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ABSTRACT 

Computerized systems play a significant role in today’s fast-paced digital economy. Because task demand 

is a major factor that influences how computerized systems are used to make decisions, identifying task 

demand automatically provides an opportunity for designing advanced decision support systems that can 

respond to user needs at a personalized level. A first step for designing such advanced decision tools is to 

investigate possibilities for developing automatic task load detectors. Grounded in decision making, eye 

tracking, and machine learning literature, we argue that task demand can be detected automatically, reliably, 

and unobtrusively using eye movements only. To investigate this possibility, we developed an eye tracking 

task load detection system and tested its effectiveness. Our results revealed that our task load detection 

system reliably predicted increased task demand from users’ eye movement data. These results and their 

implications for research and practice are discussed.  

 

Keywords: human computer interaction, eye tracking, task demand, adaptive decision making, 
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1 Introduction 
Recent advances in specialized hardware and software provide the opportunity to capture and analyze 

physiological measures that can reliably recognize as well as potentially predict changes in user behavior. 

This opportunity in turn makes it possible to envision intelligent decision support systems that can more 

effectively recognize and address user needs at a personalized level [6,30]. A first step towards developing 

such adaptive decision support systems is to investigate intelligent tools that can reliably and unobtrusively 

detect user needs. One such tool is a system that can detect task demand automatically. Task demand plays 

a major role in how people choose to process information and as such has a significant impact on how 

individuals use computers to make decisions [62, 74-76]. Because computers can augment an individual’s 

information processing capacity, it is often assumed that they can help people improve their decisions. 

However, studies report that this is not always the case. Studies show that people often use computers in a 

way to reduce their effort rather than to maximize their accuracy [74-76]. Such technology usage behavior 

is not due to inherent laziness or indifference; whereas accurate, rational decisions are the intention, due to 

limited cognitive capacity people naturally try to conserve their cognitive resources [17,62,71,74-76].  

Because of the significant impact of task demand on technology usage behavior [74-76], the development 

of systems that can detect task demand automatically provides excellent opportunities for addressing user 

needs more effectively. For example, a decision tool enabled with an automatic task load detection system 

can provide feedback or suggestions for the user to help ease cognitive effort, or more effectively use limited 

cognitive resources, thereby helping the user to improve his or her decision accuracy [6,36,68,73].  

We argue that an eye tracking machine learning system is an effective way to detect task demand 

automatically. The integration of eye tracking and machine learning technologies for developing such task 

load detection systems has several important advantages. Because eye movements reflect how people 

visually inspect stimuli, and because vision is our most dominant sense [4,18], eye tracking provides a 

natural method for collecting information about task demand. Eye trackers collect eye movements 
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continuously, thereby providing a moment-by-moment picture of behavior [30]. Modern remote eye 

trackers are integrated into monitors, or can be easily attached to such visual displays. Hence, they can 

collect eye movement behavior unobtrusively, without requiring any additional step or the need for users 

to wear special gear [38,20,64]. Moreover, as eye tracking technology matures, high-quality remote eye 

trackers become increasingly affordable [20]. This in turn, not only makes developing eye tracking task 

load detection systems possible, but also cost effective. 

Combining machine learning with eye tracking to design task load detection systems holds promise not 

only for a dynamic and flexible mechanism for detecting task demand, but also one that is easily scalable. 

The advent of modern machine learning approaches carries the promise of discovering meaningful insights 

even on data sets of massive size. Because machine learning models can generalize from a given set of data 

[24], advanced machine learning eye tracking systems will only improve over time, as the user’s gaze data 

set grows every time they are used.  

In the following sections we establish the framework for our research by providing a brief review of relevant 

theory and literature. We subsequently form a hypothesis to assert that it is possible to develop an 

unobtrusive machine learning task detection system using only user eye movements. We then discuss the 

methodology that we used to design and test our proposed eye tracking task load detection system. Finally, 

we report the results obtained from our investigations and discuss their implication for research and 

practice. 

2 Theoretical Background 
To highlight the need for task load detection tools, we start by a brief discussion of the adaptive decision 

making theory which asserts that by influencing information processing behavior, task demand has a 

significant impact on decision outcome [62]. We use this theory as the framework for developing an eye 

tracking task load detection system [30]. In particular, we argue that a user’s cognitive effort, attempting to 
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meet task demand, is likely to be reflected in his or her eye movements and this information will be distinct 

enough to be detected automatically by a machine learning system.  

To support the suitability of eye movement for building a machine learning task load detector, we review 

relevant eye tracking studies that suggest eye movements can reveal information about cognitive effort. We 

also discuss relevant machine learning studies that have used eye movements to predict various user 

behaviors. 

2.1 Adaptive Decision Making 
Because cognitive effort (attention) is a scarce resource, human information processing behavior is strongly 

influenced by the demands of the task at hand [62,71]. Due to the scarce attentional capacity, people tend 

to intelligently choose an information processing behavior that can effectively meet the task demand while 

conserving valuable cognitive resources. After all, when cognitive capacity is exhausted, the ability to make 

good decisions is seriously compromised, and making good decisions is what people typically strive to do 

[61]. Supporting this point of view, literature in judgment and decision making provides ample evidence 

that task demand plays a significant role in how people go about solving a problem [62]. When making 

decisions, people often use a diverse set of information processing strategies, which differ in how long they 

take to execute, how much demand they put on cognitive resources, and how accurate their results would 

be. When cognitive demand of a decision task is reasonable, people use more effortful strategies (e.g., 

normative strategies), which typically yield better results. When cognitive demand is high, people use less 

effortful strategies to save their cognitive resources. For example, when the task requires people to consider 

only two alternatives, they tend to use an effortful compensatory decision strategy, which allows them to 

evaluate whether good values on some attributes can compensate for bad values on others. However, when 

the task requires people to consider more than two alternatives, they tend to resort to a less effortful non-

compensatory strategy [11,60,61]. This pattern of behavior is also present in children [48]. Additionally, 

task demand can force people to use multiple strategies when completing the same task. For example, when 
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faced with a time limit, people first try to accommodate task demand by increasing their processing speed. 

