
Identifying Fixations in Gaze Data via
Inner-Density and Optimization

Andrew C. Trapp†,‡, Wen Liu‡, Soussan Djamasbi†

†Robert A. Foisie Business School, ‡Data Science Program

Worcester Polytechnic Institute

100 Institute Road

Worcester, MA USA

atrapp@wpi.edu, wliu3@wpi.edu, djamasbi@wpi.edu

Abstract: Eye tracking is an increasingly common technology with a variety of practical
uses. Eye-tracking data, or gaze data, can be categorized into two main events: fixations
represent focused eye movement, indicative of awareness and attention, whereas saccades are
higher velocity movements that occur between fixation events. Common methods to identify
fixations in gaze data can lack sensitivity to peripheral points, and may misrepresent posi-
tional and durational properties of fixations. To address these shortcomings, we introduce
the notion of inner-density for fixation identification, which concerns both the duration of
the fixation, as well as the proximity of its constituent gaze points. Moreover, we demon-
strate how to identify fixations in a sequence of gaze data by optimizing for inner-density.
After decomposing the clustering of a temporal gaze data sequence into successive regions
(chunks), we use nonlinear and linear 0–1 optimization formulations to identify the densest
fixations within a given data chunk. Our approach is parametrized by a unique constant that
adjusts the degree of desired density, allowing decision makers to have fine-tuned control over
density during the process. Computational experiments on real datasets demonstrate the
efficiency of our approach, and its effectiveness in identifying fixations with greater density
than existing methods, thereby enabling the refinement of key gaze metrics such as fixation
duration and fixation center.

Keywords: Eye-Tracking; Gaze Data; Fixation Identification; Fixation Inner-Density;
Mixed-Integer Nonlinear Optimization

1. Introduction

Interest in understanding the behavior and movement of eyes has long existed, and is pro-

liferating with the availability of low-cost eye-tracking devices that have ever-increasing

capabilities. Indeed, it is estimated that eye-tracking mechanisms will be standard options

for laptop computers in the near future (Djamasbi 2014). A tracking device is able to record
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eye-tracking, or gaze, data, of a subject that is presented a visual stimulus. Many purposes

for studying gaze exist, including understanding of the human visual system (Radvay et al.

2007), diagnosis of psychological disorders (Cockerham et al. 2009), analysis of marketing

techniques (Wedel and Pieters 2008), design of products (Goldberg et al. 2002), and web

experience (Djamasbi et al. 2010), among others.

Essential to many eye-movement behavior applications is a precise understanding of the

recorded gaze data from eye-tracking devices (Nyström and Holmqvist 2010). This un-

derstanding comes from the translation of raw, longitudinal gaze data into distinct eye-

movement, or oculomotor, events. This process is known as fixation identification (Salvucci

and Goldberg 2000), and it separates gaze data into two primary event types: fixations and

saccades. Fixations are pauses over informative regions of interest, where cognitive process-

ing is believed to occur, whereas saccades are rapid movements between fixations, used to

recenter the eye on a new location (Salvucci and Goldberg 2000, Blignaut 2009). Fixations

are the primary unit of analysis for attention and awareness studies. Fixations characterize

attention because they represent effort in maintaining a relatively stable gaze to take foveal

snapshots of an object for subsequent processing by the brain (Djamasbi 2014).

To date, computational analysis has enabled a great deal of progress towards translating

gaze data into fixations. Primary existing methods for identifying fixations use either gaze

location (e.g., I-DT filter) or velocity metrics (e.g., I-VT filter). Methods based on the former

typically use a constant area size as the threshold for grouping consecutive gaze points into

a fixation, while the latter use a fixed velocity threshold to separate fixations from saccades.

While these existing approaches are relatively simple to implement and generally effective,

they can lead to issues with precision because they are prone to including points on the

fringe of tolerance settings, thereby skewing summary fixation metrics (further discussed in

Section 2).

Our work makes two novel contributions to address these shortcomings. The first is the

identification of fixations via inner-density, which carries two characterizations of cognitive

effort: the duration of a fixation, as well as its proximal compactness. It has been shown

that fixation duration is a reliable measure of attention (Djamasbi 2014), and proximal com-

pactness of individual gaze points in a fixation represent a person’s focused attention and

increased levels of information processing (Shojaeizadeh et al. 2016). Fixations with greater

inner density tend to exclude peripheral gaze points, thereby improving the accuracy of

traditional fixation metrics.

While there is great potential to use inner-density for refining gaze data, there are no

known studies that use the concept to identify fixations, let alone optimization-based ap-

proaches. Our second contribution is a computational approach to identify the densest fixa-
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tions from gaze data. Given the impressive progress of modern optimization technology (for

one such review in the context of data analysis see, e.g., Bertsimas and King 2015), exact

methods that provide a performance guarantee on solution quality are now a reality; that

is, given a dense fixation, optimization methods can prove no denser fixation exists. This is

incredibly important when exact, rather than approximate, oculomotor event identification

is desirable, or even essential.

In this paper, we develop and compare two density-based optimization approaches to

identify fixations in gaze data. We are unaware of any other studies that explicitly consider

inner-density as a criterion for fixation detection, i.e., emphasizing fixations with many points

in a relatively compact region. Neither are we aware of any study that uses optimization-

related technology to detect fixations. We decompose the broader problem of identifying all

fixations in a sequence of raw gaze data points, into smaller, manageable chunks that are in

particular amenable to exact solution via optimization-based approaches. We develop two

new mathematical formulations, a binary integer nonlinear program that is subsequently

linearized and a mixed 0–1 integer linear program, each of which optimize for density while

adhering to necessary temporal and consistency restrictions. Further, we share a similar

viewpoint as that of Nyström and Holmqvist (2010), who advocate for leaving as few subjec-

tive settings to the end-user as possible, in that we introduce a single, powerful parameter α

that influences the outcome of whether each individual gaze point is included in a fixation.

This enables researchers to make fine-tune adjustments to the inner-density, as desired, to

study focused attention at a more refined scale. By decomposing the entire gaze point se-

quence by velocity, and subsequently optimizing for density on individual chunks, essentially

a dynamic dispersion threshold, we exploit the attractive properties of two leading fixation

detection methods, the I-VT and I-DT filters.

The remainder of this paper is organized in the following manner. In Section 2 we pro-

vide background material related to gaze data, including existing processing methods, as

well as our proposed characterization of the inner-density of a single fixation. In Section 3

we highlight our technical developments, including a formal problem description and related

analysis of the problem, as well as a decomposition strategy that breaks the overall problem

into more easily processed components, a novel constraint set that ensures fixations con-

tain temporally consecutive gaze points, and the integration of fine-grained density control

through parametrization. We then provide two mathematical programs together with an al-

gorithmic approach that utilize these developments to identify the densest fixations in gaze

data. Section 4 contains computational experiments and related discussion, where we use

real gaze datasets to test our approaches. The paper concludes with a summary of our work,

including future directions, in Section 5.
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2. Background

Gaze data has a particular structure, and must be reliably processed to generate meaningful

information. Prior to proposing fixation inner-density and its associated optimization as a

novel approach to measure information processing behavior, we review existing methods.

