 (2.27%) 195.13 (8.37%) 210.51 (1.15%) 184.55 181.21 (1.81%) 170.71 (7.50%) 182.71 (1.00%) 118.57 115.34 (2.72%) 115.98 (2.18%) 117.02 (1.31%) 163.17 160.95 (1.36%) 161.73 (0.88%) 152.80 (6.35%)
≤ 110% 2 Off 212.39 207.34 (2.38%) 185.02 (12.89%) 208.25 (1.95%) 179.45 175.71 (2.09%) 161.95 (9.76%) 177.61 (1.03%) 111.57 105.13 (5.77%) 103.96 (6.82%) 105.73 (5.23%) 156.33 154.47 (1.19%) 154.53 (1.15%) 143.69 (8.08%)
≤ 110% 2 On 207.72 202.57 (2.48%) 184.66 (11.10%) 203.97 (1.80%) 176.23 173.18 (1.73%) 162.19 (7.96%) 174.35 (1.07%) 109.52 103.46 (5.53%) 101.99 (6.87%) 103.55 (5.45%) 153.41 151.82 (1.03%) 151.84 (1.02%) 142.83 (6.90%)
≤ 110% 2.5 Off 202.75 196.42 (3.12%) 176.22 (13.08%) 198.17 (2.26%) 168.34 164.77 (2.12%) 153.79 (8.64%) 166.24 (1.25%) 101.15 91.11 (9.93%) 90.97 (10.07%) 93.67 (7.40%) 144.58 142.02 (1.77%) 142.28 (1.59%) 134.75 (6.80%)
≤ 110% 2.5 On 198.84 192.86 (3.00%) 176.14 (11.42%) 194.09 (2.39%) 166.02 162.92 (1.87%) 152.72 (8.01%) 163.82 (1.32%) 99.84 90.21 (9.65%) 90.14 (9.71%) 92.37 (7.49%) 142.30 140.22 (1.47%) 140.41 (1.33%) 133.57 (6.14%)
≤ 110% 3 Off 177.51 172.20 (2.99%) 149.22 (15.94%) 172.23 (2.97%) 142.64 139.04 (2.52%) 126.76 (11.13%) 140.06 (1.81%) 77.60 64.83 (16.46%) 64.74 (16.58%) 67.43 (13.11%) 118.41 115.34 (2.59%) 116.19 (1.88%) 108.34 (8.51%)
≤ 110% 3 On 174.27 168.96 (3.05%) 147.58 (15.32%) 169.80 (2.56%) 140.99 137.76 (2.29%) 126.53 (10.25%) 138.35 (1.87%) 76.98 64.89 (15.70%) 65.06 (15.48%) 67.85 (11.86%) 116.85 114.24 (2.23%) 114.88 (1.68%) 107.65 (7.87%)
≤ 110% Observed Off 204.27 198.15 (2.99%) 181.01 (11.39%) 198.62 (2.77%) 170.47 166.62 (2.26%) 157.26 (7.75%) 168.20 (1.33%) 103.67 94.51 (8.84%) 93.92 (9.41%) 96.70 (6.73%) 146.87 144.47 (1.63%) 144.66 (1.50%) 137.91 (6.10%)
≤ 110% Observed On 200.49 194.91 (2.79%) 178.71 (10.86%) 196.01 (2.23%) 168.28 164.94 (1.98%) 154.97 (7.91%) 166.08 (1.31%) 102.52 93.84 (8.46%) 92.99 (9.29%) 95.17 (7.17%) 144.83 142.59 (1.55%) 143.07 (1.22%) 136.02 (6.08%)