If this approach is not sufficient to meet the time constraint, they tend to save time by filtering information. 

If these changes are still not sufficient to meet the time demand, people would then switch to a decision 

strategy that would take less time to execute, such as heuristics [61]. Naturally, tasks with higher demands 

will require greater cognitive effort [28].  

2.2 Eye Movement Behavior and Cognitive Effort 

We predominantly use our visual system to collect information from our environment, hence eye tracking 

provides an excellent tool for examining how people attend to and process information [20]. Not 

surprisingly, eye tracking is becoming increasingly popular in investigating user experience and technology 

usage behavior [3,51]. Gaze serves as a reliable indicator of attention, and thus it can reflect cognitive effort 

[10,64,67]. Grounded in eye tracking literature, we discuss four major eye movement behaviors (fixations, 

saccades, blinks, and pupillary responses) that are likely to reveal distinct information about cognitive effort 

in response to task demand. Table 1 provides a summary of the eye movement behaviors and their respective 

parameters that are discussed in this section.  

2.2.1 Fixation 

Fixation refers to a collection of relatively stable gaze points that are near in both spatial and temporal 

proximity. During fixation, the eyes hold steady on an object, and thus fixation reflects attention to a 

stimulus [38]. A number of studies have associated fixation-related metrics to cognitive effort [23,34,44]. 

For example, the number of fixations within an area of investigation (AOI) has been used to compare 

cognitive effort of millennials and baby boomers when viewing a web page [22]. How frequently people 

fixate on an object has also been used to assess cognitive effort in business to consumer (B2C) transactional 

processes, when an option must be selected prior to continuing with the transaction [37]. Additionally, the 

number of fixations has been shown to strongly correlate with task performance [78]. Because task 

performance is also correlated with effort expenditure [62], this result suggests a link between fixation 
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frequency and cognitive effort. Similarly, fixation duration, or the amount of time a user looks at stimuli, 

can be used to measure effort. To attend to a stimulus or an object, the user has to expend effort to maintain 

a steady gaze on the object [20]. Moreover, studies provide evidence that fixation duration increases as 

information processing becomes more effortful [34,57,78]. 

2.2.2 Saccade 

Saccades refer to small, rapid eye movements when jumping from fixating on one object to another [31]. 

While visual information is not processed during saccadic eye movements [20], they still can provide 

information about viewing behavior [38,41]. For example, people tend to exhibit more saccadic eye 

movements when reading long pseudo-words [19]. Similarly, saccade amplitude, or the path traveled by a 

saccade between two consecutive fixations, tends to increase when reading longer words [19]. When 

interacting with an online resource, longer saccadic amplitudes can reflect whether users have become 

familiar with an interface. Having a better internal representation of an interface allows users to move their 

eyes directly to a desired location on the screen, hence producing longer saccadic amplitudes [31]. 

Consistent with this point of view, difficulty in locating information when browsing a webpage is likely to 

impact the duration of saccades. According to the theory of visual hierarchy [29], a stimulus is inspected 

by scanning it through a sequence of visual entry points. Each entry point acts like an anchor, which allows 

the user to scan for information around it. According to this perspective, longer duration of saccadic eye 

movements could indicate increased cognitive effort in finding a suitable entry point into a visual display 

[20].  

2.2.3 Blink 

Blinks are the involuntary act of shutting and opening the eyelids. They are known to reflect changes in 

attention and thus they are likely to reflect an individual’s cognitive effort [64,78]. In particular, fewer 

blinks have been associated with increased attention [53]. For example, a study shows that surgeons had a 

lower number of blinks when performing surgery as compared to when they were engaged in casual 
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conversations [79]. In addition to the number of blinks, the duration of blinks can also indicate cognitive 

effort. For example, shorter blink durations were associated with increased visual workload during a traffic 

simulation task [2]. Similarly, comparing blink data during a hard (math problem solving) and easy task 

(listening to relaxing music), people exhibited shorter blink durations during the hard task [4]. Because of 

its observed association with cognitive effort, blink duration has been used to assess mental effort in 

educational games [39]. The above studies suggest that people often exhibit fewer or shorter blinks during 

more challenging tasks because they want to minimize missing visual information. After all, when the eyes 

are closed during a blink, there is no incoming visual information to process. 

2.2.4 Pupillary Response 

Changes in pupil size, which are controlled by the involuntary nervous system, can serve as a reliable proxy 

of mental effort [5,52,69]. For example, when people are asked to memorize numbers, retain them in 

memory, or perform multiplication, the size of their pupil seems to correlate with the difficulty of the task 

[7,45,63]. Similarly, variation in pupil size can also carry information about cognitive effort [14,21,30]. For 

example, the level of difficulty measured as the number of steps required to complete a task has been shown 

to impact pupil dilation variation. Increased cognitive load measured as implicit and explicit time limit also 

has a significant impact on pupil dilation variation. It is argued that pupil dilation variation is particularly 

effective in detecting the impact of complex decision tasks on users, because these tasks often involve a 

number of smaller subtasks. These subtasks are likely to require different types of mental activity with 

varying levels of difficulty. Consequently, complex decision tasks may result in variability in pupil size 

over the course of the task [14]. Another explanation for the suitability of pupil dilation variation in 

measuring cognitive load is rooted in the adaptive decision making theory which asserts people often switch 

their information processing strategies to conserve their limited cognitive resources. This flexibility in 

adjusting to the decision environment, which involves balancing one’s cognitive load, is likely to be 

detected by the variation in pupil dilation [30]. 
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Table 1. Eye Movement Behaviors and Parameters for Measuring Cognitive Effort 

2.3 Eye Tracking and Machine Learning  
As discussed in the previous section, eye tracking studies provide ample evidence that certain eye 

movement behaviors (i.e., fixations, saccades, blinks, and pupillary responses) have the potential to reveal 

information about cognitive effort. We argue that eye movement behaviors are distinct enough to serve as 

a suitable input for designing machine learning systems. In this section we discuss a number of relevant 

machine learning studies that have successfully used eye movement data to predict a variety of different 

behaviors. Because we use classification to design our proposed task load detection system, we focus on 

those studies that use supervised classification to predict categorical responses from eye movements.  