2.1 Common Fixation Identification Methods Based on Position

and Velocity

The process of fixation identification separates gaze data into distinct oculomotor events

(e.g., fixations and saccades). The gaze data we consider results from user interaction with

2D static stimuli, e.g. visual computer displays, as a major focus of behavioral research

is to understand user interaction with static screen based technologies. This gaze data is

recorded in two dimensions (x, y) for every discrete time point t. Hence each 2D data point

is an (x, y, t) triplet. Each time-series sequence S of consecutive discrete (x, y, t) gaze data

points can be computationally separated into constituent fixations. Common sampling rate

frequencies range from 30 Hz to 300 Hz, though some eye-tracking devices can record at

levels exceeding 1,000 Hz (Holmqvist et al. 2011). Once gaze data has been computationally

processed into its fundamental oculomotor events, each event can be characterized using

summary statistics, for example the duration and center (centroid) of the event. Figure 1

depicts approximately 10,000 gaze points in a segment of a real, raw gaze data sequence in

(x, y, t) space, which arises from a task of reading on a 2D static computer display stimulus.

The problem of interest is to separate this gaze data into distinct fixations.

Figure 1: Raw (x, y, t) gaze data depicted in three dimensions, as recorded by a typical
eye-tracking device.

Two primary methods exist to analyze and process gaze data: those based on gaze-

point position, such as the I-DT, and those based on gaze-point velocity, such as the I-

VT (for in-depth descriptions of these approaches, see, e.g., Salvucci and Goldberg 2000,

Komogortsev et al. 2010). It is widely accepted that all existing event detection methods
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have flaws (Nyström and Holmqvist 2010). This is due in part to the arbitrary and somewhat

interpretive nature of classifying gaze data points into representative events. Estivill-Castro

(2002) contends that the reason there are so many ways to identify fixations (clusters) is

because the notion cannot precisely be defined; rather, it is in the eye of the beholder. Even

so, there are basic criteria, many used by existing approaches, that are suggestive for a group

of points to be considered as a fixation.

The I-DT is a well-known position-based approach. This algorithm separates gaze data

using a predefined maximum dispersion threshold D together with a minimum duration.

It uses a fixed-area window to construct fixations by sequentially adding points beyond a

minimum duration, until the dispersion threshold is exceeded (Salvucci and Goldberg 2000).

The I-DT can yield fairly accurate results, is rather straightforward to implement, and has

favorable performance time. However, a significant drawback arises from the interaction

with the threshold D and the dispersion metric it uses:

D(x, y) = D(x) +D(y) = [max(x)−min(x)] + [max(y)−min(y)]. (1)

6

1
2

3
4
5

I-DT Centroid
Denser Centroid
Gaze Points

(a) The I-DT algorithm may misclassify gaze
points under static dispersion threshold D.
Whether to include the sixth point in the fix-
ation, while technically within outer threshold
D, is questionable.
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(b) The I-VT algorithm may misclassify gaze
points under constant velocity threshold V .
The fifth and sixth points, while technically
having velocities below threshold V , may not
belong to the fixation.

Figure 2: Depicting some limitations of standard methods for fixation identification. For
both the I-DT and I-VT algorithms, the center points (centroids) appear as lighter triangles,
shifted to the upper right, as opposed to those of the denser fixation centroids, which are
depicted with darker triangles and are more representative of the center of fixation of interest.

Figure (2a) illustrates some of the challenges with I-DT in assuming a simple, constant

dispersion threshold D. As long as the D(x, y) measure does not exceed D, points are
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considered to belong to the same fixation. Figure (2a) raises significant doubts as to whether

the sixth point belongs to the same fixation as the first five gaze points. This in turn can

skew metrics such as the fixation duration and centroid, which are often used to assess user

reaction to stimuli (Sabatos-DeVito et al. 2016, Thorup et al. 2016).

The I-VT algorithm may be the simplest of all fixation detection approaches, which se-

quentially categorizes each gaze point based on its point-to-point velocity. If the velocity

meets or exceeds a velocity threshold V , it is identified as a saccade; below, the point belongs

to a fixation (Salvucci and Goldberg 2000). I-VT is an elegant algorithm; as Salvucci and

Goldberg (2000) discuss, it is a rather straightforward and robust approach, because the

physical and physiological nature of the velocity profiles naturally separate data points into

fixations or saccades. In fact, the I-VT algorithm serves as the foundation for the fixation

detection algorithms in major commercial eye-tracking devices such as Tobii (see, e.g., Olsen

2012). The I-VT algorithm features a simple implementation, efficient performance, and is

fairly accurate.

Even so, the I-VT algorithm also has significant limitations. It essentially considers any

consecutive group of points below a specified velocity threshold as a fixation. It then uses

this grouping as a basis for summary statistics, such as the (x, y) centroid (by collapsing

into a single point the individual x and y points according to their average values). Hence,

the simplicity of the I-VT algorithm may result in misclassification, that is, points being

classified as within the same fixation – when in reality they are distinct – because they do

not strictly exceed the velocity threshold. As can be seen in Figure (2b), the inclusion of

gaze points that are technically below the velocity threshold, but would not otherwise be

included in a fixation, can skew important metrics such as the fixation duration and centroid.

When considering the first four fixation points in Figure (2b), the centroid appears lower,

and to the left, of where it appears when all six points are included in a fixation.

Although a few studies exist on enhancing the I-VT algorithm (see, e.g., Smeets and

Hooge 2003, Nyström and Holmqvist 2010), the aforementioned drawback remains detri-

mental for applications that demand precision. To resolve inherent discrepancies present in

commonly used methods for fixation identification, we propose the concept of inner-density,

which refers to both the duration and concentration of the gaze points that form a fixation.

In the next section we explain how we use inner-density to identify the densest fixations in

a stream of temporal gaze data.
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2.2 Fixation Identification Based on Inner-Density

In this study we propose detecting fixations through inner-density, in lieu of solely distance

or velocity. Fixation inner-density represents the spatial concentration of gaze points, and is

an attractive metric to optimize because denser fixations reveal more focused attention (Sho-

jaeizadeh et al. 2016). The density of a fixation increases when either a larger number of

points are contained in the fixation, or when the constituent points are contained in a more

compact region, or both. Mathematically, density can be expressed in multiple ways, such

as a ratio or a weighted sum.

It is important to note that fixation inner-density is distinct from the seemingly similar,

but separate, notion of spatial density, which addresses the concept of the proximity of mul-

tiple clusters of gaze points (i.e., fixations). Spatial density involves the post-processing step

of merging individual fixations into a larger fixation (Goldberg and Kotval 1999, Poole and

Ball 2005), for example as done on a fixation density map (Engelke et al. 2013), or the use

of Voronoi diagrams to represent the uniformity of fixation density (Over et al. 2006). An

excellent, in-depth source of gaze processing information is Holmqvist et al. (2011).