[90%, 110%] None Off 218.05 212.38 (2.60%) 194.95 (10.60%) 215.37 (1.23%) 188.36 184.24 (2.18%) 171.00 (9.22%) 186.45 (1.01%) 120.99 117.57 (2.83%) 118.21 (2.30%) 119.21 (1.47%) 166.39 163.98 (1.45%) 165.04 (0.81%) 153.11 (7.98%)
[90%, 110%] None On 212.91 208.03 (2.29%) 193.31 (9.21%) 210.61 (1.08%) 184.49 181.12 (1.82%) 168.79 (8.51%) 182.53 (1.06%) 118.57 115.33 (2.73%) 115.98 (2.18%) 116.89 (1.41%) 163.16 160.92 (1.37%) 161.69 (0.90%) 151.82 (6.95%)
[90%, 110%] 2 Off 212.39 207.34 (2.38%) 187.11 (11.90%) 208.25 (1.95%) 179.45 175.71 (2.09%) 163.60 (8.83%) 177.61 (1.03%) 111.57 105.13 (5.77%) 103.96 (6.82%) 105.73 (5.23%) 156.33 154.47 (1.19%) 154.53 (1.15%) 144.63 (7.49%)
[90%, 110%] 2 On 207.58 202.61 (2.39%) 184.64 (11.05%) 203.90 (1.77%) 176.14 173.08 (1.74%) 161.48 (8.32%) 174.25 (1.07%) 109.52 103.66 (5.35%) 102.31 (6.58%) 103.60 (5.41%) 153.39 151.92 (0.96%) 152.12 (0.83%) 142.64 (7.01%)
[90%, 110%] 2.5 Off 202.75 196.42 (3.12%) 178.99 (11.72%) 198.17 (2.26%) 168.34 164.77 (2.12%) 155.58 (7.58%) 166.24 (1.25%) 101.15 91.11 (9.93%) 90.97 (10.07%) 93.67 (7.40%) 144.58 142.02 (1.77%) 142.28 (1.59%) 135.95 (5.97%)
[90%, 110%] 2.5 On 198.81 192.86 (2.99%) 176.69 (11.13%) 194.09 (2.38%) 166.02 162.75 (1.97%) 152.98 (7.85%) 163.82 (1.32%) 99.70 90.40 (9.32%) 90.14 (9.58%) 92.37 (7.35%) 142.30 140.33 (1.39%) 140.41 (1.33%) 133.65 (6.08%)
[90%, 110%] 3 Off Infeasible instance
[90%, 110%] 3 On Infeasible instance
[90%, 110%] Observed Off 204.26 198.15 (2.99%) 179.80 (11.98%) 198.62 (2.76%) 170.47 166.80 (2.16%) 156.74 (8.06%) 168.20 (1.33%) 103.67 94.77 (8.59%) 93.92 (9.41%) 96.70 (6.73%) 146.87 144.69 (1.48%) 144.66 (1.50%) 137.34 (6.49%)
[90%, 110%] Observed On 200.36 194.91 (2.72%) 179.09 (10.62%) 196.31 (2.02%) 168.24 165.07 (1.89%) 156.38 (7.05%) 166.10 (1.27%) 102.44 94.16 (8.09%) 92.99 (9.23%) 95.06 (7.21%) 144.76 142.75 (1.39%) 143.01 (1.21%) 136.39 (5.78%)

Table 9: Comparison of performance of alternative SUM, MAX, MIN, and MEAN objectives of interest. Analysis is with respect to the
upper headings and four subcolumns. Under each of these headings, entries in bold are the maximized value according to that objective,
and remaining columns report the performance of the optimal solution of each alternative objective, when evaluated according to the
objective of the upper heading, along with associated percent loss.
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(a) LASSO
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(b) Gradient Boosted Regression Tree (GBRT)

Figure 1: Bootstrapped uncertainty of predicted employment probabilities in 2017 for LASSO and
GBRT model. Left panels: prediction distributions (5th-95th percentile) for each data point in test
sample. Right panels: distribution of interquartile ranges for each data point in test sample.
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(a) Cumulative distribution of employment probabilities. Red: estimated probabilities under HIAS
placement. Green: optimized probabilities for {observed capacity, activated binary service constraints,
no mininum average case size} scenario.

(b) Cumulative distribution of employment probabilities. Red: estimated probabilities under HIAS
placement. Green: optimized probabilities for {observed capacity, activated binary service constraints,
at least observed average case size} scenario.

Figure 2: Employment gains from optimizing refugee placement.
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Figure 3: Average probability of employment at each affiliate. Blue bar: estimated probabilities
under HIAS placement. Orange bar: average probability of employment for observed capacity,
activated binary service constraints, no minimum average case size scenario. Red bar: average
probability of employment for {observed capacity, activated binary service constraints, at least
observed average case size} scenario.

48



Figure 4: Average case size at each affiliate. Blue bar: observed average case size under HIAS place-
ment. Orange bar: average case size for {observed capacity, activated binary service constraints,
no minimum average case size} scenario. Red bar: average case size for {observed capacity, acti-
vated binary service constraints, at least observed average case size} scenario.
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(a) Distribution of case sizes for {observed capacity, activated binary service constraints, no minimum
average case size} scenario.

(b) Distribution of case sizes for {observed capacity, activated binary service constraints, at least observed
average case size} scenario.

Figure 5: Distribution of case sizes at each affiliate.
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Figure 6: Annie Interface.

Figure 7: Expanding tiles: refugee and affiliate data.
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(a) Case assigned to Affiliate E. (b) Moving case tile to Affiliate D. (c) Case tile moved to Affiliate D.

Figure 8: Case tiles can be moved by dragging to an alternate affiliate tile. Upon moving, the
match scores dynamically update. The background of the case tile changes to gray to indicate a
non-optimized state.

Figure 9: Locking case tiles and reoptimizing.

Figure 10: Cross-referencing cases to Affiliate F.
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Figure 11: Case tile changes color when placed into affiliate that violates binary service constraints.
Hovering over exclamation point reveals additional details.
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Note: The figure plots the fraction of achievable true positives as a function of the fraction of
false positives for each estimated model. The constant model is the benchmark used by Bansak
et al. (2018). The logit model uses the same features used in LASSO for predicting employment,
but without a LASSO constraint and affiliate-specific interactions. The logit by affiliate model uses
the same features used in the LASSO model (including affiliate-specific interactions), but without
a LASSO constraint. We compute all functions on refugees arriving in 2017 (test sample).