Using eye movement data, a classification approach was used to predict how well people would solve a 

puzzle with approximately 53% accuracy [27]. In addition to predicting task performance, classification 

has been used to predict user intention from their eye movement data [8]. The authors developed a 

classification system to predict whether study participants intended to give a command to a gaze-based 

interface. Another study used classification from eye movement data of people collaborating on building 

concept maps to distinguish expert participants from novice participants [54].  

Klami et al. [47] used a classification approach to predict from the eye movement data whether the retrieved 

images in a visual search task were relevant to the search terms used. Simola et al. [70] used classification 

Behavior Parameter Source 
Fixation:  
Relatively stable gaze points that are close in 
proximity and time 

Fixation number [22,23,37,78] 

Fixation duration [20,34,44,57,78] 

Saccade: 
Rapid eye movements between fixations  

Saccade number [19] 
Saccade duration [20] 
Saccade amplitude [31,19] 

Blink: 
Involuntary act of shutting and opening the eyelids 

Blink number [53,64,78,79] 
Blink duration [4,2,39] 

Pupillary Response:  
Changes in pupil  

Pupil dilation [5,7,30,45,63,69] 
Pupil dilation variation [14,21,30] 
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to predict whether a user is searching for a word, answering a question, or looking up the most interesting 

title in a given list from user’s eye movement. Marshal [55] examined the states of relaxed and engaged 

users in the context of problem solving using two different statistical models. Kardan and Conti [46] 

classified students’ performance with 71% accuracy using eye movement data. Henderson et al. [35] used 

classification to identify different visual activities (e.g., scene search, scene memorization, reading) using 

ocular events. Najar et al. [59] used eye movements to classify novice vs. advanced learners.  

Steichen et al. [72] used classification to predict visualization task properties, performance on such tasks, 

and user cognitive abilities (visual and verbal working memory, perceptual speed) using basic eye 

movement features. Borji et al. [12] used classification to decode observer performance for estimating the 

ages of people shown in a picture from their eye movements. Finally, Krol and Krol [49] used eye 

movements to classify different decision making tasks.  

Table 2 lists the studies that were reviewed in this section. It also provides information about eye movement 

features that were used in these studies. This list shows that eye movement data has been successfully used 

to detect a variety of behaviors with machine learning, thus providing support for the feasibly of gaze in 

developing a reliable task load detection system. 

 
Table 2. Eye-tracking Machine Learning Classifiers 

Eye-Movement Metrics (Features) Source 

Fixation count and fixation duration [54] 

Fixation duration, total fixation duration, fixation count, visit duration [59] 
Mean and standard deviation of fixation duration, mean and standard deviation of saccade 
amplitude, number of fixations per trial. [35] 
Fixation rate, number of fixations and fixation duration, saccade length, relative saccades 
angle and absolute saccade angle [46] 
Fixation map and histogram of scan path, fixation count, mean fixation duration, mean 
saccade amplitude [12] 
fixation rate, number of fixations, fixation duration, saccade amplitude, relative saccade 
angles, absolute saccade angles [72] 



10 
 
 

 

Total and average duration of fixations, and fixation count [47] 
Fixation count, mean and standard deviation of fixation duration, mean and standard deviation 
of saccade amplitude and saccade direction [70] 

Fixation duration, saccade amplitude, fixation count, fixation rate [27] 

Saccade amplitude, saccade duration, saccade velocity, and saccade acceleration [8] 

Pupil size and point-of-gaze [55] 

Pupil dilation and gaze dispersion [49] 
 

2.4 Hypothesis  
Modern remote eye tracking devices allow us to collect information about user gaze unobtrusively and 

seamlessly (e.g., 60, 120, or 300 samples per second) [38]. The inherently rich and vast amount of eye 

movement signals collected for a user have been shown to provide suitable information for developing 

predictive machine learning systems (Table 2). Because task demand forces decision makers to adjust their 

effort [62], and because eye movements have the potential to carry information about effort (Table 2), we 

argue that it is possible to develop a machine learning system using only eye movement data that can 

automatically and reliably detect task demand: 

Hypothesis: Our proposed eye tracking task load detection system can reliably identify task demand.  

3 Methodology 
To investigate our hypothesis, we developed algorithms for designing and testing our proposed eye tracking 

task load detection system. In the following sections we explain our process in details.  

3.1 Designing the Eye Tracking Task Load Detection System 
To design our eye tracking task load detection system, we developed an algorithm to solve a classification 

problem. Classification refers to the process of identifying the correct category for a new piece of 

information based on prior observations. In this case, we were interested in developing a classifier for our 

system that could identify whether eye movements were collected under lower or higher level of task 
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demand. The design of our eye tracking task load detection system required three major steps. In the first 

step we developed an eye tracking feature set, or set of eye movement metrics, that based on the 

aforementioned literature had the potential to detect task demand. In the second step, we used adaptive 

decision making theory to select an algorithm for designing and testing our task load classifier. In the third 

and final step, we conducted an eye tracking study to capture and prepare eye movement data to implement 

and test our proposed task load detection system. In the following sections we explain how we completed 

each step.  