To date, the authors are unaware of any studies that explicitly use inner-density for

gaze data, with a possible, though indirect, exception being a recent study on extending the

popular DBSCAN clustering algorithm to oculomotor event detection (Li et al. 2016).

2.3 Related Work in the Literature

We now review the literature for works that use techniques from mathematical optimization

or related exact approaches to conduct, or enhance, eye-tracking event detection. Within

the eye-tracking literature, the authors are unaware of any such works. We highlight only

a single study that attempts to determine, empirically, an optimal parameter setting. On

the other hand, the task of identifying fixations in gaze data can be viewed as a type of

clustering. Clustering is the analytical process of collecting elements into a group, or cluster,

such that elements that are gathered together have a greater similarity as opposed to those

in other clusters. There are a number of studies that attempt to cluster data using some

type of exact (i.e. either optimization-based, or approximation scheme) methodology.

2.3.1 Estimating Fixation Detection Parameters

The only work that is somewhat related is the excellent study conducted by Blignaut (2009)

to estimate “optimal” dispersion thresholds for dispersion algorithms. Through empirical

investigations, the optimal fixation radius threshold was found to be from 0.7◦ to 1.3◦ of visual
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angle. We use their threshold recommendation in our I-DT implementation (see Section 4.5).

2.3.2 Using Optimization for Clustering

We review works from the literature that conduct clustering using some type of exact method-

ology, either optimization-based or approximation schemes. Such methods that provide a

guarantee on the quality of the solution are increasingly viable given the state-of-the-art in

optimization technology. As we review work from the literature that use such exact method-

ologies, it is important to note that any successful method for clustering gaze data must

address its temporal nature, that is, recovered clusters should contain only consecutive gaze

points.

Selim and Ismail (1984) formulate the k-means clustering problem as a non-convex

mathematical program, and investigate properties related to convergence, local and global

optimality. Sağlam et al. (2006) propose a mixed-integer nonlinear formulation for clustering

that they subsequently linearize to minimize the maximum cluster diameter among all of the

clusters. Bradley et al. (1997) discuss the task of finding k cluster centers using mathematical

programming techniques so that the sum of distances of each point to the nearest cluster

is minimized. While their approach does not guarantee global optimality, they demonstrate

that it has favorable performance to classical methods such as k-means. Rao (1971) pro-

poses an integer nonlinear program having a ratio objective to minimize the sum of average

squared distances within a given cluster. None of these studies, however, consider temporal

data. Seref et al. (2013) build upon the work of Bradley et al. (1997) for time series data,

introducing both exact formulations and fast approximation algorithms that compare fa-

vorably to existing methods. Concerning approximation algorithms, Hochbaum and Maass

(1985) discuss approximation schemes for a related problem of using circles to cover points

in a plane. Approximation schemes are also used by Charikar et al. (2004) to address a

similar problem of finding good clusters when the data is dynamic.

3. Technical Developments

In this section we address the core challenge of fixation identification in gaze data. We begin

with a formal problem description, provide a combinatorial analysis of the number of ways

to form meaningful fixations, touch upon related literature, and discuss challenges in solving

related to scaling. We then highlight three unique insights to facilitate efficient solution of

the problem, and proceed to introduce two mathematical programming formulations that

identify fixations by optimizing for inner-density, together with an iterative algorithm.
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3.1 Fixation Identification: Formal Problem Description

Fixation identification is the process of translating a longitudinal sequence of raw eye-

movement data points into constituent fixation events and, thereby, the saccadic events

between them (Salvucci and Goldberg 2000). We are unaware of any formal characteriza-

tion of the fixation identification problem, though a related problem of sequence segmentation

is discussed in Terzi (2006), from which we adapt some notation.

Formally, we consider a raw time-series sequence S of T d-dimensional gaze points, so

that S = {t1, . . . , tT }. Let ST denote all such sequences of length T . We seek to form F
fixations from these T gaze points. While F is in general difficult to know with certainty, a

suitable value (or range of values) for F can often be informed by the problem context, and

subsequently validated according to the resulting performance. For the sake of the formal

problem description, we assume F is known a priori.

An important consideration is to determine which points belong to fixations; some should

not be included as they are saccade points, or possibly some other noise. Points that do form

fixations must be consecutive in time, and together should be of a minimum length to have

meaning with respect to cognitive processing. At a fixed sampling frequency, this is equiva-

lent to stating that every fixation must contain a minimum number of points N . Hence, the

F formed fixations constitute segments of the gaze sequence S that are mutually exclusive,

and of a sufficient minimum length. Of particular interest to us are dense fixations, which

we will further qualify.

An F -segmentation F of S can be uniquely represented by F pairs of fixation “seg-

ment” breakpoints. That is, F = {(f1, f2), . . . , (f2F−1, f2F)}, with fi ∈ S. These pairs of

breakpoints denote the fixation points in F through the respective intervals [f2j−1, f2j] , j =

1, . . . ,F . Hence fixation j contains f2j − f2j−1 + 1 gaze points, which must meet or exceed

N for information processing to occur, so that f2j−1 +N − 1 ≤ f2j, j = 1, . . . ,F .

Let ST denote all possible segmentations of gaze sequences of length T , and let ST ,F ,N

denote all possible segmentations of sequences of length T into F fixation “segments” of

length N or greater. Of particular interest is to minimize error criterion E : ST ×ST 7→ IR

that assesses the quality of the formed fixations. Specifically, E should characterize two

density-related aspects: fixation duration (a relatively large number of gaze points) and

compactness (gaze points in close proximity).

For sequence S and error function E, we define the optimal F -segmentation F of S as:

Fopt(S,F) = arg min
F∈ST ,F,N

E(S, F ), (2)
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that is, Fopt is a grouping of S into F fixations that minimizes the function E(S, F ).

Problem 1 Fixation Identification. Given a raw longitudinal gaze sequence S contain-

ing T total time points, integer values F and N respectively denoting the number of fixations

and minimum number of points, together with error function E, identify Fopt(S,F).

As it turns out, this problem has a very large number of possible segmentations.

3.1.1 Combinatorial Analysis

Figure 3: Visualizing Three
Groupings of Gaze Points.

We illustrate this by counting the number of ways to identify

F fixations in a sequence of T points. Each fixation must con-

tain at least N points, which should be consecutive in time.

Moreover, not all points must be included in fixations. This

suggests that the T points can be assigned either i) to fixations

(F), ii) to intervals between fixations (F−1), or iii) preceding

(1) or iv) following all fixations (1), so that in general there

are 2F + 1 distinct bins. A small example S with T = 8, F = 2 and N = 3 is illustrated

in Figure 3, where gaze points are denoted as “◦”. For this example with F = 2, we depict

2F + 1 = 5 bins: a1, a2, a3, a4, a5, as well as three possible ways of grouping the gaze points

(there are others). While each depicts T = 8 points, note that they differ with respect to

which points are included and not included in fixations, and moreover the first fixation of

the third grouping differs in size.

