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Abstract: Global retail supply chains are heavily reliant on efficient container shipping. This study focuses 

on how a shipping intermediary such as a fourth-party logistics (4PL) provider can enable efficiency gains 

in retail container distribution. We consider the assignment of cargo to containers and vessels to 

accommodate downstream retailer demand, aiming to minimize both environmental and economic costs. 

We develop an integer optimization model that represents the key decisions of which journeys to select 

to ship various types, and quantities, of products onto containers of various sizes. We generate problem 

instances using international supply chain data inspired by two large United Kingdom (UK) retailers. Our 

model is useful for evaluating the feasibility of coopetition in container shipping, which we define as a 

contractual agreement with a 4PL, of which consolidation is one operational dimension. We conduct a 

variety of sensitivity analyses around the cost of fuel, cost of carbon emissions, and under coopetition or 

competition, to better understand their effects on model outcomes. Although some studies have 

mentioned that coopetition can prove economically beneficial, our study has shown that for the data and 

model we consider, the advantages of coopetition are quite limited. Our findings suggest there are limited 

economic or environmental benefits associated with the competition or coopetition scenarios when only 

fuel costs increase. The greatest benefits from an environmental perspective occur when joint increases 

of fuel and CO2 costs occur, which result in greater environmental co-benefits in the coopetition case. 

Alternatively, CO2 cost increases show that competition contexts had greater environmental benefit. 
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Ocean liner shipping is, on a per unit basis, one of the most economically and environmentally efficient 

transportation modes (Hoene et al., 2014). Maritime shipping has gained in importance and prevalence 

since the introduction of shipping containers made this transportation mode cost-effective and efficient 

(Gonzalez-Torre, 2013). According to the International Chamber of Shipping, a full 90% of world trade is 

carried by the international maritime shipping industry (http://www.ics-shipping.org/shipping-

facts/shipping-and-world-trade). The increasing globalization of supply chains has only added to the 

importance of this transportation mode. 

Retail organizations are heavily reliant on maritime shipping for transportation over long distances. 

Frequently, retail organizations rely on third-party logistics (3PL) providers to help them manage their 

transportation logistics (Ballot and Fontane, 2010). From a trucking or shipping perspective, these 3PLs 

can be managed directly by the retailers. In maritime shipping, however, intermediary shipping agents 

can be used as brokers amongst various shipping logistics providers and the shipping carriers (the 3PLs). 

Fourth-party logistics (4PL) providers are one such intermediary (Evangelista, 2005). 

Given the economic and environmental pressures from competitors, customers, and regulators, 

intermediaries like 4PLs can aid retailers in managing their global shipping operations. They add value not 

only in working with multiple 3PLs (shipping companies). Zacharia et al. (2011) found that 3PLs evolved 

from providing logistics capabilities to becoming orchestrators of supply chains that create and sustain a 

competitive advantage. However, 4PLs have the flexibility to work with multiple, competing retailers, 

ports, and other maritime transportation providers. This situation contrasts with separate 3PLs that might 

have specific contracts with different retailers. Without the presence of a 4PL, certain efficiency gain 

opportunities for logistics customers – such as a retailer – can be missed. 

This study introduces the notion of coopetition in the context of retail container shipping. As per Zacharia 

et al. (2019), coopetition is an inter-firm strategy that can be adopted among competitors to add value to 

their operations. Organizations can collaborate vertically with their suppliers and-or horizontally with 

their competitors in supply chain collaborative relationships. Horizontal collaboration occurs among 

independent entities or direct competitors that are positioned at the same level (Simatupang and 

Sridharan, 2002; Sanchez Rodrigues et al., 2015). For this study we assume collaboration occurs between 

two retailers and is executed through a neutral intermediary—a fourth-party logistics (4PL) provider. The 

use of the term coopetition is adopted in this paper, as the retailers focus the collaboration solely on their 

international shipping operation and compete in all other activities carried out in the market country, the 

UK. They will agree on this cooperation through a contractual agreement with a 4PL. 
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While this perspective is applied in the retail industry, we focus on the role of an intermediary, such as a 

4PL, for the co-consolidation of containers at the port of origin, where it is difficult for retailers to 

collaborate directly. It is even possible for competitors to work together through these agents in a mode 

of coopetition, when competitors partner to collaborate on an activity that is not a core competence of 

either. Competitors, although competing in a market, may collaborate in activities such as international 

distribution in pursuit of a common goal. For example, competitors can appoint a fourth-party logistics 

provider to centralize the planning of their container allocation to ships and subsequent movements for 

efficiency gains. Such an initiative can result in cost and emissions savings for collaborating competitors. 

The use of 4PL as a collaborative consortium of retailers is highlighted by Hingley et al. (2011). This 

coopetition scenario is used by retailers to avoid issues related to fair competition regulations, and to 

make sure their interests are represented by a neutral party/trustee.  

This 4PL coopetition model has been utilized by manufacturers such as Proctor & Gamble and retailers 

such as Tesco. They found that a global 4PL provider can represent their interests and select the most 

efficient 3PLs to move their cargo. The greening of supply chains is critical for the long-term 

competitiveness of organizations and the balance of environmental and economic concerns (Kirchoff, et 

al., 2016), and retailer shipping decisions play an important role in this landscape (Ghosh and Shah, 2015; 

Ramanathan et al., 2014). Having 4PLs helping to manage these requirements with a decision planning 

tool could be beneficial for competitive and social purposes. 

Maritime shipping planning occurs at the strategic, tactical and operational levels. An important tactical 

decision is determining, from the perspective of a 4PL intermediary, the schedule of journeys that satisfies 

demand while best addressing economic and environmental concerns. Limited research exists on this 

topic when considering port-to-port shipping decisions in maritime shipping planning, and even less when 

incorporating environmental dimensions alongside traditional economic factors. Given the volume of 

maritime shipments, this investigation provides a promising opportunity for understanding associated 

economic and environmental tradeoffs. 

Given the complexities and uncertainties of these interactions – such as environmental and economic 

tradeoffs, variations in costs, and the many journeys to select from – analytical approaches that can 

evaluate myriad options and provide recommendations are desirable for supporting tactical and 

operational decision planning. To address this decision environment, we use an integer optimization 

model that deals with journey selection and cargo routing decisions. A joint coopetition planning model 

between multiple retailers is developed and applied by using practical shipping data from major 
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multinational retailers to help in a simulation. For the purpose of this paper, it is assumed that the notion 

of equilibrium – where each retailer is naturally self-interested and seeks to achieve the optimization of 

their own container movement planning – will only cooperate with others if further efficiency gains can 

be found by their common 4PL provider. The study also includes two retailers of similar size and network 

complexity. UK retailers tend to view that having a similar volume and degree of network complexity as a 

synergistic factor (Sanchez Rodrigues et al., 2015). The two retailers that informed this study a significant 

number of common suppliers and sourcing areas—an important synergy that retailers consider prior to 

building a coopetitive partnership. 

We make the following contributions. 1) We develop an integer optimization model to solve the port-to-

port journey selection and cargo routing problem from the perspective of an intermediary such as a 4PL 

acting as the middle logistics broker. 2) Our optimization model specifically incorporates both economic 

and environmental maritime shipping factors, providing a more holistic managerial planning perspective. 

3) We consider coopetition in maritime shipping, an important aspect that has received minimal 

investigation, and particularly so when environmental factors are jointly considered. 4) Using test 

instances simulated from real maritime supply chain data, we present a robust set of computational 

experiments that study the journey selection and cargo routing sensitivity under changes to fuel costs and 

carbon costs, both separately and jointly – as well the effect of coopetition. Based on these results, we 

provide exploratory research observations for further study. 

The remainder of the paper continues with some foundational practical background on maritime shipping 

and planning. We then introduce the mathematical model, followed by our computational experiments, 

which detail optimal model recommendations to a variety of potential scenarios induced by varying key 

parameters. Our experimental analysis is discussed in detail and is followed by a concluding section that 

summarizes our findings, identifies study limitations, and directions for future research. Appendices 

contain additional material related to assumptions made to cost and emissions calculations. 

 

2. Background and Literature Review 

 

We now provide some relevant background pertaining to coopetition in supply chain management, and a 

review of analytical approaches to investigate associated decision problems. 
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2.1. Coopetition in Supply Chain Management and Logistics 

Competition and cooperation are traditionally placed on opposite ends of the business relationship 

management strategy spectrum (M’Chirgui, 2005). If individual organizations focus solely on traditional 

economic objectives, they compete with other players in a market where zero-sum games are the norm 

(Padula and Dagnino 2007). Alternatively, organizations may pursue a cooperative strategy when 

synergistic interests exist (Padula and Dagnino 2007). 

Organizations pursue cooperation to achieve a mutually beneficial goal. Organizational cooperation 

research includes studies on strategic alliances, networks, supply chains, and other partnership types. 

Each partnership type has objectives for improving the performance of partners by sharing resources, 

capabilities and risks (Gnyawali and Park 2011; Bouncken et al., 2015a). 

Global supply chain management and logistics may offer situations that are not black (competition) or 

white (cooperation). Synergistic situations where “grey” exists relate to strategy and designing general 

networks, common suppliers and supply countries (Lambert and Enz, 2017), similar third-party logistics 

and shipping providers who share relational resources (e.g. Shao et al., 2017), and sharing similar source 

and destination ports. Hence, the literature reports on a more dynamic and flexible type of business 

relation, namely coopetition, defined as when competitors partner, to be a natural conflict that exists in 

supply chains (Wilhelm, 2011). The global supply chain, with varying regional and global markets, makes 

the potential for coopetition even more attractive (Naylor et al. 1999). Research on investigating 

organizational coopetition within a global logistics and supply chain setting, especially within the maritime 

shipping and shipping liner industry is largely unstudied. 