3.1.1 Step 1: Developing a Set of Eye Movement Metrics (Feature Set) 

We started this step by constructing a set of eye movement parameters that based on the literature reviewed 

in this paper was most likely to reveal cognitive effort (see Table 1). Machine learning feature sets are often 

developed using statistical properties of fundamental parameters. Hence, we expanded our feature set by 

including basic statistical properties, such as mean and standard deviation, for each of the parameters listed 

in Table 1. Recently, pupil data during the saccadic and fixation events has been shown to differ [21], thus 

we considered pupil data for fixations and saccades separately. In addition to average duration values for 

saccades, fixations, and blinks, we also considered their normalized duration metrics. Normalized metrics 

are obtained by dividing the total duration of each parameter by the total task completion time. Additionally, 

we included certain ratios for eye movement behaviors (in particular a new set of pupillometry ratios) that 

could provide additional insight. For example, the ratio of saccades to fixations reveal the amount of time 

spent searching for information, versus the amount of time spent on processing the information visually 

[20]. This in turn can provide insight about cognitive effort. Together, the feature set for our proposed task 

load detection system consisted of thirty different eye metrics. This feature set is displayed in Table 3. 

Table 3. Feature Set: List of Eye Movement Metrics for the Task Load Detection System 
Eye Movement Eye Movement Metrics (Features) 
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Fixation 
Average fixation duration (millisecond) 
Standard deviation of fixation duration 
Normalized fixation number (fixation number/task completion time) 
Normalized fixation duration (total fixation duration/task completion time) 

Saccade 

Average saccade duration (millisecond) 
Standard deviation of saccade duration 
Average saccade amplitude (degree) 
Standard deviation of saccade amplitude 
Normalized saccade number (saccade number/task completion time) 
Normalized saccade duration (total saccade duration/task completion time) 

Blink 
Average blink duration (millisecond) 
Standard deviation of blink duration 
Normalized blink number (blink number/task completion time) 
Normalized blink duration (total blink duration/task completion time) 

Pupil Dilation 

Average pupil dilation (PD) during fixation (millimeter)  
Standard deviation of PD during fixation 
Average pupil dilation variation (PDV) during fixation 
Standard deviation of PDV during fixation 
Average PD during saccade (millimeter) 
Standard deviation of PD during saccade 
Average PDV during saccade 
Standard deviation of PDV during saccade 

Eye Movement 
Ratios 

Average (PD during saccade/PD during fixation) 
Standard deviation (PD during saccade/PD during fixation) 
Average (saccade duration/fixation duration) 
Standard deviation (saccade duration/fixation duration) 
Average (PDV during saccade/PDV during fixation) 
Standard deviation (PDV during saccade/PDV during fixation) 
Normalized saccade duration/normalized fixation duration 
Normalized saccade number/normalized fixation number 

 

3.1.2 Step 2: Selecting an Algorithm 

Classification algorithms are typically selected based on the complexity of the problem at hand. The 

purpose of our task load detection system is to identify task demand operationalized as effort expenditure 

captured by user eye movements during the decision-making process. According to adaptive decision 

making theory [62], effort expenditure resulting from the attempt to balance the conflict between 

maximizing accuracy and minimizing effort using various information processing strategies is highly 
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contingent upon task conditions. For example, when task demand is high people are likely to switch 

between multiple strategies to meet the task demand (e.g., they may increase their processing speed, use 

less information, and/or switch to a less demanding strategy such as heuristics) [61]. Such flexibility in 

decision behavior suggests the need for an algorithm that is suited for processing complex models. Because 

of its ability to identify complex boundaries in predictive models, we selected the Random Forest (RF) 

framework to develop our classifier.  

The random forest algorithm solves a classification problem by creating several individual models, or trees, 

using bootstrapping [33]. Individual trees are developed by randomly selecting sub-samples from the 

original dataset. Each individual tree is a type of classifier that uses the divide-and-conquer methodology 

combined with bootstrapping. Individual trees are considered weak learners in the random forest 

framework. The algorithm generates a strong learner by combining the weak learners into a single overall 

tree that can produce more accurate results than any of the weak learners [33].  

Figure 1a displays the bootstrapping algorithm that we designed for our random forest classifier. Our 

bootstrapping methodology causes each sample to appear exactly 200 times in the computation. Each data 

point is taken with equal probability, hence some of the samples may appear several times in the bootstrap 

set and others not at all. Consistent with prior research, we use 200 number of bootstrap replications [25]. 

A very large bootstrap replication is not suggested as it results in a computational burden.  

Our eye tracking classifier, which is designed to identify whether eye movements are captured during lower 

or higher level of task demand, requires two distinct phases. In the first phase, the classifier is trained with 

a set of (eye movements, task condition) data. During this training phase the system has access to both the 

collected eye movement data as well as the task condition under which the data is collected. The second 

phase is the test phase, which assesses the success of the training phase. With a successful training, the 
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system will be able to take as input a new set of eye-movement data only (without information about task 

condition) and reliably detect the task condition under which the eye movement data was collected. 

The dataset for our random forest classifier, which is generated by bootstrapping, is divided into two distinct 

“training” and “test” sets (80% and 20%, respectively) [33]. The training dataset is used in the training 

phase to train the classifier and the test dataset is used in the test phase to assess the performance of the 

trained classifier. The performance assessment in the test phase is achieved by measuring the level of error 

in answering questions about the task condition on the test data. The test phase in our algorithm uses 

resampling methods (bootstrapping) to estimate the generalization error of the classifier [9,26,65]. As 

shown in Figure 1b, each tree (RFi) is trained with a bootstrapping sample (training data) and tested with 

the remaining data in the original set (test data). The accuracy of the classifier is then measured by 

comparing the output of each individual tree with the task condition of its test data. If there is a match, the 

error variable for that particular subtree is set to 0, or 1 otherwise. The average error value for the subtrees 

represents the generalized error for the random forest classifier. 