Multisets are useful to count the number of F -segmentations of S, as they generalize

the concept of a set by allowing for multiple instances of elements. The multiplicity of an

element is the number of instances of the element in a specific multiset. An infinite number

of multisets exist which contain only elements a1 and a2, varying only by multiplicity. A

general multiset of n elements can be denoted by

M = {∞ · a1,∞ · a2, . . . ,∞ · an}, (3)

where n ∈ ZZ+, and a1, a2, . . . , an are distinct objects. Then a specific multiset of the form (3)

is an (m1 +m2 + · · ·+mn)-element multi-subset of M , with m1,m2, . . . ,mn ∈ ZZ+ being the

respective multiplicities. The number of m-element multi-subsets of M is given by Hn
m (see,

e.g., Chen and Koh 1992):

Hn
m =

(
m+ n− 1

m

)
. (4)
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The number of possible ways to form F fixations of length at least N in T gaze points can be

viewed as a certain multiset with 2F + 1 distinct objects Mp = {m1 · a1,m2 · a2, . . . ,m2F+1 ·
a2F+1}. The quantity (m1 +m2 + · · ·+m2F+1) should amount to the total number of points

that must be placed. While there are T total gaze points, because each of the F fixations

must contain at least N points, we have that m1 + m2 + · · · + m2F+1 = T − NF . Hence

there are H2F+1
T −NF total ways of assigning T points into F fixations of size at least N , where:

H2F+1
T −NF =

(
T − NF + 2F
T −NF

)
=

(
T − (N − 2)F
T −NF

)
. (5)

The quantity in (5) grows very quickly for even small T and, in particular, F ; for example,

for only F = 10 and T = 50, the number of combinations is on the order of 1011.

3.1.2 Problems Related to Fixation Identification

A related problem, sequence segmentation, is also concerned with optimal segmentation of

time series sequences of data (Terzi (2006), Terzi and Tsaparas (2006); also see Bingham

2010). They too consider minimizing an error criterion, for example distance from the center

of the sequence. However a key distinction is that in the sequence segmentation problem,

all points must be used to form relevant segments (clusters). On the contrary, the fixation

identification problem forms fixations with only the most salient time points – that is, there

are data points in the gaze sequence that should not be included in any fixation. A dynamic

programming algorithm is presented in Terzi (2006) to solve the sequence segmentation prob-

lem in O(T 3F) time, and it is further reduced to O(T 2F) time through a series of clever

algorithmic enhancements.

While a dynamic program similar to that of Terzi (2006) also exists for the fixation iden-

tification problem, it has O(T 3F) complexity due to the need to process the assignment of

points to fixations as well as to intervals between fixations, and unfortunately it becomes

prohibitive to solve for even modest sizes of the fixation identification problem (indeed, Terzi

(2006) similarly notes “...cubic complexity makes the dynamic programming algorithm pro-

hibitive to use in practice.”). This suggests alternative solution approaches are necessary

that further exploit the structure of the fixation identification problem.

3.2 Three Mathematical Insights

We next highlight insights that enable us to develop an algorithmic approach to identify the

densest fixations in S.
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3.2.1 Decomposition Principle: Saccades Separate Fixations

A gaze sequence S contains a large number of (x, y) points over time. Common lengths of

gaze data sequences are in the tens to hundreds of seconds. For frequencies of 30 Hz to 300

Hz, S can contain anywhere from several hundred, to hundreds of thousands of gaze points,

and may contain hundreds if not thousands of fixations. For such realistic data instances,

the fixation identification problem is prohibitive for even a moderate number of fixations,

as proving the optimality of clusters on large datasets is known to be computationally de-

manding (Trapp et al. 2010, Trapp and Prokopyev 2010, Seref et al. 2013).

An alternative perspective leverages the specific structure of the sequence S. Fixations

must occur over temporally consecutive gaze points. Hence, any point that is identified as

saccadic (e.g., by the I-VT filter) is a separator of fixations. Moreover, any small number

of consecutive points may be removed if they are below a reasonable lower threshold for

information processing to occur (similar to the I-DT filter). By removing these two types

of gaze points, the gaze sequence S becomes a collection of disjoint sets, or chunks, of gaze

points where fixations may occur – that is, there are no saccadic points, and each chunk

contains at least a minimum number of gaze points to be considered a fixation. Such a pro-

cess separates S into K chunks of potential fixation points Ck, k = 1, . . . ,K. In particular,

Ci ∩Cj = ∅, 1 ≤ i < j ≤ K, and ∪k=1,...,K Ck ⊆ S. Each of these chunks can subsequently be

explored, independently, for (dense) fixations, as it is very likely that each chunk contains a

minimal number of fixations.

3.2.2 Fixations Contain Consecutive Points in Time

There are fundamental differences between clustering temporal versus non-temporal data.

In particular, fixations must adhere to temporal restrictions, which represents an extra con-

dition for typical (atemporal) clustering tasks. Once a fixation begins, the included points

must be consecutive in time, until the fixation ends. Stated another way, a fixation may

conclude only once in a given sequence of gaze points. If this were not the case, fixations that

occur in the same proximity, but separated over distinct periods of time, may be considered

as a single fixation. Moreover, saccadic points that collect over time in the same region could

also be incorrectly classified as a fixation (see, e.g., Li et al. 2016). To facilitate the ensuing

discussion, define T F binary variables z, with ztf = 1 if gaze point t is included in fixation

f , and 0 otherwise.
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Proposition 1 The constraint set

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F

ensures that every fixation f has only consecutive gaze points and terminates at most once.

A proof of Proposition 1 can be found in Appendix 7.1. For a fixation f starting at time

point p and concluding at q, the constraint set in Proposition 1 ensures in a linear fashion

that zt,f
t:1≤t<p

= 0, zt,f
t:p≤t≤q

= 1, and zt,f
t:q<t≤T

= 0. Moreover, this is accomplished with T F − F

additional constraints, and no new variables.

3.2.3 Controlling Inner-Density of Fixations

Given that fixation identification is somewhat subjective in nature, all automated classifi-

cation methods require some interpretation. Fixations properties can fluctuate as the task

and stimulus vary. To account for this, we incorporate a nonnegative parameter α that

acts to balance the tradeoff between the inclusion of additional gaze points and the spatial

concentration of gaze points within fixations. This is done by incorporating the following

term in the objective function:
F∑
f=1

T∑
t=1

α(1− ztf ), (6)

where larger α values provide greater incentive (that is, greater penalty) to include additional

fixation points, at the expense of spatial proximity. Fixation inner-density can thereby be

controlled by adjusting the level of α. As α increases, there is additional incentive to cluster

points, with α→∞ tantamount to clustering all points (as in Terzi (2006)).