In the retail industry, it can be argued that the further suppliers are located from retail markets and 

operations, such as secondary distribution centers, the more generic the distribution of cargo is. That is, 

coopetition arrangements among retailers are more likely when primary distribution flows are located 

further away from the market country (Fernie et al., 2010). The decoupling point in many retail 

distribution networks and channels is located at the point of consolidation in secondary distribution 

centers (Chang, 2008). When the cargo is for direct retail competitors such as large retailers, consolidation 

of cargo may be viewed as a coopetition activity. When consider alone, however, consolidation need not 

be coopetition, as it may occur amongst non-competing entities. 

Beyond any competitive business reasons for improving supply chain efficiencies, the environmental 

sustainability of the supply chain may also be positively influenced (Hafezalkotob, 2017). Competitors may 
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have comparable products and materials that are shipped in a similar fashion. This situation may facilitate 

simpler consolidation on shipping containers, and fourth-party logistics providers may find additional 

opportunities for consolidation. For example, flexibility in container sizes allows for efficient use of space 

and capacity, providing greater flexibility in planning, and reducing energy needs and lowering polluting 

emissions. Coopetition is a potential strategy to improve the environmental performance of maritime-

based supply chains. 

Hence, one of the main contributions of this paper is the use of an analytical formal modeling approach 

to investigate coopetition and non-coopetition scenarios in a global shipping setting. Our investigation 

provides theoretical and practical insights into coopetition strategies in the context of global shipping and 

sustainability of international logistics operations. Recent research undertaken on horizontal logistics 

collaboration has mainly focused on the cooperation, rather than a coopetition, approach (Lehoux et al., 

2009; IGD, 2012; ECR France, 2012; Verstrepen, 2013; Sanchez Rodrigues at al., 2015). 

Supply chain players that can gain from coopetition need “coopetition capabilities” for their supply chains 

to avoid negative tension dynamics among competitors and provide cost improvement opportunities to 

suppliers for the sake of joint value creation (Wilhelm and Sydow, 2018). These goals are achieved if there 

is a neutral intermediary that coordinates core competitor activities. The long-term nature of strategic 

coopetition partnerships requires managing multiple components of supply chains including fluctuating 

demand, inventory management, ever-increasing customer requirements and objective alignment 

(Gibson et al. 2002, Hingley et al. 2011). Effective joint planning to optimize coopetition networks is 

necessary (Rabinovich et al. 1999, Sanchez Rodrigues et al. 2015). There is a need for synchronized 

decision-making in strategy planning, order delivery and placement, quality control, stock replenishment, 

scheduling procurement and demand management among multiple coopetition partners. 

We assess the role coopetition can play in driving economic and environmental sustainability gains by 

cargo owners (e.g. retailers), fourth-party logistics providers, and shippers who participate in coopetition-

based global logistics partnerships (Langley, 2005). Our study also assesses the feasibility of coopetition 

among retailers by considering time, cost, and energy and carbon efficiency as the main output metrics. 

In this paper, we focus on modeling several coopetition and competition scenarios in the context of 

international distribution of retailers managed by a logistics intermediary, such as a 4PL provider. It is 

within this context that our study introduces an analytical decision-making framework based on integer 

optimization. We aim to identify various coopetition and competition cases that can enhance tactical and 
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operational planning decisions to determine whether it is beneficial to consolidate cargo owned by two 

competitors. The decision environment goes beyond simple consolidation, to encompass coopetition in 

two primary aspects: 1) cargo consolidation is based on a mutually beneficial set of metrics from the 

perspective of the participating cargo owners who may be direct competitors; and 2) the allocation of 

cargo to vessels and containers occurs based on contracted decisions made by a logistics intermediary, 

rather than an arbitrary decision by a third-party logistics provider that may or may not be beneficial for 

the cargo owner. 

 

2.2. Maritime International Distribution: Optimization, Sustainability, and Coopetition 

Studies that investigate problems related to the optimization of maritime cargo routing deal with three 

principal aspects: strategic, tactical, and operational level decisions. The strategic level for liner shipping 

involves long-term decisions associated with resource acquisition and determining the fleet size and 

composition (Agarwal and Ergun, 2008). The tactical level involves medium-term decisions and concern 

issues such as design of the service network including route frequency, port selection and assignment of 

ships to routes. The operational level involves short-term planning decisions concerning which cargo to 

accept/reject for routing and the shipping routes (Agarwal and Ergun, 2008). This section focuses on 

studies that address problems related to the tactical and operational levels, primarily vessel scheduling 

and cargo routing in both competition and coopetition settings, as well as environmental considerations. 

We highlight several representative papers related to our study. For further reading related to 

optimization models in maritime shipping, we refer the interested reader to surveys by Christiansen et al. 

(2004), Meng et al. (2013), and Brouer et al. (2017). 

Agarwal and Ergun (2008) propose a mixed-integer linear programming model to solve a simultaneous 

ship-scheduling and cargo-routing problem. Their model considers economic costs and incorporates 

weekly frequencies as well as transshipment nodes, and they solve the resulting formulation via column 

generation and Benders Decomposition. Álvarez (2009) tackles the problem of tactical fleet sizing and 

routing to maximize revenues less a variety of economic costs. They formulate the problem as a mixed 

integer program; and, propose a solution technique that combines exact mathematical programming 

together with meta-heuristic guidance. Norstad et al. (2011) present the tramp ship routing and 

scheduling problem with speed optimization. They consider decisions of which cargo to carry, what ships 

to carry the cargo, what routes and what legs to schedule, and involve the speed of the tramp ship as a 

decision. They present two algorithms for the speed optimization problem along a single shipping route. 
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Bell et al. (2013) consider container assignment in liner shipping via linear programming, and assume that 

routes, service frequencies, and ship sizes are known in advance. They seek to minimize the cumulative 

economic costs of container handling, en-route inventory, and the leasing of containers. Wang et al. (2015) 

extend Bell et al. (2013) by presenting a container assignment problem where the freight rate is influenced 

by the container shipment demand. Using historical data to estimate demand, they develop a nonlinear 

optimization model to determine the number of containers to be transported, the optimal freight rates, 

and how to transport containers to maximize the total revenues less (economic) costs. Zhen et al. (2019) 

study how to deploy liner fleets to meet demand by varying the number of ships, their speed, and the 

timing of visits. While they develop a mixed-integer nonlinear program, subsequently linearized, to find 

high-quality solutions for real-world data, they are only able to solve smaller instances to optimality. 

International shipping accounts for at least 2.7% of the CO2 emitted worldwide; this number is estimated 

to double or even triple by 2050 if emissions continue unabated (Buhaug et al., 2009). The International 

Maritime Organizations has agreed, in 2018, to decreasing CO2 emissions – greenhouse gas emissions – 

by at least 50% by 2050 compared to 2008 (Cariou et al., 2019). In a comprehensive review of CO2 

emissions reduction measures in shipping, it was suggested that technology, together with policies and 

regulations, can lead to a 75% shipping-based emissions reduction by 2050 (Bouman et al., 2017). With 

these efforts there is a possibility of a four- to six-fold emissions reduction per freight unit transported. 

Hull design, power and propulsion, alternative fuels, alternative energy sources, and operations are all 

examples of activities that can reduce emissions. 

In the operations category, potential CO2 reduction ranges for speed optimization are between 1-60%, 

voyage optimization can be between 0.1-48%, and capacity utilization between 5-50%. Several studies 

have investigated maritime cargo routing with respect to carbon emissions. Psaraftis and Kontovas (2013) 

present a taxonomy of the literature concerning the modeling and optimization of vessel speed, as it is a 

key factor in CO2 emissions. With this as a backdrop, the authors present several ways to move forward. 

Kontovas (2014) considers possibilities for incorporating environmental factors such as emissions into 

maritime logistics problems and demonstrates how these factors could be included in existing speed 

optimization and routing models. In response to recent environmental regulations over concerns such as 

sulphur emissions, Fagerholt et al. (2015) develop a maritime shipping optimization model to determine 

optimal sailing paths and speeds to minimize overall operating costs over multiple ports. They include a 

computational study that highlights how regulations affect both shipping routes and society. For further 

discussions of operations research studies in the context of green freight transportation (including 
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maritime), see the recent review by Bektaş et al. (2019). In particular, Table 1 of Bektaş et al. (2019) 

highlights maritime transportation studies that consider environmental factors. 

The academic literature related to coopetition in maritime freight transportation is somewhat limited (Lin 

et al., 2017). Analytical maritime studies involving coopetition rarely incorporate environmental 

objectives or analysis of the international flows as part of the optimization. Heaver et al. (2000) examine 

the range and form of cooperative business models in the maritime and port industries, noting that some 

port authorities create dedicated terminals for their main customers. There are also different forms of 

coopetition in the international shipping industry. Song (2003) presents a conceptual discussion related 

to port coopetition, presenting a case study of Hong Kong and South China. The author emphasizes the 

importance of sustaining the right balance between competition and cooperation, where various port or 

firm specific factors may influence the balance. In Lee and Song (2017), port coopetition is again suggested 

as a setting where further work is needed. Asadabadi and Miller-Hooks (2018) do just that, considering 

the dual cooperative and competitive nature of port operations with a game-theoretic approach. Agarwal 

and Ergun (2010) combine mathematical programming and game theory to design a strategy to guide 

carriers in a collaborative partnership to engage in a collaborative strategy where all members are 

motivated to operate in the best interest of the partnership. Lin et al. (2017) formulate a nonlinear mixed-

integer problem in liner shipping to determine the optimal levels of coopetition for a single company 

where the resulting problem is integrated into a general game theoretic framework. 