 

1. Initialization 

1.1. Set number of replications i = 200 

2. Training and Test 

2.1. At random, generate training sets out of the feature matrix dataset and use these for training 

the untrained classifier. Training set generation is done "with replacement". 

2.2. The resulting trained classifiers are tested on the corresponding test data. 

2.3. Repeat this procedure i times. 

3. Classifier Accuracy 

3.1. Compute the classification error at each replicate. 

3.2. Calculate the bootstrapping generalized error by averaging over the errors of all i classifiers. 

1a. Bootstrapping Algorithm 
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Figure 1. Bootstrapping algorithm and process 

As mentioned earlier, we chose the random forest methodology to detect task load because random forest 

is commonly used for modeling complex behaviors (in our case classifying eye movements resulting from 

users’ attempt to meet a higher or lower task demand). In addition to the ability to detect complex 

boundaries, random forests are particularly effective for eye movement datasets. Eye tracking studies 

typically provide rich data from a limited number of eye movement recordings. For example, as we explain 

in the next section, our eye tracking experiment produced rich information (30 features shown in Table 2) 

from 48 eye movement recordings (participants). This data is a good candidate for random forest because 

random forests can process the large sets of features without having to reduce the selected variables to a 

manageable set and because bootstrapping in random forest can address the smaller sample size that is 

typical in eye tracking studies. Furthermore, random forests are robust even when the data is not normally 

 
1b. Bootstrapping Process 
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distributed. The fast runtime of random forest is yet another attractive factor in developing a practical eye 

tracking task detection system [33,16]. 

3.2 Preparing Data Sets  
To capture and prepare eye movement datasets for implementing and testing our proposed task load 

detection design, we conducted an eye tracking study, which required participants to complete a cognitively 

complex problem solving task under two different task treatments. It is well-known that a time constraint 

increases the use of cognitive resource by making problem-solving tasks more demanding [62]. We created 

the two different task treatments in our study by manipulating the time available for completing the task. 

In the control treatment no time limit was enforced, while in the experimental group the time available for 

completing the task was set to five minutes. This allowed us to create lower task demand in the control 

treatment and higher task demand in the experimental treatment. Participants were randomly assigned to 

either the control or experimental group. Participants in both groups completed the same problem-solving 

task, however, in the experimental group participants had to complete the task within five minutes, while 

in the control group they could take as long as they wished to complete the task.  

The task in our study required participants to answer a set of ten mathematical questions. This set of 

questions were selected from a pool of problem-solving practice tests for the Graduate Record Examination 

(GRE), which is a standardized test required for admission to most graduate degree programs in the United 

States. The full set of these practice questions were retrieved from www.majortests.com.  

Because we used GRE math problems for our problem-solving task, we recruited participants via email 

from a pool of graduate students in various technical disciplines (e.g., computer science, electrical and 

computer engineering, robotics engineering, etc.) in a northeastern university in the United States. Because 

these technical disciplines require GRE math for admission to the program, all the participants in our study 

had the math skillset that is typically required of graduate students in technical disciplines. Because students 

https://en.wikipedia.org/wiki/Standardized_test
http://www.majortests.com/
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are accustomed to taking timed tests, the task and setting created an appropriate and realistic environment 

for our participants.  

We used the Tobii X300 remote eye tracker with a sampling rate of 300 Hz mounted on a 21-inch monitor 

at a resolution of 1920 x 1200 to collect the gaze data. To track eye movements, each participant completed 

a brief eye-calibration process. While seated, participants were asked to observe a moving dot on the eye-

tracking monitor. This calibration process took less than one minute to complete. 

Next we analyzed the captured eye movement data for quality. This process was completed by examining 

the quality of eye movement recordings and removing the data sets for those participants that had less than 

80% gaze sample [15,50]. The gaze sample refers to percentage of the times that eyes were correctly 

detected by the eye tracker for each participant. For example, 100% means that one or both eyes were 

detected by the device throughout the recording; 50% means that one eye or both eyes were found for half 

of the recording duration. While screen-based eye tracking experiments typically require users to look at 

the screen while completing a task, some people may look away or look down (e.g., at the keyboard or 

mouse) to think about a problem.  

We removed the data for 7 participants who did not meet the 80% or above gaze sample criteria. Thus, the 

final dataset for implementing our task load detection system included the eye movement recordings that 

were captured from a total of 48 participants (21 females and 27 males) with ages ranging between 24 and 

31. 

To calculate the metrics for the feature set (Table 3), we first determined basic units from the eye movement 

recordings. We identified fixations and saccades in the gaze stream with the widely used I-VT filter with 

30°/sec saccadic velocity threshold provided in the Tobii Studio software version 3.2.3. Saccade amplitude 

(the distance traveled between two adjacent fixations), measured in degrees, as well as pupil dilation (size 

of pupil diameter) was also provided by the Tobii Studio software. Pupil Dilation Variation (PDV) or rate 
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of change of pupil dilation was calculated by taking the temporal derivative of pupil dilation [40,77]. Blinks 

were calculated as complete eye closure lasting between 100-500 milliseconds [1]. These basic units were 

then used to calculate the metrics in the feature set (Table 3).  

4 Results 
The task load detection system in our study was implemented in R version 3.4.2 on Windows 7, with Core 

i5 CPU and 3.30 GHz speed machine. We used R libraries such as ISLR [42], tree [66], random forest [13], 

e1071 [58], and caret [56].  