3.3 Mathematical Modeling

We next present two optimization-based formulations that make use of these three key in-

sights to identify fixations in gaze data chunks by optimizing for density. The first formu-

lation bears some resemblance to a clustering approach proposed by Rao (1971), which has

the advantage of finding 2D fixations with no strong regard for their shape. The formula-

tion is nonlinear and rather than using general mixed-integer nonlinear programming solvers

such as BARON and SCIP, we pursue the strategy of linearization to efficiently solve the

formulation. The second is an original, linear formulation that we develop, and has a related

goal of bounding fixations with a square box of minimal diameter. We note that the follow-

ing mathematical programming formulations are valid for any values of T and F , notably
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including smaller values that arise from the output of the decomposition principle described

in Section 3.2.1, i.e. a single chunk Ck.

3.3.1 MINLP Formulation: Minimize Average Intra-Fixation Sum of Distances

The main idea of this formulation is to ensure that fixations are constructed by minimiz-

ing the average intra-fixation sum of distances. Whereas every point must have a cluster

assignment in Rao (1971), in our formulation we enable gaze points to be selected for a

fixation only when it improves the objective of optimizing the density-based metric – it is

not necessary to include every data point in a given chunk. To offset the tendency to se-

lect fixations of minimum duration, we incorporate the idea in (6) to balance the tradeoff

between highly compact clusters and non-inclusion. Our formulation uses values dij as the

Euclidean distances between two data points i and j, i < j, and N is the minimum number

of gaze points that could reasonably constitute a fixation.

minimize
F∑
f=1

[∑T −1
i=1

∑T
j=i+1 dijzifzjf∑T
t=1 ztf

+ α
T∑
t=1

(1− ztf )

]
(7a)

subject to
F∑
f=1

ztf ≤ 1, t = 1, . . . , T , (7b)

T∑
t=1

ztf ≥ N , f = 1, . . . ,F , (7c)

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F , (7d)

ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F . (7e)

Constraint set (7b) ensures that gaze points are assigned to at most one fixation. Con-

straint set (7c) ensures a fixation contains at least N points, and as per Proposition 1,

constraint set (7d) ensures a fixation concludes at most once. Objective function (7a) con-

tains two terms, one resembling the objective of Rao (1971), and a second that incentivizes

inclusion of gaze points into fixations. Rather than d2
ij as in Rao (1971), we use a simpler ob-

jective term of dij (this effect can be offset by adjusting the level of α). This formulation has

T F binary variables and T F +T linear constraints. The specific instance with α very large

and N = 1 yields a model that can solve the sequence segmentation problem of Terzi (2006).

The first term of the objective function is nonlinear and fractional. In addition to contain-

ing the ratio of variable terms, it has a bilinear product component zifzjf in the numerator.

This bilinearity can be linearized by introducing variables yijf ∈ IR+ equal to the product of
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zifzjf , enforced implicitly via the following three constraint sets:

yijf ≤ zif , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (8a)

yijf ≤ zjf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (8b)

yijf ≥ zif + zjf − 1, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (8c)

The remaining nonlinear fractional term of the objective can be linearized through an

approach similar to Wu (1997) and Trapp et al. (2010). Define uf = 1∑T
t=1 ztf

, f = 1, . . . ,F .

Continuous variable uf has a lower bound of 1/T and, from (7c), an upper bound of 1/N .

This gives a new objective function of:

F∑
f=1

T −1∑
i=1

T∑
j=i+1

dijyijfuf , (9)

which remains nonlinear. As yijf takes a binary value and uf is a bounded continuous

variable, this product can be further linearized in a manner similar to (8a)–(8c). Define con-

tinuous variable vijf to be the product of yijfuf . We can enforce this relationship implicitly

through the following four constraint sets:

vijf ≤
1

N
yijf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (10a)

vijf ≥
1

T
yijf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (10b)

vijf ≤ uf −
1

T
(1− yijf ), i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (10c)

vijf ≥ uf −
1

N
(1− yijf ), i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (10d)

Lastly, it is important to ensure that uf is indeed the reciprocal of
∑T

t=1 ztf . Suppose∑T
t=1 ztf = Pf . To ensure uf = 1/Pf , we can use a procedure similar to that of Trapp et al.

(2010), but leverage existing auxiliary variables so as to avoid creating additional variables.

In particular, the yijf and vijf variables are defined for i < j, and it is not difficult to show

that
∑T −1

i=1

∑T
j=i+1 yijf =

Pf ·(Pf−1)

2
. To enforce the uf = 1/Pf relationship, we multiply both

sides by the aforementioned expression involving the yijf variables, to obtain the equivalent∑T −1
i=1

∑T
j=i+1 vijf =

Pf ·(Pf−1)

2
1
Pf

=
Pf−1

2
. Rewriting this expression yields:

2
T −1∑
i=1

T∑
j=i+1

vijf −
T∑
t=1

ztf = −1, f = 1, . . . ,F . (11)
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The final, linearized reformulation is:

minimize
F∑
f=1

[
T −1∑
i=1

T∑
j=i+1

dijvijf + α

T∑
t=1

(1− ztf )

]
, (12a)

subject to (7b), (7c), (7d), (8a), (8b), (8c), (10a), (10b), (10c), (10d), (11), (12b)

1

T
≤ uf ≤

1

N
, f = 1, . . . ,F , (12c)

0 ≤ vijf ≤
1

N
, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (12d)

ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F , (12e)

yijf ∈ {0, 1}, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (12f)

Formulation (12a)–(12f) has T 2F binary variables, T 2F −T F +F continuous variables,

and 7T 2F − 6T F + T +F linear constraints (not including simple variable bounds). While

substantially larger than formulation (7a)–(7e), it has the advantage of being linear and

therefore amenable to powerful commercial solvers such as Gurobi (Gurobi Optimization

2016). An analytical discussion of the sensitivity with respect to α appears in Appendix 7.2.

3.3.2 MIP Formulation: Minimize Square Area of Fixations

We now present our second formulation for finding dense fixations. It attempts to balance

enveloping the largest number of points with a 2D square of minimal area, as measured by

the side length r. As in the first formulation, the model is parametrized by the expression

described in (6).

minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (13a)

subject to (7b), (7c), (7d), (13b)

xf − rf −Mx(1− ztf ) ≤ xt ≤ xf + rf +Mx(1− ztf ), t = 1, . . . , T , (13c)

yf − rf −My(1− ztf ) ≤ yt ≤ yf + rf +My(1− ztf ), t = 1, . . . , T , (13d)

lx ≤ xf ≤ ux; ly ≤ yf ≤ uy, f = 1, . . . ,F , (13e)

rf , xf , yf ∈ IR, f = 1, . . . ,F ; ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F . (13f)

The model has binary variables ztf for assigning time point t to fixation f , continuous

variables xf and yf that indicate the center of fixation f , and continuous variables rf that

indicate the (half-)length of the side of the square bounding box (also known as the apothem
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length). Bounds for xf and yf are constructed using lx = min
t
xt, ux = max

t
xt, ly = min

t
yt,

and uy = max
t
yt, and further we set the values of Mx = max {|xt − lx|, |ux − xt|} and

My = max = {|yt − ly|, |uy − yt|}. Constraints (13c)–(13d) are box constraints to ensure

that, if time point t is assigned to fixation f (i.e., ztf = 1), then it lies geometrically within the

appropriate square with side length rf . Again, constraints (13b) represent the fundamental

constraints that simply ensure, respectively, no time point is assigned to more than one

fixation, every fixation contains a minimum number of points, and every fixation is composed

of consecutive time points. Variable definitions and bounds are given in (13e)–(13f), while

objective (13a) minimizes the total square fixation area, while the α term accounts for the

tradeoff on the number of points included. Similar to formulation (12a)–(12f), an analytical

discussion of the sensitivity with respect to α appears in Appendix 7.2.