 

Viewed collectively, we are unaware of another maritime shipping study that simultaneously addresses 

the following aspects that we address in this study. We 1) consider the perspective of a shipping 

intermediary in choosing from a palette of existing journeys with associated attributes (such as source 

and destination ports, timing, speed, capacity) on which to load multi-commodity cargo into containers 

with limited bay availability, so as to satisfy demand across multiple periods; 2) allow for both coopetition 

and competition; and 3) develop an objective function that integrates environmental costs along with 

traditional economic costs. Our mixed-integer programming model allows shipping intermediaries to 

balance the need for selecting journeys that will ensure multi-commodity demand is met in a timely 

manner, while weighing environmental considerations, thereby finding solutions that favor the most cost-

conservative journeys by which shipments will arrive on time. 
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Our study aims to inform the literature on how efficient container consolidation can reduce CO2 emissions. 

It also investigates the importance of fuel and carbon taxes for the reduction of CO2 emissions in 

competition and coopetition scenarios – scenarios that can be adopted in retail container shipping 

contexts. The model we next introduce has clear practical relevance to shipping intermediaries such as 

4PLs, that are interested in balancing the need for meeting multi-commodity demand on-time while 

minimizing both economic and environmental costs, in either competition or coopetition modes.  

3. Mathematical Modeling 

We consider a maritime challenge faced by a shipping intermediary, such as a 4PL: selecting port-to-port 

journeys to route multi-commodity general merchandise cargo from source port supply locations to 

destination port demand locations. A retailer places an order of known quantity, volume and delivery time 

with a shipping intermediary, who arranges the shipment of goods via a journey: by which we specify a 

fixed vessel, source and time of embarkation, and destination and time of disembarkation. Our model is 

general and handles multiple journeys, retailers, products, and container types. We use a carton (box) as 

a product unit. The model adopted in this study differs from what is currently being practiced by the two 

retailers who informed our study. Their consolidation is not currently centralized by a 4PL. While some 

degree of consolidation actually occurs in the current container shipping operations run by the freight 

forwarder for each of these retailers, rather than on a planned basis, it is informal and ad hoc in nature. 

 

3.1. Assumptions 

We make a number of realistic assumptions to obtain a tractable model. All costs are in British Pound 

Sterling (notated with £). We assume a port-centric logistics setting; that is, distribution centers are co-

located at each destination port. Hence, we do not consider post-arrival distribution costs in our study. 

We assume that the shipment of general merchandise products are substitutable and have low storage 

cost. Moreover, because we study retailers with similar scale and size, we consider identical unit costs for 

retailers. To establish a consistent basis for evaluation, we convert all environmental costs to economic 

costs. We take 15 knots to be the baseline speed by which excess carbon emissions are calculated, so that 

speeds beyond 15 knots are subject to inefficiencies of scale in terms of carbon emissions (further 

discussed in Appendix A). 

Concerning time, we consider a weekly delivery schedule, so that journeys arrive on a weekly basis. 

Moreover, we consider the time needed to fill, load, and unload containers, as compared to the length of 

the journey, to be negligible. Concerning containers, we assume volume and weight capacities, 𝑀𝑘 and 
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𝐺𝑘 , which are roughly 75% of the actual container capacities, which allows for some settling and 

manipulation. Moreover, a (liberal) upper bound 𝐵𝑘
𝑗
 exists on the number of containers of size 𝑘  an 

intermediary can place on any journey 𝑗. Concerning stock, we assume that demand profiles exist for 

every retailer 𝑟 ∈ ℛ  and product 𝑝 ∈ 𝒫𝑟  at each destination port 𝑢 ∈ 𝒰  for each time period 𝑡 ∈ 𝒯 . 

Moreover, as the study is not overly concerned with the supply side, we make the simplifying assumption 

that each source port has sufficient supply of the general merchandise to be shipped. Additionally, where 

necessary or judicious, our model allows for inventory from earlier periods to meet subsequent demand. 

Concerning journeys, we assume traffic schedules exist for every journey 𝑗 ∈ 𝒥. Thus, we know in advance 

when each vessel 𝑣 will embark from source port 𝑠 at time period 𝑡 with known average speed 𝜎𝑣 and 

total twenty-foot equivalent unit (TEU) capacity, to which final destination port 𝑢. Moreover, we let data 

element 𝑧𝑗,𝑣𝑠𝑢𝑡 indicate these known traffic patterns, so that 𝑧𝑗,𝑣𝑠𝑢𝑡 is equal to 1 if journey 𝑗 is vessel 𝑣 

leaving source port 𝑠  at time 𝑡  to (final) destination 𝑢 , and 0 otherwise. Finally, because every 𝑗 ∈ ℐ 

represents a unique vessel 𝑣 leaving source 𝑠 at time 𝑡 to destination 𝑢, we simplify 𝑧𝑗,𝑣𝑠𝑢𝑡 to 𝑧𝑗. 

 

3.2. Mathematical Programming 

We next detail the components of our mathematical programming formulation, starting with set and 

parameter definitions, continuing to variable definitions, and followed by the complete formulation. 

3.2.1. Set and Parameter Definitions 

We define the sets used in our mathematical modeling and optimization in Table 1. We consider that each 

journey 𝑗  represents a unique vessel 𝑣 ∈ 𝒱  embarking from source port 𝑠 ∈ 𝒮  at time period 𝑡 ∈ 𝒯 , 

traveling at a distinct, known average speed, and disembarking at destination port 𝑢 ∈ 𝒰. We then use 

these sets to define the parameters used in our mathematical modeling and optimization In Table 2. 

Table 1. Definition of sets used in mathematical modeling. 

Set Definition 

ℛ Set of retailers, or customers (e.g., Retailer 1, Retailer 2), indexed by 𝑟 

𝒫𝑟 Set of products for each retailer 𝑟, indexed by 𝑝 

𝒱 Set of vessels (across all carriers), indexed by 𝑣 

𝒮 Set of source ports, indexed by 𝑠 

𝒰 Set of destination ports, indexed by 𝑢 

𝒯 Set of time periods, indexed by 𝑡 

𝒦 Set of container sizes, indexed by 𝑘 
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Table 2. Definition of parameters used in mathematical modeling. 

Scope Parameter Definition 

Stock 𝑑𝑟𝑝
𝑢𝑡  Demand for cases of product 𝑝 by retailer 𝑟 at destination port 𝑢 in period 𝑡 

Stock 𝑖𝑟𝑝
𝑢0 Amount of initial (𝑡 = 0) cases of inventory of product 𝑝 for retailer 𝑟 at destination 𝑢 

Container 𝑀𝑘 Container volume capacity (cubic meters) for container size 𝑘 

Container 𝐺𝑘  Container weight capacity (kg) for container size 𝑘 

Journey 𝐵𝑘
𝑗
 Upper bound on number of containers of size 𝑘 that can be placed on journey 𝑗 

Journey 𝛿𝑗  Travel distance (km) from source port 𝑠 to destination port 𝑢, for journey 𝑗 

Journey 𝜏𝑗 Transit time (days) from source port 𝑠 to destination port 𝑢, for journey 𝑗 

Journey 𝛼𝑗  Average speed, in knots, on journey 𝑗 

Journey 𝜌𝑗 Capacity of the vessel in TEUs (twenty-foot equivalent units) on journey 𝑗 

Product 𝑤𝑟𝑝 Unit weight (tonne) of case of product 𝑝 for retailer 𝑟 

Product 𝑞𝑟𝑝 Unit volume (cubic meters) of case of product 𝑝 for retailer 𝑟 

Product 𝑢𝑟𝑝 Unit cost (£) of case of product 𝑝 for retailer 𝑟 

Cost 𝑓𝑟𝑘
𝑗

 Fixed cost (£) to load/unload a container (handling costs) of size 𝑘 for retailer 𝑟 on journey 𝑗 (£ 
per container) 

Cost 𝑚𝑟𝑘
𝑗

 Other costs (management fee, customs, security and port management, documents) for a 
container of size 𝑘 for retailer 𝑟 on journey 𝑗 (£ per container) 

Cost 𝜙𝑘  Operating cost (£) to transport one container of size 𝑘 one tonne-km (£ per tonne-km). For 20ft 
container (one TEU) 

Cost 𝑑𝑝𝑟𝑝𝑘
𝑗

 Distance-related unit capital and operating cost (£) of transporting one case of product 𝑝 (£ per 
unit) for retailer 𝑟 in container of size 𝑘 on journey 𝑗 

Cost 𝑑𝑐𝑟𝑝𝑘
𝑗

 Distance-related unit fuel cost (£) of transporting one case of product 𝑝 (£ per unit) for retailer 

𝑟 in container of size 𝑘 on journey 𝑗; 𝑑𝑐𝑟𝑝𝑘
𝑗

= (𝛿𝑗 ∗ 𝑤𝑟𝑝) ∗ 𝜙𝑘 

Cost ℎ𝑟𝑝
𝑢  Holding cost (£) per unit of product 𝑝 of retailer 𝑟 in warehouse at destination port 𝑢 (£ per 

case) 
CO2 𝑒𝑟𝑘

𝑗
 𝐶𝑂2 emissions (kg) to load/unload a container of size 𝑘 for retailer 𝑟 on journey 𝑗 

CO2 𝜑𝑘 𝐶𝑂2 emissions to transport one container of size 𝑘 one tonne-km (kg per tonne-km). For 20ft 
container (one TEU), see Appendix A. The 40ft, 40ft HC and 45ft sizes are taken to be at 80%, 
76%, and 69.6% 

CO2 𝑑𝜀𝑟𝑝𝑘
𝑗

 Distance-related unit 𝐶𝑂2 emissions (kg per case) for transporting one case of product 𝑝 for 

retailer 𝑟 on journey 𝑗; 𝑑𝜀𝑟𝑝𝑘
𝑗

= (𝛿𝑗 ∗ 𝑤𝑟𝑝) ∗ 𝜑𝑘 

CO2 𝜀𝑟𝑝
𝑢  Unit 𝐶𝑂2 emissions (kg) for holding product 𝑝 for retailer 𝑟 in warehouse at destination port 𝑢 

CO2 𝜈 Cost of one kg of 𝐶𝑂2 in £. The estimate we use is £6.08 per tonne = £0.00558 per kg, which 
was calculated from averaging the daily price of one tonne of 𝐶𝑂2 from recent data obtained 
from the UK Stock Exchange (July 2014 – May 2016) 
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3.2.2. Integer Optimization Model 

Formulation (1)–(9) uses sets and parameters from Tables 1 and 2 to identify an optimal shipping plan. 