A useful aspect of random forest is their ability to automatically establish the effectiveness of predictors in 

the feature set with respect to classification accuracy. Random forests can rank the importance of each 

metric based on its ability to predict the outcome by permuting each metric and computing the prediction 

accuracy of the out-of-bag portion of the data before, and after, the permutation [13]. The results of random 

forest variable ranking are displayed in Figure 2, highlighting the metrics ordered by variable importance 

[33,43].  

 



19 
 
 

 

 
Figure 2. Variable importance plot 

 

Next, we used the random forest variable ranking results to refine our feature set, that is, we selected those 

variables in our feature set that were sufficiently discriminative for our task load classifier [33]. To do this, 

we carried out a forward stepwise feature selection, systematically investigating the task demand detection 

accuracy of our random forest classifier by iteratively adding features based upon their variable importance 

[33]. This process resulted in a minimized error after adding the first ten features; additional features 

provided only marginal increases in the performance of detecting task demand. Accordingly, to avoid 

overfitting we selected only the first ten out of thirty features to develop our task load detection system 

[33]. These ten features are listed based on their order of importance in Table 4. 
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 Table 4. List of features selected by variable importance 

Rank Eye Movement Metrics (Features) Variable 
Importance 

1.  Average (PD during saccade / PD during fixation) 2.51 

2.  Standard deviation (PDV during saccade / PDV during fixation) 1.01 

3.  Standard deviation of PDV during fixation 0.62 

4.  Standard deviation of blink duration 0.61 

5.  Standard deviation of saccade duration 0.60 

6.  Standard deviation of PD during fixation 0.56 

7.  Standard deviation of saccade amplitude 0.55 

8.  Standard deviation (PD during saccade / PD during fixation) 0.55 

9.  Normalized saccade duration 0.54 

10.  Average blink duration 0.51 
 

As apparent in Table 4, half of the top ten factors that were most effective in detecting task demand were 

related to pupil data: Average saccade-to-fixation PD ratio, standard deviation of saccade-to-fixation PDV 

ratio, standard deviation of PDV during fixation, standard deviation of PD during fixation, standard 

deviation of saccade-to-fixation PD ratio. These results support research linking pupil data and cognitive 

effort [7,14,21,30,45,63], as well as research advocating that valuable pupil information exists in both 

fixation and saccade data [21]. The ratio of pupil dilation and variation during saccades and fixations reflect 

the distribution of cognitive effort during information search and information processing. The distribution 

of effort between search and information processing, as suggested by our results, may provide valuable 

information about task demand. 

Thirty percent of the remaining top 10 factors in our results were related to saccade parameters (standard 

deviation of saccade duration, standard deviation of saccade amplitude, normalized saccade duration), 
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while twenty percent were related to blink patterns (standard deviation of blink duration, average blink 

duration). These results suggest that saccade and blink eye movements had a major influence in effective 

classification of the eye movement data based on task demand. Hence, these results not only support the 

literature that indicates saccades and blinks are associated with cognitive effort, but also show that the 

metrics related to saccades and blinks were among most effective variables for detecting task demand. 

Interestingly enough, the results did not indicate fixation parameters, such as fixation duration and number, 

to be major contributors to classifying task demand. This contrasts with previous research that shows a 

positive link between fixation duration and cognitive effort – the very nature of viewing a stimulus requires 

effort in keeping the gaze steady for the information to be visually processed. While fixation serves as a 

reliable and direct indicator of attention and thus information processing, our results indicate that more 

effective in classifying task demand were the saccade and blink eye movement behaviors, which take place 

between, and not during, fixations. 

Perhaps most interesting among our results is that pupil dilation ratio values involving saccades and 

fixations played a major role in classifying higher/lower task demand (Table 4). In particular, the variable 

importance for average saccade-to-fixation PD ratio was noticeably larger than all other metrics. The 

importance of the average saccade-to-fixation PD ratio was more than twice as large as the standard 

deviation of saccade-to-fixation PDV ratio and over four times as large as the rest of the factors.  

The results of variable ranking discussed above support extant literature summarized in Table 1, and also 

extend previous findings by showing that only pupil, saccade, and blink related data were major predictors 

in classifying task demand in our study. Further, average saccade-to-fixation PD ratio appears to be far more 

important than the rest of the feature set. 

The random forest algorithm can be used to develop different sets of forests that have varying numbers of 

trees. To find the number of trees that correspond to a stable classifier, we constructed random forests with 
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the number of tree values in the range [1,100], and with 200 replications of bootstrapping. The optimal 

number of trees for our classifier was determined via a standard technique having to do with individual tree 

error rates, namely, the out of bag error rates [33]. When the error rates stabilize and reach a minimum 

value, the corresponding number of trees constitute the optimal number of trees. The accuracy rate of our 

classifier, as typical during this process, initially increased as the number of trees increased. However, once 

the number of trees reached approximately fifteen, the performance of the model stabilized and 

corresponded to an eye movement classifier with 69.6% accuracy. These results show that our proposed 

model can detect task demand using eye movements not only reliably but also quickly (with 15 trees). 

Of course, one might wonder how such results could be improved. The stability of the results after applying 

fifteen trees indicates that additional computational effort will likely not improve our results beyond those 

already achieved for our fixed model and fixed data set. As far as the model is concerned, one could imagine 

the application of a more sophisticated or customized model giving superior results. On the other hand, 

overfitting is always a concern, and random forests were intentionally selected in our study for their broad 

applicability to complex problems. As far as the data is concerned, additional and more detailed 

measurements would likely increase performance. It is precisely our goal to pursue such improved data 

generation in future work. 