3.4 Algorithm to Identify Densest Fixations

We provide an algorithmic approach to identify the densest fixations from a sequence S of

gaze points using one of optimization formulations (12a)–(12f) or (13a)–(13f).

Algorithm 1 Identify Densest Fixations

Input: Sequence S separated into distinct chunks of consecutive (x, y, t) data Ck, k =
1, . . . ,K; parameter α.

1: Set L ← ∅.
2: for k = 1, . . . ,K do
3: Set T ← T k.
4: for F = Fkmin, . . . ,Fkmax do
5: With α, formulate and solve mixed-integer program (12a)–(12f) or (13a)–(13f).
6: if optimal solution found then
7: Add solution to L.
8: return L.

Algorithm 1 processes all (x, y, t) gaze-data chunks Ck, k = 1, . . . ,K from sequence S into

constituent fixations by optimizing for density using formulation (12a)–(12f) or (13a)–(13f).

Initially L is empty, and by sequentially iterating over each chunk Ck, k = 1, . . . ,K, it sets

T to the total number of gaze points T k in chunk Ck, and then formulates an optimization

problem for every level of F . For each chunk Ck, fixations of maximum density (with respect

to α) are recorded and stored in L.

4. Computational Experiments

We now proceed to discuss the computational performance of using Algorithm 1 to sequen-

tially call formulations (12a)–(12f) and (13a)–(13f), on real gaze datasets from two tasks that
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differ with respect to cognitive effort: online shopping (Shah et al. 2016), and solving math

problems (Shojaeizadeh et al. 2016). The shopping task requires participants to purchase

three items in a simulated grocery store environment, while the math task requires partici-

pants to answer a set of Graduate Record Examination Math Section questions. The task of

reading and processing Math GRE questions by nature requires a higher level of information

processing than the shopping task, hence it is more cognitively complex.

4.1 Datasets and Equipment

We considered two datasets, one containing eye movement data from the shopping task and

one from the math task. Each dataset contains R = 10 eye-tracking recordings (indexed

by `). Participants were recruited from the student population in a Northeastern univer-

sity of the United States. The first (shopping task) dataset was recorded by a Tobii Pro

X2-30 eye tracker (Tobii 2018), with a frequency of 30 Hz. Each recording is between seven

and twelve minutes in duration. The second (math task) dataset was recorded by a Tobii

Pro TX300 (Tobii 2018). Each recording is approximately five minutes in duration. This

dataset was originally recorded at 300 Hz. The two datasets are available for download at

the following site: http://uxdm.wpi.edu/data/Data_IJOC_2018_Public.zip.

To compare the fixation patterns between shopping and math tasks, we also downsam-

pled this dataset for each recording by retaining the first gaze point, and every tenth point

thereafter, thereby generating a new reading dataset at 30 Hz. All experiments were run on

an Intel core i7-4700MQ computer with 2.40 GHz and 8.0 GB RAM running 64-bit Windows

8. We used the Gurobi Optimizer (Gurobi Optimization 2016) with Python 2.7 interface

for the optimization modeling, algorithmic design, and solution process, and note that we

explicitly pursue global optima for each optimization problem by using default values for the

Gurobi MIPGap (1e-4) and MIPGapAbs (1e-10) parameters. MATLAB was used for design-

ing the I-DT filter (MathWorks 2016), while Tobii Studio was used for the I-VT filter (Olsen

2012). A time limit of 12 hours (wall-clock) was present for all computational experiments.

4.2 Data Preprocessing

For each recording `, gaze data is preprocessed, as discussed in Section 3.2.1, by separating

the data sequence S` into chunks Ck
` , k = 1, . . . ,K`, via saccadic events. We used the Tobii

Studio I-VT filter (Salvucci and Goldberg 2000, Olsen 2012) to do so, together with a con-

stant velocity threshold of V = 30◦/s, which is suitable for a variety of types of data under

different sampling frequencies and noises (Olsen 2012). Because the I-VT processing can

result in one or more consecutive, non-saccadic gaze points with total duration below a theo-

18

http://uxdm.wpi.edu/data/Data_IJOC_2018_Public.zip


retical minimum fixation duration (which we take to be 100ms; see, e.g., Salojärvi et al. 2005,

Blignaut 2009, Komogortsev et al. 2010), we also preemptively removed these from consider-

ation. Note that the further processing of chunks using formulations (12a)–(12f) and (13a)–

(13f) serves to refine the results of the I-VT filter by optimizing for fixation inner-density.

Stimuli
Frequency

(Hertz)
Avg # of All

Points in Sequence
Avg # of

Data Chunks
Avg # of

Valid Data Chunks
Avg # of Points in
All Data Chunks

Avg # of Points in
Valid Data Chunks

Shopping Data 30 18,207 3,017 1,178 10,153 7,737
GRE Math Reading Data 30 9,058 752 575 8,092 6,822
GRE Math Reading Data 300 90,580 3,612 721 80,956 66,677

Table 1: Summary results on separated data with I-VT filter, averaged over ten recordings
per dataset.

The minimum number of gaze points for a fixation is dependent on the frequency h

(in Hertz) of the eye-tracking device. From the literature, fixation durations are typically

estimated in the range of 60 − 400ms; in general a minimum duration dm = 100ms is a

reasonable lower-bound for information processing to occur (Salojärvi et al. 2005, Blignaut

2009, Komogortsev et al. 2010). A straightforward choice of N is then N =
⌈

h·dm
1,000ms

⌉
. Using

this we set the minimum number of gaze points to be N = 3 and N = 30 for the 30 Hz and

300 Hz datasets, respectively. Table 1 details summary results on the processed sequences

prior to, and after, removing these small sets of points; we term as valid those chunks (and

points) that remain after removal. In general, lower values of N result in smaller, more

numerous data chunks for a given data sequence. After preprocessing each S`, ` = 1, . . . ,R,

into chunks Ck
` , k = 1, . . . ,K`, we then run Algorithm 1 using one of formulations (12a)–

(12f) or (13a)–(13f). We set Fkmin = Fkmax = 1 for all of our experiments, as after randomly

selecting one of the ten 300 Hz recordings, manual inspection strongly indicated that data

chunks predominantly contain a single fixation.