Binary variables 𝑥𝑟𝑘𝑏
𝑗

 indicate whether an intermediary, on behalf of retailer 𝑟, loads a 𝑏𝑡ℎ container of 

size 𝑘  on journey 𝑗 . Nonnegative integer variables 𝑦𝑟𝑝𝑘𝑏
𝑗

 represent the number of cases shipped by 

retailer 𝑟 of product 𝑝 in container 𝑏 of size 𝑘 for journey 𝑗, while 𝑖𝑟𝑝
𝑢𝑡 represent the amount of inventory 

of product 𝑝 (unit cases) for retailer 𝑟 at destination 𝑢 at time period 𝑡 = 1,2,3, … , |𝒯|. 
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The objective function (1) is comprised of three cost components related to whether containers are 

loaded onto journeys, the quantity of cases of each commodity shipped on loaded containers, and 

inventory using variables 𝑥, 𝑦, and 𝑖, respectively. We seek to minimize total costs by selecting maritime 

journeys to route cargo via containers to satisfy demand at destinations. Constraint set (2) ensures 

containers are only loaded on existing journeys, while constraint sets (3) and (4) ensure that container-

level volume and weight capacities are each respected. Constraint set (5) breaks arbitrary symmetry by 

ensuring that, for identical sized-containers, smaller indexed slots are filled before larger indexed slots. 

Finally, constraint set (6) maintains flow-balance for all warehouse inventories at destination ports; note 

that nonnegative initial inventories 𝑖𝑟𝑝
𝑢(0)

 are assumed. Variable domains are presented in (7)–(9). 

Objective function (1) includes costs in both the traditional economic sense, as well as environmental, in 

the form of carbon costs. We consider three cost types: fixed (loading and unloading of containers, as well 

as management fees), variable (transportation of goods), and holding costs (related to inventory held in 

earlier time periods, to be used for subsequent demand). Collectively, the constraints ensure that demand 

at destination ports can be met by placing containers in slots on valid journeys, filling them only to their 

weight and volume capacities, and that any excess inventory is held, if not used in a demand period. We 

further note that our model is sufficiently general to accommodate either competitive or coopetitive 

scenarios, such as through demand aggregation. 

4. Computational Studies 

To evaluate the performance of integer optimization model (1)–(9) and explore the related outcomes of 

coopetition and environmental impacts, we now discuss the design of our computational studies. 

4.1. Data Instance Generation 

We have generated our own test instances for two retailers, calibrated using real maritime supply chain 

data based on actual empirical shipments from the retail sector, that is, from actual origin-to-destination 

data. Specific attributes include port locations in China and the United Kingdom (UK); journeys and vessels; 

warehouse, port and transportation cost structures; as well as demand. Recall that each journey 𝑗 

represents a unique vessel 𝑣 ∈ 𝒱 embarking from source port 𝑠 ∈ 𝒮 at time period 𝑡 ∈ 𝒯, traveling at a 

distinct, known average speed, and disembarking at destination port 𝑢 ∈ 𝒰. Small random variations 

were added to the generated values. Having insight into actual international flows provides an important 

contribution in relation to creating data instances. Secondary data sources also were used to corroborate 

vessel capacity, speed and emissions, and those values were based on the vessel name, e.g. COSCO 
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England with some assumptions (AP Moller-Maersk Group 2007, Notteboom and Vernimmen 2009, ECTA 

2011, Merk et al. 2015). The distance between origin and destination ports was calculated using the 

Ports.com website (Sea Routes and Distances, 2018). 

Ten random instances were generated, ranging in number of ports in China and UK, retailers, product 

types, and time periods. The names of the instances reflect those values and are detailed in Table 3. 

Specific examples of parameters are provided in Tables 4 through 6. For example, data instance 

i_d2_s3_r2_p2_t2a features two UK ports (Southampton and Teesport); three Chinese ports (Fuzhou, 

Nanjing and Shekou); two product types (with known weight and volume); and two time periods. Data 

instance i_d2_s3_ r2_p2_t2b features different port locations (Hong Kong, Nanjing, and Tianjin in China, 

and Felixstowe and Southampton in the UK), with different values for other attributes. Each data instance 

contains values for the following parameters: ‘Journey’, ‘Supply’, ‘Demand’, ‘Inventory’, ‘Fixed Costs’, 

‘Other Management Costs’, Unit Holding Cost’, ‘Product Attributes’, ‘Container Attributes’, ‘CO2 fixed 

emissions, ‘CO2 Holding emission’. 

For coopetition, we considered the setting where the two retailers had their weekly demand per product 

type aggregated. Accordingly, the same test instances were used for our competition and coopetition 

experiments, where for the latter, the weekly demands per product type are combined between the two 

retailers. 

Table 3. Details of ten test instances designed for computational experiments. 

Instance Instance Name 
Number of 
Journeys 

Destination 
Ports (UK) 

Source 
Ports (China) 

Retailers Products 
Time 

Periods 

1 i_d2_s3_ r2_p2_t2a 18 2 3 2 2 2 

2 i_d2_s3_ r2_p2_t2b 21 2 3 2 2 2 

3 i_d2_s5_ r2_p3_t3a 34 2 5 2 3 3 

4 i_d2_s3_ r2_p3_t5a 68 2 3 2 3 5 

5 i_d2_s5_ r2_p2_t2a 18 2 5 2 2 2 

6 i_d2_s3_ r2_p3_t5b 84 2 3 2 3 5 

7 i_d2_s5_ r2_p5_t5a 139 2 5 2 5 5 

8 i_d2_s10_ r2_p3_t5a 151 2 10 2 3 5 

9 i_d2_s10_ r2_p5_t10a 210 2 10 2 5 10 

10 i_d3_s10_r2_p5_t10a 273 3 10 2 5 10 
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Table 4. Exemplary fixed and other management cost data (£). 

Port 
Fixed Costs for Container Size Other 

Management 
Costs 20' 40' 40'HC 45' 

Southampton 110 110 110 147 36 

Teesport 130 130 130 174 24 

Shekou 106 203 203 257 15 

Fuzhou 87 131 131 171 14 

Nanjing 89 133 133 172 16 

 

Table 5. Container-level data; CO2 emissions estimates from Geerlings and van Duin (2011). 

Container Size CBM Max payload (kg) 
CO2 Emissions (g) for 
Loading / Unloading 

20' 33 21,710 29,800 

40' 68 26,710 53,640 

40'HC 76 26,490 53,640 

45' 86 25,600 59,600 

 

Table 6. Exemplary CO2 emissions for holding inventory in warehouses at destination ports. 

Product Destination Port CO2 g/per case 

1 Southampton 0.001365 

2 Southampton 0.002505 

1 Teesport 0.000182 

2 Teesport 0.000334 

 

4.2. Computational Environment 

All computational experiments were conducted on a machine with 64GB of RAM, an Intel(R) Core(TM) i7-

6700HQ CPU @ 2.60GHz processor, and running Windows 10 Enterprise. Python was used for the 

development of the integer optimization model, as well as all corresponding analyses. Gurobi 7.5 was 

used to conduct the optimization for the associated integer optimization problems (Gurobi 2019). The 

MIPFocus parameter was set to prove optimality, and a time limit was set as appropriate. 

 

4.3. Information Available after a Single Optimization Run 

We use the data detailed in Section 4.1 to generate specific test instances of optimization model (1)-(9). 

Upon solving, a rich array of output is available to inform managerial decision-making. In particular, the 

output of the model provides an optimal shipping plan of how to place products and quantities into 
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various container sizes on particular journeys to satisfy demand at destination ports. Available cost figures 

include economic and carbon port handling costs from loading and unloading containers at source and 

destination ports; distribution costs from fuel, capital, operating, and carbon; and holding costs (both 

economic and carbon) for destination port warehousing. 

We use fuel cost multipliers in the range of {1/9, 1/3, 1, 3, 9}. We use $30 per barrel as a baseline fuel cost, 

with which we associate a multiplier of 1. In 1999, global fuel costs reached a minimum of $7 per barrel, 

which is 0.23 of the baseline value of $30, and so encompassed by 1/9. On the other end, the multiplier 

of 9 is sufficient to cover maximum prices per barrel in recent history. Our fuel cost assumptions follow 

data from the Energy Intelligence Group (2011). Our carbon cost multipliers are also in the range of {1/9, 

1/3, 1, 3, 9}, and use as a baseline recent average carbon market rates of approximately £6.08 per tonne. 

We note that these are conservative estimates. The overall social costs have been estimated to be at least 

$36 (£27) per tonne using an average discounted impact (EPA 2013). Other studies assess the true social 

cost of carbon emissions to be $220 (£167) per tonne (Moore and Diaz, 2015); some high-end estimates 

place this social cost into the thousands of U.S. Dollars for carbon tax values (Tol, 2018). Again, the range 

and baseline we consider, while conservative, encompass the current cost of carbon at nearly £27 per 

tonne, as well as higher costs, to allow for potential future climate change crisis. Hence, we incorporate a 

multiplier on the cost of fuel and carbon emissions that cover current and possible future scenarios. 