We extended the above analysis by generating a confusion matrix and an ROC curve to investigate the 

performance of our classification algorithm. The confusion matrix represents the true positive, true 

negative, false positive and false negative of the classification task. The ROC curve shows a trade-off 

between (true positive rate) sensitivity and (false positive rate) specificity and is a measure of test accuracy 

[80]. Both the confusion matrix and the ROC curve for 15 trees are presented in Figure 3. According to this 

analysis, the accuracy of detecting task load is 75%, which is calculated as the sum of true positives and 

true negatives divided by the total number of test samples (20).  
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Fig 3a. ROC Curve Fig 3b. Confusion Matrix  

Figure 3. ROC curve and confusion matrix for 15 trees and 20 test samples 
 

Because people tend to exhibit complex behavior such as switching between multiple strategies when 

making decisions, we argued that classifying task demand is likely to require an algorithm that can process 

complex models. Hence, we used random forests to build our classifier. The relatively high accuracy level 

achieved by our classifier displayed in Figure 1 suggests that using the random forest algorithmic approach 

in our study was indeed a good choice. To further investigate the appropriateness of random forests for 

developing a task load detection system we compared its performance against another set of widely used 

machine learning classifiers, namely linear and kernel-based Support Vector Machine (SVM) classifiers. 

As shown in Table 5, the linear or nonlinear SVM classifiers reached much lower accuracy levels (41% to 

56%) compared to the accuracy level of our proposed random forest model (69.6%). These results show 

that random forest was a more suitable algorithm for classification of task demand (manipulated by time 

limit) based on the eye-movement data in our study. 
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Table 5. Support vector machine classification performance 

Algorithm Accuracy 

Linear SVM 56% 

Nonlinear SVM with radial basis kernel 48% 

Nonlinear SVM with polynomial degree of 2 43% 

Nonlinear SVM with polynomial degree of 3 41% 

 

The results of variable importance analysis showed that half of the variables among selected features were 

related to pupil data (see Table 4). To further investigate the effect of each category of features based on 

eye-movement metrics (e.g. pupil dilation, blinks, fixation, and saccade), we created 6 different categories. 

Next we trained 6 different RF models with each of these different feature sets to investigate the 

classification performance for each category.  

Table 6 presents the performance results. Interestingly, the highest accuracy (79%) was achieved from 

saccade-to-fixation PD and PDV ratios. The second column in Table 6 shows the features listed based on 

their importance order according to RF Variable Importance values. It is important to note that similar to 

when we used all the 30 features, the most effective features in the classification is average saccade-to-

fixation PD ratio.  

The above results together support our hypothesis by showing that our proposed task load detection system 

identified task demand reliably and unobtrusively. The results support our choice of algorithm for 

developing the task load detection system and show that eye movement data carries distinct information 

about task demand. Pupillary responses were more effective than other eye moment behaviors in detecting 

task demand in our study. In particular, saccade-to-fixation pupil dilation and pupil variation ratios, which 

were designed for the first time in our study, proved to be most valuable in detecting task demand (79% 

accuracy).  
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Table 6. RF classification performance using different categories of eye features 
Feature Categories Features Accuracy  

PD and PDV (Only 
Ratios) 

1. Average saccade-to-fixation PD ratio, 2. Standard deviation 
of saccade-to-fixation PDV ratio, 3. Standard deviation of 
saccade-to-fixation PD ratio, 4. Average saccade-to-fixation 
PDV ratio 

79% 

All PD and PDV 
Features 

1. Average saccade-to-fixation PD ratio, 2. Standard deviation 
of saccade-to-fixation PDV ratio, 3. Standard deviation of PDV 
during fixation, 4. Standard deviation (saccade-to-fixation PD 
ratio, 5. Average PDV during fixation, 6. Standard deviation of 
PD during fixation, 7. Average PDV during saccade, 8. Average 
saccade-to-fixation PDV ratio, 9. Standard Deviation of PD 
during saccade, 10. Standard deviation of PDV during saccade, 
11. Average PD during saccade, 12. Average PD during 
fixation 

70% 

Blink Features 1. Standard deviation of blink duration, 2. Normalized blink 
duration, 3. Average blink duration, 4. Blink number 52% 

Saccade Features 

1. Standard deviation of saccade duration, 2. Normalized 
saccade duration, 3. Standard deviation of saccade amplitude, 4. 
Average saccade duration, 5. Average saccade amplitude, 6. 
Normalized saccade number 

51% 

Ratio of Saccade 
Features to Fixation 
Features 
 

1. Standard deviation (saccade duration/fixation duration), 2. 
Average (saccade duration/fixation duration), 3. Normalized 
saccade duration/normalized fixation duration, 4. Normalized 
saccade number/normalized fixation number 

43% 

Fixation Features 
1. Average fixation duration, 2. Normalized fixation duration, 3. 
Normalized fixation number, 4. Standard deviation of fixation 
duration 

40 % 

 

5 Discussion 
Grounded in adaptive decision making theory, we argued the effort to meet task demand is likely to be 

reflected in eye movements. Using eye tracking literature, we argued that eye movement data is distinct 

enough to build a machine learning system that can automatically detect task demand. To test our assertion, 

we developed and tested an eye tracking task load detection system.  

Our results align with our initial expectations and have important implications for designing advanced eye 

tracking task load detection systems. Our results suggest that combining eye tracking and machine learning 



26 
 
 

 

technology produces a wealth of information that is likely to help build unobtrusive detection systems that 

can identify changes in user behavior. This in turn will provide attractive opportunities for designing 

intelligent decision tools that can respond to user needs at a personalized level. The increasing availability 

of high quality eye trackers at affordable prices [20] makes it possible and practical to include eye tracking 

task load detectors into decision support systems. By recognizing the relative task demand via task load 

detectors, such decision support systems can respond to user needs more fully and thus provide a more 

effective and efficient human-technology collaboration in complex domains [30].  