Figure 12: Receiver Operating Characteristics (ROC) curves.
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Note: Both panels in the figure plot predicted employment probabilities by either LASSO or GBRT
in the x-axis for the test data (refugees arriving in 2017). The top panel of the figure plots for each
predicted employment probability the average number of effectively employed refugees in 2017. The
bottom panel shows the histogram of the predicted employment probabilities in the test sample.

Figure 13: Calibration plots of LASSO and GBRT models (FY17 data).
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Figure 14: Uncertainty in the objective function illustrated across the first ten scenarios, namely
those that use “Observed” capacity levels. Box plots depicting the distribution of the evaluation
of the optimized z? solution in 1,000 bootstrapped objective functions.
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Yearly (n = 1, Single Optimization) Quarterly (n = 4 Optimizations) Monthly (n = 12 Optimizations) Weekly (n = 52 Optimizations)

Capacity
Adjustment

Min Avg
Case Size

Binary Service
Constraints

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (157.93)

# of Unplaced
Cases / Refugees

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (157.93)

# of Unplaced
Cases / Refugees

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (157.93)

# of Unplaced
Cases / Refugees

Total Expected
Employed Refugees

Gains wrt to Predicted
Employed Refugees (157.93)

# of Unplaced
Cases / Refugees

Observed None Off 213.024 34.89% 0/0 209.875 32.89% 4/23 207.985 31.69% 3/18 194.658 23.26% 3/19
Observed None On 208.247 31.86% 3/10 206.127 30.52% 7/29 201.633 27.67% 8/38 183.349 16.10% 21/59
Observed 2 Off 206.275 30.61% 1/1 198.688 25.81% 7/27 193.738 22.67% 10/10 182.168 15.35% 14/14
Observed 2 On 202.03 27.92% 2/9 195.252 23.63% 11/38 187.07 18.45% 18/44 169.204 7.14% 36/68
Observed 2.5 Off 196.758 24.59% 1/1 186.658 18.19% 24/37 179.93 13.93% 35/37 164.228 3.99% 58/58
Observed 2.5 On 192.949 22.17% 3/7 182.574 15.60% 28/43 171.824 8.80% 42/58 153.915 -2.54% 73/103
Observed 3 Off 172.827 9.43% 78/86 167.598 6.12% 78/86 161.751 2.42% 78/82 146.847 -7.02% 97/101
Observed 3 On 169.643 7.42% 79/89 165.656 4.89% 78/85 153.858 -2.58% 90/107 136.769 -13.40% 109/139
Observed Observed Off 199.335 26.22% 2/2 189.913 20.25% 24/27 178.564 13.07% 41/43 164.037 3.87% 62/67
Observed Observed On 195.652 23.89% 4/8 183.585 16.24% 31/51 171.916 8.86% 49/67 156.85 -0.68% 73/107
≤ 110% None Off 218.055 38.07% 0/0 215.816 36.65% 2/12 210.658 33.39% 4/24 198.996 26.00% 6/37
≤ 110% None On 212.959 34.84% 2/9 210.652 33.38% 4/18 205.737 30.27% 7/38 190.165 20.41% 17/43
≤ 110% 2 Off 212.389 34.48% 0/0 206.649 30.85% 4/14 193.656 22.62% 11/39 181.962 15.22% 30/50
≤ 110% 2 On 207.72 31.53% 2/9 203.967 29.15% 4/22 192.196 21.70% 12/40 177.023 12.09% 36/56
≤ 110% 2.5 Off 202.75 28.38% 0/0 194.902 23.41% 14/20 178.237 12.86% 38/49 168.257 6.54% 56/57
≤ 110% 2.5 On 198.837 25.90% 3/7 189.295 19.86% 20/33 177.391 12.32% 36/49 160.813 1.83% 65/89
≤ 110% 3 Off 177.511 12.40% 78/86 172.399 9.16% 78/86 166.175 5.22% 78/84 151.179 -4.28% 93/93
≤ 110% 3 On 174.266 10.34% 79/89 169.213 7.15% 81/91 161.88 2.50% 84/93 142.874 -9.53% 107/136
≤ 110% Observed Off 204.268 29.34% 0/0 196.716 24.56% 16/22 180.308 14.17% 40/45 168.245 6.53% 55/56
≤ 110% Observed On 200.49 26.95% 3/7 191.986 21.56% 19/37 176.133 11.53% 42/61 163.035 3.23% 67/95

[90%, 110%] None Off 218.055 38.07% 0/0 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] None On 212.914 34.82% 1/2 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 2 Off 212.389 34.48% 0/0 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 2 On 207.575 31.44% 2/6 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 2.5 Off 202.75 28.38% 0/0 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 2.5 On 198.81 25.89% 2/3 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 3 Off Infeasible instance Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] 3 On Infeasible instance Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] Observed Off 204.259 29.34% 5/5 Infeasible instance Infeasible instance Infeasible instance
[90%, 110%] Observed On 200.357 26.86% 6/7 Infeasible instance Infeasible instance Infeasible instance

Table 10: Results of counterfactual employment optimization over the entire year, over 4 quarters, over 12 months, and over 52 weeks
using the SUM objective and LASSO model.
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