 

4.4. Description of Computational Experiments 

We carry out computational experiments on the test instances detailed in Section 4.1. The following four 

sets of experiments were conducted for both the competition and coopetition scenarios: 

1) Computational performance on all ten instances; 

2) Vary CO2 cost multiplier while holding all other parameters fixed; 

3) Vary fuel cost multiplier while holding all other parameters fixed; 

4) Vary both CO2 cost and fuel cost multipliers, while holding all other parameters fixed. 

Computational experiments 2), 3), and 4) were carried out on the largest test instance detailed in Table 3: 

i_d3_s10_r2_p5_t10a. We adopted this to be as realistic as possible, and, correspondingly, to provide 

greater insights. 
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5. Results and Analysis of Computational Experiments 

 

The results of the computational experiments discussed in Section 4.4 are further detailed in this Section. 

 

5.1. Results of Computational Performance on All Ten Instances 

The first set of tests involved baseline fuel costs and carbon costs; and used a four-hour (14,400 seconds) 

time limit for each optimization solve. Table 7 details the computational results for both the competition 

scenario (columns 3 through 5), and the coopetition scenario (columns 6 through 8). 

As can be seen in Table 7, the first six instances solve within the time limit of four hours (indeed, in under 

one minute) for both the competition and coopetition scenarios. Moreover, instance 8 in the coopetition 

scenario solved in approximately one minute. This is perhaps due to the smaller number of product types 

(< 5), as products are allocated at the container level. Instance 10 in the coopetition scenario also solves 

under the time limit. For all other instances and scenarios, the time limit of four hours is reached prior to 

proving optimality. Even so, the optimality gap demonstrates that all solutions and scenarios are within 

1% of optimality, with the exception of instance 7 for the coopetition scenario, for which the gap is just 

over 1%. While computational performance is not the main focus of our study, we believe that formulation 

(1)–(9), at least for some larger instances and scenarios shown in Table 7, is a challenging optimization 

problem to solve to optimality. 

Table 7. Computational results on all ten instances, under both competition and coopetition. 

  Competition Scenario Coopetition Scenario 

Instance Instance Name Time (s) Opt Gap Total Cost Time (s) Opt Gap Total Cost 

1 i_d2_s3_ r2_p2_t2a < 5 0% £1,569 < 5 0% £1,540 

2 i_d2_s3_ r2_p2_t2b < 5 0% £1,463 < 5 0% £1,461 

3 i_d2_s5_ r2_p3_t3a 17 0% £3,278 < 5 0% £2,748 

4 i_d2_s3_ r2_p3_t5a 38 0% £5,071 52 0% £5,038 

5 i_d2_s5_ r2_p2_t2a 36 0% £2,382 16 0% £2,057 

6 i_d2_s3_ r2_p3_t5b 41 0% £3,211 27 0% £2,979 

7 i_d2_s5_ r2_p5_t5a 14,407 0.4% £6,980 14,410 1.1% £6,779 

8 i_d2_s10_ r2_p3_t5a 14,433 0.8% £5,951 61 0% £5,666 

9 i_d2_s10_ r2_p5_t10a 14,455 0.7% £16,749 14,412 0.3% £16,568 

10 i_d3_s10_r2_p5_t10a 14,437 0.4% £24,387 10,491 0% £24,062 
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Of note, is that the total cost for coopetition is less than the total cost of competition for every instance 

in Table 7. In every instance, coopetition does provide some measure of financial benefit, albeit the 

percent savings range from as little as 0.1%, to up to 16.2%. These results suggest that careful examination 

of the coopetition context is necessary. 

 

5.2. Preliminary Analysis and Results 

We consider how the solution to instance 10 (i_d3_s10_r2_p5_t10a), which is the largest test instance, 

responds to changes in the CO2 cost multipliers and fuel cost multipliers – both separately, and jointly. We 

used five levels of cost multipliers, namely those in the set {1/9, 1/3, 1, 3, 9}, leading to 25 combinations 

of fuel and CO2 cost multipliers. Each of these 25 combinations represented a unique test instance for 

optimization model (1)-(9), as was solved as described in Section 4.2, with a time limit of 3 hours. We 

evaluated the results under both the completion and coopetition scenarios. Moreover, because our 

mathematical models estimate fuel costs indirectly via a regression model based on vessel speed and TEU 

capacity (detailed in Appendix B), there are total fuel costs available, but no direct units of fuel 

consumption. Hence, as a proxy for consumption, for each of the 25 instances we use the normalized fuel 

cost proxy by dividing the total fuel cost for any particular instance by the associated fuel cost multiplier. 

So, for example, for a specific run with a fuel cost multiplier of three, dividing the total fuel costs for that 

instance by 3 gives the normalized fuel cost value. 

 

The overall results show that the coopetition scenario is less sensitive to changes in fuel and CO2 cost 

multipliers than the competition scenario. The reason for this counterintuitive finding may be that the 

competition scenario is already highly efficient, mainly due to the separate high container volume the two 

retailers handled. More detail on this and other findings derived the application of the model are present 

in the following sections.  

 

5.2.1. Varying CO2 Cost Multipliers 

The values of the CO2 multiplier were varied in the range {1/9, 1/3, 1, 3, 9} and the results analyzed. As 

Figures 1 and 2 show, only marginal differences exist between the competition and coopetition scenarios 

when the CO2 cost multiplier varies. The total CO2 emissions under competition are slightly higher than 

the total CO2 emissions under coopetition, whereas the values of total cost under coopetition are slightly 

lower than the values of total cost under competition. Coopetition scenarios appear to be slightly better 
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in terms of cost and slightly worse concerning carbon efficiency when compared to the competition 

scenarios. 

  

Figure 1. Competition scenarios when varying CO2 cost multipliers 

 

 

Figure 2. Coopetition scenarios when varying CO2 cost multipliers 

 

Observation 1: While there are some modest economic benefits under coopetition for shipping container 

management, the resulting tradeoff is slightly poorer environmental performance. 

 

Figures 1 and 2 also show that when the CO2 cost multiplier increases from 1/9 to 9, the rise in the total 

cost is just above 14%, and at the same time, for the same values of CO2 cost there are decreases in CO2 

emissions between 18 and 20%. This holds true under both competition and coopetition. Furthermore, 

the same rise in the CO2 cost multiplier produces less sharp decreases in total fuel cost (between 4.36% 

and 8.13%). This may be due to the model compensating for the rise in the cost of CO2 by assigning 

containers to more efficient journeys, as well as better allocation of products to containers and containers 

to vessels. 

 

Observation 2: Under increasing CO2 costs, the coopetition scenario is slightly less sensitive in CO2 

emissions reductions. 

 

CO2 cost 

multiplier 

(1/9 to 9) 

Total CO2 emissions 

79.0 Tn to 63.4 Tn 

(19.69%) 

Total cost  

£24.0K to £27.4K  

(14.15%) 

Total fuel cost  

£1.6K to £1.5K  

(8.13%) 

CO2 cost 

multiplier 

(1/9 to 9) 

Total CO2 emissions 

79.2 Tn to 64.9 Tn 

(18.09%) 

Total cost  

£23.7K to £27.2K  

(14.70%) 

Total fuel cost  

£1.7K to £1.6K  

(4.36%) 
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Observation 3: Under increasing CO2 costs, the competition scenario is more sensitive to environmental 

factors, while the coopetition scenario is more sensitive to economic factors (costs). 

 

Observation 4: Under increasing CO2 costs, environmental co-benefits of fewer emissions and less fuel 

usage occur for both the competition and coopetition scenarios. 

 

5.2.2. Varying Fuel Cost Multipliers 

The values of the fuel multiplier were varied in the range {1/9, 1/3, 1, 3, 9} and the results analyzed. 

Figures 3 and 4 present the resulting total costs, total CO2 emissions and total fuel costs. Similar to the 

results obtained when varying the CO2 cost multiplier, there are very small differences between 

competition and coopetition scenarios. The total CO2 emissions are nearly the same for coopetition and 

competition, whereas the values of total cost under coopetition are slightly lower than the values of total 

cost under competition. For example, for a fuel cost multiplier of 9, the total cost of the competition 

scenario is £35.9K, which is very close to the total cost of the equivalent coopetition scenario (£35.7K). 

Coopetition scenarios are just slightly better in terms of cost and just slightly less carbon efficient than 

competition scenarios. These results further underscore Observation 1. 

 

 

Figure 3. Competition scenarios when varying fuel cost multipliers 

 

 

Figure 4. Coopetition scenarios when varying fuel cost multipliers 

Fuel cost 

multiplier 

(1/9 to 9) 

Total CO2 emissions 

86.7 Tn to 64.9 Tn 

(25.1%) 

Total cost  

£22.9K to £35.9K  

(56.62%) 

Total fuel cost  

£0.2K to £12.37K  

(6,225%) 

Normalized fuel cost proxy values 

£1.8K to £1.4K  

(21.7%) 

Fuel cost 

multiplier 

(1/9 to 9) 

Total CO2 emissions 

86.5 Tn to 64.9 Tn 

(24.99%) 

Total cost  

£22.5K to £35.7K  

(58.42%) 

Total fuel cost  

£0.2K to £12.41K  

(6,231%) 

Normalized fuel cost proxy values 

£1.8K to £1.4K  

(21.8%) 
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When the fuel cost multiplier rises from 1/9 to 9, Figures 3 and 4 also show that the rise in the total cost 

is just above 56%, and the decreases in CO2 emissions is about 25%. Moreover, the increase in total fuel 

cost generated is sharp, just above 6,220%. For the same rise in the CO2 cost multiplier (see Figures 1 and 

2), the decrease in total fuel cost is much less sharp. Given that the fuel cost multiplier rises from 1/9 to 

9 (8,100%), the fuel cost increase actually rises at a less steep margin, demonstrating that more efficient 

routing is being chosen. This situation is captured in the normalized fuel cost values, which actually 

decrease by almost 22% in each scenario. 