Decision support systems enhanced with task load detectors can be particularly effective in training novice 

decision makers through various feedback mechanisms that are triggered by their eye tracking sensors. For 

example, such advanced decision support systems can provide recommendations for the use of decision 

strategies that are best at optimizing accuracy at the given level of task demand recognized by their task 

load detector. The results of our study showing the effectiveness of eye movements to detect task demand 

reliably and unobtrusively provides motivation for future investigation of eye tracking task load detection 

systems. Our positive results suggest that eye tracking task load detectors are likely to build a productive 

line of research in decision support systems.  

Our results showed that pupillometry measures can serve as effective eye tracking metrics for designing 

task load detectors. Many studies have shown that pupil data is a reliable predictor of cognitive load (e.g., 

see Table 1). A novel contribution of our study is that it not only supports this previous finding, but also 

refines it by showing that pupil data was the most prominent predictive factor in our set of thirty eye 

movement features (see Tables 6, and Figure 2). Another novel contribution of our study was the 

introduction of pupillary ratio variables in the features set for our proposed classifier. As shown by our 

results, the saccade-to-fixation pupil dilation ratio was far more important than other features in detecting 

task demand, perhaps even more important than the absolute pupil dilation reported in previous studies. It 

is well-established that visual information is processed only during fixations. Upon focusing on an object, 
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the eye can only see vividly and colorfully around the fixation center. To compensate for this limitation, 

saccades are used to rapidly collect high quality visual information. Because saccades change the center of 

our attention, they represent information search [20]. Because pupil dilation is linked to cognitive activity, 

pupil dilation during saccade suggests cognitive activity related to information search and pupil dilation 

during fixation indicates cognitive activity related to information processing [21]. Thus, our results showing 

a significant role for the ratio of pupil dilation in saccades and fixations suggest that the ratio of cognitive 

activity during information search and information processing can provide invaluable insight for classifying 

task demand.  

Another key insight of our study for future eye tracking task load detection systems is that, among the top 

ten discriminating features selected by the machine learning model, none were related solely to fixation. 

Fixations typically convey effort in visual processing [20]. In our study, however, metrics related to 

saccades and blinks were more important than metrics related to fixations. In particular, saccade duration 

and amplitude were among the top ten factors detecting task demand. Because saccades indicate effort in 

locating relevant information, our results suggest how long people took to locate a fixation and how far 

their eyes had to travel to locate that information provided more insight about task demand than data about 

their fixation. Similarly, our results demonstrate that average blink duration and variation were more 

effective than fixation-related information in detecting task demand. Blink duration has been associated 

with task complexity [2,4,39]. This is substantiated in our results. Average blink duration, and variation in 

blink duration, are likely indicating adjustment to task load, which according to adaptive decision making 

theory is what people do when making complex decisions [62].  

Our study also makes important contributions to the judgment and decision making literature. By showing 

that pupillometry plays a major role in detecting task demand, our results support a recent exploratory DSS 

study [30] that suggests adaptive decision making theory can serve as a suitable framework for explaining 

the relationship between cognitive effort and pupillometry during problem solving and decision making. 
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Our results extend this previous research by using the adaptive decision making theory as a framework for 

our study and by providing evidence for its applicability to detect task demand at a physiological level 

(Tables 4 and 6).  

6 Limitations and Future Studies  
As with any study, our results are limited by the task context, which in our study was a math problem-

solving task. Future studies using different tasks are needed to verify and extend our results. Similarly, the 

results are limited to a fairly static population, namely graduate students in an engineering school. A more 

diverse population may provide a deeper understanding of user behavior. While our machine learning 

algorithm was suitable for smaller datasets, larger sample sizes are likely to improve the accuracy of the 

proposed classifier and provide additional insight. The age of participants in our study ranged from 24 to 

31; future studies including participants from a wider variety of age groups will further serve to confirm 

and extend our results. 

Another limitation is the manipulation of task demand. In our study we used a time limit, a hallmark of 

today’s fast-paced decision environments, to manipulate task demand. Nevertheless, future studies using 

other relevant task characteristics are needed to extend our results. For example, people often need to justify 

their decisions, which can increase an individual’s cognitive effort [30]. Hence, future studies can use 

justification to manipulate task demand. 

We used 30 eye metrics to develop our proposed classifier system. Using additional single or combined eye 

movement metrics (e.g., ratios) may provide a more nuanced understanding of user behavior. Similarly, 

including other physiological measures, such as heart rate variability, in the feature set of future studies 

may improve the sensitivity of the proposed classifier in detecting cognitive effort.  
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Our results show that eye movements features had different levels of importance in detecting task demand 

(e.g., Table 4 and Table 6). These results can motivate future research examining the development of a 

theoretically-derived taxonomy of the relationship between eye movements and cognitive demand. 

7 Conclusion 
Because users place a high value on conserving cognitive resources [32,62,74-76], developing 

computerized tools to help people manage their cognitive resources can help them be more effective in 

decision making. A first step in designing such advanced computerized tools is to investigate possibilities 

for developing systems that can identify level of task demand unobtrusively and automatically.  

In this study, grounded in the adaptive decision making and eye tracking literature, we argued that task 

demand can be detected unobtrusively and automatically via eye movement data. We developed an eye 

tracking machine learning task load detection system to test our assertion. Our results showed that eye 

movements indeed carry distinct information about task demand and that pupil data, in particular the ratio 

of pupil dilation during saccades and fixations, was the most important predictor factor in identifying task 

demand. Our results showed that our task load detector can detect task demand quickly and reliably. These 

results show that building such an advanced task load detection system is not only possible but also 

computationally practical. Hence, the results provide valuable insights as well as motivation for future 

studies that focus on designing advanced task load detection systems.  
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