4.3 Evaluation Metrics

We use several metrics to evaluate the performance of our methods for each dataset and

level of α. The average fixation duration δavg of a sequence S measures, in seconds, the

time spent in fixations, averaged over all fixations. The cover rate γ of a data sequence S
measures the ratio of the number of gaze points included in fixations, to the total number of

gaze points (fixation and non-fixation) in a given data instance; Blignaut (2009) also reports

this measurement (“the percentage of points-of-regard that are included in fixations”). Cu-

mulative computational runtimes are also recorded, in seconds of wall-clock time, for both

the Gurobi Optimizer and Algorithm 1. Each of the metrics we consider are averaged over

all ten recordings for each respective dataset.
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Figure 4 is a small illustrative example depicting the duration and cover rate. It depicts

a small data chunk (outer bounding region) containing eight gaze points obtained from 30

Hz data. The inner fixation, namely gaze points 2 through 7, has a duration of δ = 6
30

= 0.2

seconds. Supposing that the length of this recording was 8 total points, the cover rate is

γ = 6
8

= 0.75, because six of the eight points were included in the fixation.

We also consider three distinct representations of density. The paper of Rao (1971) advo-

cates for minimizing the average intra-fixation sum of distances, a measure that is inversely

proportional to density (so, effectively, the optimization maximizes density). Hence, to keep

with this convention we present our results from this perspective – the three expressions we

use to characterize density are such that smaller magnitudes represent greater density.

1

2

3
6

5

4

7

8

I-VT Centroid
Denser Centroid
Gaze Points

Figure 4: Duration δ and cover rate γ for a single
chunk. Our results refine those of I-VT, includ-
ing only six of the eight points, yielding a denser
fixation. In addition to duration and cover rate
differences, the centroid shifting is also apparent.

The first of these metrics (ρ1) is

the average pairwise distances between

points within a fixation. Suppose that

P is the number of points contained in

the fixation, P > 2, and dpq is the Eu-

clidean distance between fixation points

p and q. Then ρ1 is expressed as:

ρ1 =

∑P−1
p=1

∑P
q=p+1 dpq(P

2

) . (ρ1)

The second metric ρ2 is similar to ρ1.

It has the same numerator of summing

the pairwise distances of all included fix-

ation points, though the denominator is

simply P , which has the effect of increas-

ing the density for fixations with greater

number of points:

ρ2 =

∑P−1
p=1

∑P
q=p+1 dpq

P
. (ρ2)

We consider ρ2 because of its clear relationship to objective function (12a) when α = 0.

It is meaningful to see how this metric varies under differing values of α.

The third metric (ρ3) is the minimal area square bounding box surrounding the fixation

divided by the number of fixation points it contains:

ρ3 =
(2r̂)2

P
. (ρ3)
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30 Hz Shopping Data 30 Hz GRE Math Reading Data

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

α δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall

0 0.1000 21.3300 21.3300 528.3056 0.1877 6.9322 39.2 55.6 0.1000 5.2815 5.2815 94.6009 0.2637 2.7312 131.0 151.3
3 0.1005 21.3200 21.3669 528.2375 0.1888 6.9244 129.6 146.4 0.1901 5.8623 10.9157 95.6769 0.5052 2.2796 – –
6 0.1075 21.3647 22.3935 527.9422 0.2040 6.8027 1,796.2 1,812.9 0.2496 6.6952 18.2435 98.9420 0.6674 1.4921 – –
9 0.1287 21.8642 27.2219 530.6561 0.2493 6.3368 1,911.2 1,928.1 0.2658 7.1121 21.7909 101.8035 0.7096 1.0694 – –
12 0.1500 22.6585 33.8933 537.9728 0.2946 5.6161 356.6 373.4 0.2722 7.3488 23.7653 103.7606 0.7258 0.8422 784.6 804.7
15 0.1655 23.4458 40.1121 547.7675 0.3268 4.8396 216.8 233.8 0.2747 7.4884 24.7490 105.3714 0.7319 0.7191 507.9 528.0
18 0.1752 24.1153 44.9136 557.6114 0.3466 4.1185 178.3 195.2 0.2759 7.5881 25.3391 106.7105 0.7345 0.6306 375.2 395.3
21 0.1821 24.7263 48.9410 569.2495 0.3606 3.4843 183.0 199.9 0.2765 7.6401 25.7045 107.6167 0.7359 0.5857 219.6 239.6
24 0.1871 25.2430 52.2651 580.8938 0.3704 2.9871 164.8 181.6 0.2768 7.7087 25.9153 109.1708 0.7365 0.5390 24.8 44.8
27 0.1906 25.6653 54.9576 591.0722 0.3774 2.5722 136.9 153.8 0.2770 7.7516 26.0471 110.1686 0.7369 0.5068 16.5 36.6
30 0.1934 26.0326 57.3728 601.0251 0.3831 2.1891 100.5 117.6 0.2772 7.7877 26.1815 111.2469 0.7372 0.4865 12.7 32.9

Table 2: Results of Algorithm 1 & formulation (12a)–(12f) on 30 Hz shopping and GRE
Math reading datasets.

30 Hz Shopping Data 30 Hz GRE Math Reading Data

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

α δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall

0 0.1006 21.5012 21.6441 522.6540 0.1888 6.9010 8.2 44.2 0.1015 5.3435 5.4356 93.7965 0.2679 2.7093 7.7 40.4
1 0.1209 21.5645 26.7576 513.3601 0.2323 6.4350 10.3 46.6 0.2477 6.4484 19.5562 93.3753 0.6603 1.6307 6.4 39.6
2 0.1531 22.5559 37.6929 519.0029 0.3012 5.4906 9.7 46.3 0.2669 6.9389 23.0267 89.6347 0.7120 1.1170 4.1 37.3
3 0.1711 23.5078 45.9917 529.5563 0.3389 4.5600 8.7 45.3 0.2719 7.1749 24.1726 91.7787 0.7249 0.8920 3.5 36.6
4 0.1812 24.2505 51.3489 541.7839 0.3595 3.8215 7.7 44.3 0.2740 7.3090 24.7753 93.4555 0.7299 0.7780 3.2 36.5
5 0.1873 24.8422 54.9765 553.5813 0.3714 3.2194 6.9 43.6 0.2752 7.4159 25.2025 95.1061 0.7327 0.7007 3.1 36.3
6 0.1908 25.2697 57.2888 562.2031 0.3785 2.7894 6.2 42.9 0.2759 7.4883 25.4862 96.3742 0.7344 0.6406 3.0 36.3
7 0.1932 25.6052 59.1002 571.0291 0.3834 2.4927 5.8 42.5 0.2763 7.5522 25.7068 97.5203 0.7354 0.5861 3.0 36.5
8 0.1951 25.9119 60.5458 580.0977 0.3871 2.1942 5.4 42.0 0.2765 7.5892 25.8133 98.1695 0.7359 0.5581 2.9 36.2
9 0.1965 26.1606 61.7261 588.6679 0.3897 1.9573 5.1 41.8 0.2769 7.6568 26.0204 99.6355 0.7366 0.5136 2.8 36.2
10 0.1977 26.3796 62.7787 597.2041 0.3919 1.7403 4.9 41.7 0.2770 7.6795 26.1019 100.1463 0.7368 0.4983 2.8 36.2

Table 3: Results of Algorithm 1 & formulation (13a)–(13f) on 30 Hz shopping and GRE
Math reading datasets.