 

Observation 5: Under increasing fuel costs, environmental co-benefits exist through reductions in carbon 

emissions and less fuel usage. 

 

Figures 3 and 4 also show that there are nearly no differences in the values of normalized fuel costs 

generated by competition and coopetition scenarios. 

 

Observation 6: Under increasing fuel costs, there are no significant cost (economic) or environmental 

advantages associated between the competition or coopetition scenarios. 

 

When comparing Figures 1 and 2 with Figures 3 and 4, one of the key findings is that carbon emissions in 

the model are more sensitive to increases in the value of fuel cost multipliers than rises in the values of 

the CO2 cost multiplier. This fact may be due to some lower constraint limit on how much fuel can be 

saved due to shipping requirements. We still make a general observation requiring more investigation. 

 

Observation 7: As a percentage, carbon emissions changes are more sensitive to fuel cost changes than 

to carbon emissions cost changes. 

 

5.2.3. Varying CO2 and Fuel Cost Multipliers Simultaneously 

As Figures 5 and 6 show, comparing like-with-like competition and coopetition instances indicates that 

the values of total CO2 emissions, total cost and total fuel costs are very similar. However, at the lower 

range of values of CO2 cost and fuel cost multipliers (1/9), the competition scenario has a slightly lower 

value of CO2 emissions (89.4 tonnes) than the coopetition scenario (91.5 tonnes). Even so, the values of 

total costs under the competition and coopetition scenarios are very similar, and in some cases very 
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slightly higher under competition. For example, for the instance with CO2 cost and fuel cost multipliers 

both equal to 9, the total cost under competition is £38.7K, whereas under coopetition it is £38.5K. 

Figures 5 and 6 also show that the combined effect of increases of CO2 cost and fuel cost multipliers from 

1/9 to 9 generate very sharp rises in total fuel cost of at least 6,770%. Furthermore, this combined effect 

also produces an increase in total cost of about 62% across competition scenarios, and of almost 64% 

across coopetition scenarios. Furthermore, the total CO2 emissions decrease between 43% and 46% with 

this combined effect at the extreme cost ranges. The combination of increases in fuel and CO2 cost 

multipliers also generate increases in total fuel cost of 6,884% in the case of competition scenarios and 

6,776% in the case of coopetition scenarios, which when compared with the rise in multiplier levels 

(8,100%) again demonstrates more efficient routing strategies under higher CO2 and fuel costs. 

In addition, Figures 5 and 6 show that the values of normalized fuel cost values are very similar under the 

competition and coopetition scenarios. This indicates that both competition and coopetition are able to 

identify more fuel-efficient strategies. 

Additional observations can be made when comparing the single cost alterations that appeared in Figures 

1-4 to overall carbon emissions and fuel savings when there are joint alterations in costs as shown in 

Figures 5 and 6. Two of these observations relate to the relative marginal sensitivities for carbon and fuel 

emissions. Overall, we see that marginal changes in fuel usage due to joint costs changes are greater than 

marginal changes in carbon emissions. 

 

Observation 8: When there is a joint increase in fuel costs and carbon emissions costs, the proxy fuel cost 

(consumption) reduction shows a relatively insignificant improvement over when only one cost (fuel or 

carbon emissions costs) is increased. 

 

  

Figure 5. Competition scenarios when varying both CO2 and fuel cost multipliers 

Fuel and 

CO2 cost 

multipliers 

(1/9 to 9) 

Total CO2 emissions 

89.4 Tn to 61.3 Tn 

(43.33%) 

Total cost  

£22.5K to £38.7K  

(62.15%) 

Total fuel cost  

£0.2K to £12.29K  

(6,884%) 

Normalized fuel cost proxy values 

£1.8K to £1.4K  

(22.6%) 
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Figure 6. Coopetition scenarios when varying both CO2 and fuel cost multipliers 

 

A final observation we make with the joint changes in carbon emissions and fuel costs focuses on the 

competitive environments. Whereas in previous single cost changes to either fuel or carbon emissions, a 

coopetition context was less sensitive on environmental dimensions than the competitive context. But, in 

the joint situation we see that coopetition has greater sensitivity than competition environments with 

joint cost increases. That is, over the joint increase cost ranges in the coopetition case there are 45.78% 

and 23.1% decreases in carbon emissions and proxy fuel costs (consumption), versus 43.33% and 22.6% 

decreases in each for the competition case. 

 

5.3. Secondary Analysis and Results 

Tables 8 and 9 synthesize various results depicted in Figures 5 and 6. Tables 8 and 9, for competition and 

coopetition scenarios respectively, include the results of parametric ranges for fuel cost and CO2 costs, 

represented in the rows. The columns include, in order: total solution cost, total CO2 emissions, total fuel 

cost, and normalized fuel cost values. Table entries provide an overview of the observations. Each entry 

identifies the direction of the correlation, as well as the effect of cross-factor relationships. For example, 

the first entry of Table 8 details how the total cost (GBP) is affected by fuel multipliers ranging from factors 

of 1/9 to 9 of the baseline value of 1. For two values of the CO2 cost multiplier (1/9 and 9), positive 

correlations in total cost exist with respect to increasing fuel costs, and these trends in total cost are 

similar whether the CO2 multiplier is low (1/9) or high (9). This result is not the same for other dimensions, 

as can be seen in other entries. 

Of those varied, the fuel cost multiplier appears to be the most dominant factor. This is primarily due to 

fuel cost representing a substantial fraction of the overall shipping cost. When the fuel cost multiplier 

increases from 1/9 to 9, the total fuel cost under coopetition and competition rises very sharply; though 

Fuel and 

CO2 cost 

multipliers 

(1/9 to 9) 

Total CO2 emissions 

91.5 Tn to 61.7 Tn 

(45.78%) 

Total cost  

£22.1K to £38.5K  

(63.90%) 

Total fuel cost  

£0.2K to £12.34K  

(6,776%) 

Normalized fuel cost proxy values 

£1.8K to £1.4K  

(23.1%) 
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at a lower rate than the multiplier value. Similarly, sharp increases in total fuel cost caused from fuel cost 

multiplier increases occur across different CO2 cost multiplier ranges; the CO2 cost multiplier does not 

seem to mitigate sharp fuel cost increases from increased fuel cost multipliers. This latter observation sets 

the foundation for the normalized fuel cost value. If the total fuel cost is the same factor of increase as 

the multiplier, then one would expect there to be only negligible influence on fuel consumption as the 

fuel cost increases. However, as the fuel cost multiplier increases, we actually see that the normalized fuel 

cost value decreases. Hence, large rises in the fuel cost multiplier reveal efficiencies in fuel cost when 

normalized to the baseline, in the range of 22% to 23%. 

Table 8. Overview of the results derived from competition scenarios 

Multiplier Total cost (GBP) Total CO2 emissions 
(tonnes) 

Total fuel cost (GBP) Normalized fuel cost 
proxy values 

Fuel cost: 
1/9 to 9 

Positive correlations, steady 
increases in total cost for increasing 
values of CO2 cost multiplier, similar 
trends for different values of fuel 
cost multiplier. 
 
CO2 cost multiplier = 1/9 
22.5K (1/9)  24K (1)  35K (9) 
 
CO2 cost multiplier = 9 
26K (1/9)  27.4K (1)  38.7K (9) 

Negative correlations, 
sharper decreases in 
tonnes of CO2 generated 
for lower values of CO2 
cost multiplier. 
 
CO2 cost multiplier = 1/9 
89.4K (1/9)  79K (1)  
65K (9) 
 
CO2 cost multiplier = 9 
65K (1/9)  63.4K (1)  
61.2K (9) 

Positive correlations, 
extremely sharp rises in 
total fuel cost when the 
fuel cost multiplier 
increases, regardless of 
values of CO2 cost 
multiplier. 
CO2 cost multiplier = 1/9 
0.196K (1/9)  1.65K (1) 
 12.37K (9) 
 
CO2 cost multiplier = 9 
0.17K (1/9)  1.5K (1)  
12.29K (9) 

Negative correlations, 
steady decreases in 
normalized fuel cost 
proxy values when the 
fuel cost multiplier rises. 
The decreases are 
greater when the CO2 
cost multiplier is lower. 
CO2 cost multiplier = 1/9 
1.8K (1/9)  1.6K (1)  
1.4K (9) 
CO2 cost multiplier = 9 
1.6K (1/9)  1.5K (1)  
1.4K (9) 

CO2 cost: 
1/9 to 9 

Positive correlations, slight rises in 
total cost for different values of CO2 
cost multiplier, similar trends for 
different values of fuel cost 
multiplier. 
 
 
Fuel cost multiplier = 1/9 
22.5K (1/9)  22.9K (1)  26.1K (9) 
 
Fuel cost multiplier = 9 
35.5K (1/9)  35.9K (1)  38.7K (9) 

Negative correlations, 
sharper reductions in 
tonnes of CO2 generated 
for lower values of fuel 
cost multiplier. 
 
Fuel cost multiplier = 1/9 
89K (1/9)  86K (1)  
65K (9) 
Fuel cost multiplier = 9 
65K (1/9)  64.9K (1)  
61K (9) 

Negative correlations, 
slight reductions in total 
fuel cost when the CO2 
cost multiplier increases, 
similar trends for 
different values of fuel 
cost multiplier. 
 
Fuel cost multiplier = 1/9 
0.198K (1/9)  0.195K 
(1)  0.176K (9) 
Fuel cost multiplier = 9 
12.37K (1/9)  12.37K 
(1)  12.29K (9) 

Negative correlations, 
slight decreases in 
normalized fuel cost 
proxy values when the 
CO2 cost multiplier 
increases. 
Fuel cost multiplier = 1/9 
1.8K (1/9)  1.8K (1)  
1.6K (9) 
Fuel cost multiplier = 9 
1.4K (1/9)  1.4K (1)  
1.4K (9) 

 

As Tables 8 and 9 demonstrate, the fuel cost multiplier has positive correlations with the total cost; higher 

multipliers have higher total costs. This trend is similar for different values of CO2 cost multipliers, which 

also shows that the CO2 cost multiplier does not greatly impact the trend between fuel cost multiplier and 

total cost. The results also show that as the CO2 cost multiplier increases, the normalized fuel cost values 

decrease. This demonstrates a modest effect of fuel efficiencies under rising CO2 costs. 
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Table 9. Overview of the results derived from coopetition scenarios 

Multiplier Total cost (GBP) Total CO2 emissions (Tonnes) Total fuel cost (GBP) Normalized fuel cost proxy 
values 

Fuel cost: 
1/9 to 9 

Positive correlations, steady 
rises in total cost for different 
values of CO2 cost multiplier, 
similar trends for different 
values of fuel cost multiplier. 
 
CO2 cost multiplier = 1/9 
22K (1/9)  23.7K (1)  35.3K 
(9) 
CO2 cost multiplier = 9 
25.7K (1/9)  27K (1)  38.5K 
(9) 

Negative correlations, 
sharper reductions in tonnes 
of CO2 generated for lower 
values of CO2 cost multiplier. 
 
CO2 cost multiplier = 1/9 
91.4K (1/9)  79.2K (1)  
65.4K (9) 
 
CO2 cost multiplier = 9 
65K (1/9)  64.9K (1)  
61.7K (9) 

Positive correlations, drastic 
rises in total fuel cost when 
the fuel cost multiplier 
increases, regardless of 
values of CO2 cost multiplier. 
CO2 cost multiplier = 1/9 
0.198K (1/9)  1.7K (1)  
12.34K (9) 
CO2 cost multiplier = 9 
0.179K (1/9)  1.6K (1)  
12.34K (9) 

Negative correlations, 
steady decreases in 
normalized fuel cost proxy 
values when the fuel cost 
multiplier rises. The 
decreases are greater when 
the CO2 cost multiplier is 
lower. 
CO2 cost multiplier = 1/9 
1.8K (1/9)  1.7K (1)  
1.4K (9) 
CO2 cost multiplier = 9 
1.6K (1/9)  1.6K (1)  
1.4K (9) 

C02 cost: 
1/9 to 9 

Positive correlation, slight rises 
in total cost for different 
values of CO2 cost multiplier, 
similar trends for different 
values of fuel cost multiplier. 
 
 
Fuel cost multiplier = 1/9 
22.1K (1/9)  22.5K (1)  
25.7K (9) 
 
Fuel cost multiplier = 9 
35.4K (1/9)  35.7K (1)  
38.5K (9) 

Negative correlations, 
sharper reductions in tonnes 
of CO2 generated for lower 
values of fuel cost multiplier. 
 
 
Fuel cost multiplier = 1/9 
91.5K (1/9)  86.5K (1)  
65K (9) 
Fuel cost multiplier = 9 
65.4K (1/9)  64.9K (1)  
61K (9) 

Negative correlations, very 
small reductions in total fuel 
cost when the CO2 cost 
multiplier increases, similar 
trends for different values of 
fuel cost multipliers. 
 
Fuel cost multiplier = 1/9 
0.198K (1/9)  0.195K (1)  
0.176K (9) 
Fuel cost multiplier = 9 
12.37K (1/9)  12.37K (1)  
12.29K (9) 

Negative correlations, slight 
decreases in normalized fuel 
cost proxy values when the 
CO2 cost multiplier 
increases. 
 
Fuel cost multiplier = 1/9 
1.8K (1/9)  1.8K (1)  
1.6K (9) 
Fuel cost multiplier = 9 
1.4K (1/9)  1.4K (1)  
1.4K (9) 

 

The fuel cost multiplier appears to have a negative correlation with the total tonnes of CO2 emissions 

across CO2 cost multiplier values, as well as with the normalized fuel cost values. There are sharper 

decreases in total CO2 emissions for lower values of CO2 cost multipliers, which again shows that the 

dominant factor is the fuel cost multiplier rather than the CO2 cost multiplier. For lower levels of fuel cost 

multipliers, the normalized fuel cost values are somewhat sensitive to CO2 cost multiplier increases, but 

this effect disappears for larger fuel cost multipliers. 

Tables 8 and 9 also demonstrate that increases in the CO2 cost multiplier generate slight rises in total cost. 

There are similar trends between the CO2 cost multiplier and total cost for different values of the fuel cost 

multiplier. There is a negative correlation between the CO2 cost multiplier and total CO2 emissions. Rises 

in the CO2 cost multiplier causes reductions in total CO2, and these reductions are sharper for lower values 

of the fuel cost multiplier. When fuel cost multipliers are low, the effect of CO2 cost multipliers on CO2 

emissions becomes apparent, as they represent a larger percentage of costs. At the same time, increases 

in CO2 cost multiplier generate very small reductions in the total fuel cost. 
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(a) Total cost (b) Total CO2 emissions 

 

(c) Total fuel cost (d) Normalized fuel cost values 
 

Figure 7. Visualizing competition scenarios when varying both CO2 and fuel cost multipliers on 
the largest test instance (i_d3_s10_r2_p5_t10a) 

Figures 7 and 8 show, in general, that coopetition scenarios have very marginally lower total cost than 

competition scenarios; however, coopetition scenarios have very slightly higher fuel costs and total CO2 

emissions than competition scenarios. 

When compared with competition across all ten test instances in Table 3, coopetition appears to have 

slightly lower fixed costs, as even though they have a few more containers, the smaller containers cost 

less to load. Coopetition appears to have slightly higher variable costs, while the strategy allows for more 

full packing of containers, the strategy results in shipping a few more, yet smaller in size, containers. This 

leads to slightly higher CO2 emissions and fuel costs. Moreover, coopetition appears to have lower 
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inventory costs at destination port warehouses, as products can be packed into attractive journeys to 

arrive when needed. There are also efficiencies that appear to arise from loading products into containers; 

when there are more product types, there are more ways to fully utilize containers. These efficiencies are 

further emphasized under coopetition. 

  

(a) Total cost (b) Total CO2 emissions 

 

(c) Total fuel cost (d) Normalized fuel cost values 

 

Figure 8. Visualizing coopetition scenarios when varying both CO2 and fuel cost multipliers on 
the largest test instance (i_d3_s10_r2_p5_t10a) 
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6. Discussion and Conclusions 

 

Global retail supply chains are heavily reliant on efficient container shipping. This study focuses on how 

shipping intermediaries such as 4PLs can enable efficiency gains in the distribution of retail freight 

containers. We develop an integer optimization model that integrates both economic and environmental 

maritime shipping factors into the objective function to solve the port-to-port journey selection and cargo 

routing problem. 

We study two scenarios, namely competition and coopetition, to evaluate the viability of coopetition as a 

strategy for container shipping distribution operations. We generate a variety of test instances that are 

calibrated with real maritime supply chain data from two large UK retailers. Using these instances, we 

present a robust set of computational experiments that focuses on journey selection and cargo routing 

sensitivity under changes to fuel and carbon costs, respectively. We also contribute to the literature by 

estimating the economic and environmental impacts of coopetition in maritime shipping, a topic that has 

received little attention in the literature. A number of observations for future research are also identified. 

The results of our computational experiments may indicate that—while there are some economic benefits 

from a coopetition context for shipping container management—the resulting tradeoff is poorer 

environmental performance. The coopetition scenario is also slightly less sensitive to CO2 emissions 

reductions when there are increases in carbon costs. Moreover, the competition scenario is more 

sensitive to environmental factors when carbon costs increase, while the coopetition scenario is more 

sensitive to economic factors (costs) when carbon costs increase. In each scenario, environmental co-

benefits of fewer emissions and lessened fuel usage do not occur when carbon costs increase. Even so, 

environmental co-benefits exist through reductions in carbon emissions and less fuel usage when fuel 

costs increase. There are no (economic) cost or environmental benefit advantages associated with the 

competition or coopetition scenarios when fuel costs increase. This result shows that the competition 

scenario is already highly efficient, mainly due to the fact that the two retailers contribute with high 

volumes to their own container allocation operations. Any savings occur when containers cannot be filled 

with products from one retailer, so the 4PL fills some containers with cargo from both retailers. Also, there 

could be the presence of indirect container consolidation that is not visible by either of the retailers who 

participated in this study; therefore, this might indicate an important policy opportunity. The greatest 

benefits from an environmental perspective occur when joint environmental cost increases occur. 

Moreover, joint increases in environmental costs result in greater environmental co-benefits in the 
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coopetition case; unlike the situation for single environmental cost improvements, which showed that 

competition contexts had greater environmental benefit. 

Our optimization model is useful for evaluating the feasibility of coopetition in container shipping. 

Moreover, it may also be useful in freight distribution contexts that are similar to container shipping, such 

as inland distribution of containers that use different types of origin and destinations, vehicles, routes and 

transport modes. The benefits of our integer optimization framework would likely be amplified by 

embedding it into a decision support system. Such a system could allow decision-makers to interact with 

the model – adjusting various parameters (e.g. fuel and CO2 costs) or fine-tuning container-to-vessel 

assignments to vessels, and observing model outcomes. While outside of the scope of the current paper, 

it is a possibility for follow-up studies. Finally, although economic benefits occurred from coopetition 

efforts, we do offer a managerial caveat that environmental performance may be influenced negatively. 

Our study suggests some policy implications. If there is a goal by governance agencies to attract 

environmental co-benefits from policy setting, it may be more effective for taxing fuel rather than 

increasing carbon taxes. Although, there is a question of political feasibility, these initial results point to 

this practical outcome. For example, in observation 7, we found that carbon emission reductions are more 

sensitive to increases in fuel costs than in response to carbon emission costs. In this situation, to see better 

performance in carbon emissions reductions, policy makers should probably favor fuel taxes rather than 

carbon taxes. From observations 8 and 9, which also utilize earlier observations, a joint policy of carbon 

and fuel taxes may improve carbon emissions more effectively. Using this joint policy to reduce fuel usage 

will obtain fewer significant improvements than using fuel taxes alone. Policy makers can also consider 

coopetition and competition scenarios to help identify opportunities; if cases of coopetition are prevalent 

and policy makers seek substantial environmental dimension improvements, they should favor joint 

improvements in carbon emissions and fuel taxes. In competition cases, especially for fuel usage 

reductions, a single policy can be relatively effective. 

Although some studies have mentioned that coopetition can prove economically beneficial, our study has 

shown that for the data and model we provide, the advantages of coopetition are quite limited. In fact, 

from an environmental perspective, there might even be a situation where coopetition situations are 

counterproductive. Clearly, more investigation on this counterintuitive finding is needed – for example, 

whether the current competition-based efficiency is so high that it leaves little room for gains from 

coopetition in terms of both economic and environmental efficiency. If the result holds that the economic 

benefits are relatively minimal, then coopetition may not be a viable alternative, as the additional required 
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activities such as consolidation and deconsolidation of cargo in container shipping can generate the need 

of greater economic investments. The reasons why coopetition is better in joint cost increases should also 

be investigated. Each of the ten observations presented were based on initial results obtained from our 

simulations. Each observation can be investigated using case study, empirical data, and long-term broader 

policy-based experiments. There are substantial opportunities in both competitive and environmental 

(fuel and carbon emissions) cost-based studies. 

Our study offers the retail and container shipping industries a number of managerial implications. First, it 

demonstrates the role of a 4PL for consolidation of containers at points of origin, and second, the value 

of such consolidation. While the value may be limited in some cases, merit is apparent in others, and gains 

would certainly increase when considering greater scaling of journeys, ports, retailers, products, and time 

periods. Third, the study shows that in a coopetition scenario, the retailers can have an intermediary 

acting on their behalf. Fourth, this paper highlights a number of policy implications that are likely to affect 

the container shipping industry in the next decade, in particular, in terms of fuel and carbon tax increases.  

Our study has some limitations. Our study used practical and feasible data from actual shipping lines and 

organizations. The derived results arise under some assumptions that include a) all demand must be met; 

b) substitutable, general merchandise is being shipped, which typically has a low storage cost, and thus 

can be ordered in earlier periods to ensure sufficient inventory to meet demand; and c) secondary markets 

exist to sell off any unsold materials. Moreover, having a decision support system that updates parameter 

information would be fitting given the complexity of the model and data requirements. The 

counterintuitive findings may be due to idiosyncratic data and further investigations are required. The 

model only focuses on a limited portion of the maritime supply chain. Broadening the focus to multi-

modal deliveries to and from ports, expanding the supply chain may provide differing results. 

There are several extensions for this work. While our study considered retailers of similar size and 

complexity, thereby assuming the same cost structures, an avenue of future research is to consider 

dissimilar retailers with diverse ranges of unit costs, and the effect that economies of scale may have on 

the model outcomes. Hence, it would be beneficial to test the model with data from a wider range of 

retail cargo owners. Such testing may further reveal the effect of factors such as unit cost, volume scale 

and complexity on the model output and performance of competition and coopetition scenarios. 

It would also be interesting to study the effect of varying fuel taxation levels, to optimize environmental 

co-benefits. Such fuel taxes already exist in the North Atlantic, where in the Emissions Control Area (ECA), 
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fuel needs to be clean fuel. Another scenario would be exploring a form of coopetition where retailers are 

permitted access to previously dedicated shipping lines. The model can also be adapted to a global supply 

chain context with multiple suppliers and markets located in multiple countries (beyond China and the 

UK); care would need to be taken to ensure the computational tractability of the model. The model can 

be applied to different logistics environments, such as inland primary and last-mile distribution, to assess 

the feasibility of coopetition scenarios against competition scenarios. Another fruitful avenue may be 

applying the model to a regional multimodal network that includes road and rail transport modes, as well 

as multiple suppliers, distribution facilities and routes. 
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Appendix A. Computing 𝝋𝒌 

In this section we discuss how we compute the unit time-related CO2 emissions factor 𝜑𝑘, which is the CO2 

emissions to transport one container (TEU) of size 𝑘 one tonne-km. We estimate 𝜑𝑘 using both 1) a TEU 

component 𝛾𝑘, and b) a speed component 𝛽𝑘 that serves as a multiplicative factor. 

The greater the TEUs, the less the per unit contribution of CO2, because of economies of scale. The greater 

the speed, the greater the unit contribution of CO2, due to engine inefficiencies. 

For 𝛾𝑘 we use a piecewise linear function with brackets for TEU sizes, where data points for certain TEU 

values are estimated from midpoints of the ranges sourced from Buhaug et al. (2009), page 131, Table 

9.1. We assume that these CO2 emission values are incurred from an average speed of 15 knots. 

Table A1. CO2 / tonne-km emissions estimates based on TEUs, from Buhaug et al. (2009) 

TEUs kg CO2 / tonne-km 

500 0.0363 

1,500 0.0321 

2,500 0.02 

5,500 0.0166 

8,000 0.0125 

11,000 0.0072 

18,000 0.003 

500 0.0363 

We form TEU brackets from Table A1 and create the piecewise linear (decreasing) function for 𝛾𝑘, fitted 

to the CO2 / tonne-km emissions estimates. So, for a 13,000 TEU vessel, we obtain 𝛾𝑘 = 0.0072 −

((0.0072 − 0.003) ∗ ((13,000 − 11,000)/(18,000 − 11,000))) = 0.006. 

Table A2. Extrapolated data from Maersk infographic (Maersk, 2018). 

Knots % of max (100% speed) CO2 Emissions Rate 

25 100% 100% 

22.5 90% 70% 

20 80% 48% 

17.5 70% 32% 

 

For 𝛽𝑘, we extrapolate data from a Maersk inforgraphic (Maersk 2018). Using the data from Table A2, we 

fit an exponential function 𝑦 = 0.0227𝑒0.1518𝑥 , where 𝑥  is the % of max speed, and 𝑦  is the 
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corresponding CO2 emissions rate. Working with a baseline speed of 15 knots (60%), we obtain a 

corresponding CO2 emissions rate of 22.17%. From this 15 knot baseline speed, we create a new 

exponential function that expresses the increased emission factor 𝛽𝑘  based on increase in knots. This 

gives 𝛽𝑘 = 0.1026𝑒0.1518𝛼, where 𝛼 is the vessel speed, in knots, for a particular journey. Hence, this 

exponential function demonstrates an increasing amount of emissions beyond a baseline speed of 15 

knots. 

Finally, we obtain a vessel's overall CO2 emissions related to transporting one container (TEU) one tonne-

km via the product 𝜑𝑘 = 𝛽𝑘 ∗ 𝛾𝑘. 

 

Appendix B. Estimating Fuel Costs 

In this section we discuss the estimation of unit bunker fuel costs. There appears to be evidence (Psaraftis 

and Kontovas, 2013) that fuel cost varies (at least) cubically with respect to vessel speed, and perhaps 

linearly with respect to total TEU. Hence, we attempt to fit a polynomial model of order 3 to predict the 

fuel cost using total TEU and speed (knots) as regressors. We used recent data (Notteboom and 

Vernimmen, 2009; see Table 3) to conduct the regression. We conducted a multiple linear regression 

model in MATLAB R2016A using the stepwiselm procedure (MathWorks 2019), which returns a linear 

model for all possible variables up to cubic interaction terms; it uses both forward and backward stepwise 

regression to add or remove regressors, and returns the best predictive model. It does so by estimating 

best-fitting beta coefficients for the speed and total TEU regressors, including all terms and their 

interactions up through order 3. We obtain the following linear regression model: 

Estimated bunker fuel costs (in 2009 USD per day) ≈  -127,500 + 23,328*speed - 1417.2*speed2 + 

0.0062727*totalTEU*speed2 + 30.787*speed3. 

Finally, we conducted unit conversions to ensure that associated costs are in 2017 GBP per case of product. 

We use this model to predict the unit transport cost for the simulated journey data that includes speed 

and total TEU. This is a reasonable estimate as, while global bunker fuel prices have varied somewhat 

since 2006, they are at approximately the same level in 2017 as 2006. 
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Appendix C. Estimating Capital and Operating Costs 

Here we discuss the estimation of unit capital and operating costs. We use data from a recent study (Merk 

et al., 2015) to estimate the per case capital and operating variable costs as speed and total TEU vary. The 

cost relationship appears strongly linear in speed and total TEU. Thus, we develop a multiple linear 

regression model to predict cost from total TEU and speed. 

Estimated capital and operating variable costs (in 2015 USD per TEU) ≈ 256.91 – 0.0035846*totalTEU 

– 4.2333*speed 

We conducted unit conversions to ensure that the variable capital and operating costs are in 2017 GBP 

per case of product. 
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