The minimal square side length 2r̂ is derived from the optimal r̂ value in optimization

formulation (13a)–(13f). A final metric, the center shift λavg, is reported in more detail in

Section 4.5.2, in particular with respect to the performance of our approaches versus the

standard I-VT filter.

4.4 Computational Results and Discussion On Proposed Methods

We now discuss the results of our computational experiments for our proposed methods.

Table 2 highlights computational results from running formulation (12a)–(12f) on 30 Hz

Shopping data (left) and 30 Hz GRE Math reading data (right). Table 3 documents the

same information as Table 2, but using formulation (13a)–(13f). Table 4 details the perfor-

mance of formulation (13a)–(13f) on the larger 300 Hz dataset (formulation (12a)–(12f) was

not competitive at this higher frequency). Each table has a similar format, with the rows

indexed by trade-off parameter α, and the columns indicating various properties discussed

in Section 4.3, which are obtained post-optimization by averaging over all chunks in each of

the ten data recordings.
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300 Hz GRE Math Reading Data

α
Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

δavg (s) ρ
avg
1 ρ

avg
2 ρ

avg
3 γavg λavg Gurobi Overall

0 0.1062 5.8589 90.1959 31.9361 0.2598 1.8150 574.3 659.5
0.1 0.2607 6.5335 241.3585 28.8872 0.6528 0.9478 364.5 454.1
0.2 0.2762 6.7828 268.4264 28.5850 0.6911 0.6739 264.7 354.7
0.3 0.2803 6.8764 277.5209 28.2034 0.7004 0.5727 207.2 299.7
0.4 0.2827 6.9654 283.6307 27.5299 0.7053 0.5046 154.7 246.6
0.5 0.2840 7.0202 287.1474 27.7181 0.7083 0.4589 119.0 212.0
0.6 0.2848 7.0571 289.3265 27.8777 0.7100 0.4300 87.0 178.1
0.7 0.2853 7.0816 290.6830 28.0161 0.7112 0.4095 67.1 159.0
0.8 0.2857 7.1100 292.1223 28.1589 0.7121 0.3880 53.9 145.1
0.9 0.2860 7.1251 292.7735 28.2548 0.7126 0.3777 43.4 136.5
1.0 0.2863 7.1483 294.0966 28.3347 0.7134 0.3612 37.7 128.8

Table 4: Results of Algorithm 1 & formulation (13a)–(13f) on 300 Hz GRE Math reading
dataset.

The parameter α represents the trade-off in emphasis between the spatial compactness

versus the number of gaze points contained in a given fixation. At one extreme, a level of α =

0 gives no incentive for inclusion, so very compact fixations tend to form with minimal gaze

points, that is, near the level of N . At the other extreme, larger α penalties incentivize many

gaze points to be included in the fixation, likely at the expense of spatial proximity. Tension

exists in between these two extremes for gaze points that, while within a given data chunk

Ck, are not near the center of a fixation (see, e.g., the sixth gaze point in Figure 2a). Due to

the intrinsic and distinct interpretations of density in (12a) versus (13a), differing levels of

α are required to induce similar outcomes. For this reason we varied the range of α values

in Tables 2, 3, and 4. Due to the higher frequency of the 300 Hz dataset, greater sensitivity

with α was necessary (in the form of smaller values) to influence the results of Table 4.

4.4.1 Runtime Discussions

For each sequence S`, the runtime consists of solving an optimization problem for each

valid chunk Ck` , k = 1, . . . ,K`. As can be seen in Table 1, on average this implies solving

upwards of several hundreds, and sometimes thousands, of small yet still NP-hard optimiza-

tion problems. Moreover, for every computational test, there is a roughly “constant” time

for processing the same dataset. This can be seen in the difference in runtimes between the

“Gurobi” and “Overall” columns, with “Overall” being fairly static. Thus, the differences

in runtime are largely due to the contribution of Gurobi, which experiences varying levels

of computational difficulty as α fluctuates. Moreover, Tables 2 and Table 3 exhibit the gen-

eral trend that when α increases, the Gurobi runtime initially increases, and then decreases.

This is apparent for both the 30 Hz shopping and GRE Math reading datasets, and for both
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optimization formulations. This behavior is likely induced by α: when α is rather small yet

nonzero, there is relatively greater difficulty in balancing the trade-off term in the objective

of including a point or adding the penalty.

Looking across Tables 2 and 3, in general formulation (12a)–(12f) exhibits a slower run-

time performance than (13a)–(13f). When comparing the algorithmic performances of for-

mulation (12a)–(12f) on shopping and GRE Math reading stimuli as reported in Table 2,

we observe that the latter dataset exhibited much longer runtimes for several initial levels

of α. Generally speaking, many of the GRE Math reading data chunks were much larger

than those from the shopping data. These larger data chunks, as well as the numerous new

variables and constraints required to linearize formulation (12a)–(12f), are likely the reason

that it returned no fixations for several levels of α where the proximity-duration trade-off

was most difficult to balance.

Formulation (13a)–(13f) experienced no such performance degradation on the 30 Hz

datasets detailed in Table 3. Even so, when comparing the runtimes for the 30 Hz and

300 Hz GRE Math reading data in Tables 3 and 4, formulation (13a)–(13f) exhibits slower

performance on the 300 Hz instances. It can be seen from Table 1 that the 300 Hz in-

stances have larger average chunk sizes. Hence, the longer processing times are likely due

to Gurobi formulating and solving (13a)–(13f) on larger data chunks. These runtime results

from Table 4, while larger than those from Table 3, remain quite promising for future fixation

detection on similar datasets, and for those of longer duration and at higher frequencies.

4.4.2 Fixation Duration and Cover Rate Discussions

Fixation duration δ is a commonly-used metric in eye-tracking research representing the

temporal length of a fixation. For each dataset and formulation, we report in Tables 2, 3,

and 4 the fixation duration averaged over all chunks and recordings, δavg. When α = 0,

there is no incentive to include gaze points beyond the minimum necessary. Hence, the

value of δavg approaches the minimum defined length of a fixation represented by N . As α

increases, the value of δavg also increases, indicating that on average, fixations are containing

more gaze points. Moreover, independent of dataset and formulation, δavg experiences the

greatest increase for relatively low values of α.

The cover rate γ is a measurement that describes the ratio of points included in fixations

to the total points in a data recording. For each dataset and formulation, we report the

cover rate averaged over all recordings, γavg. As α increases, γavg exhibits an increasing

trend in Tables 2, 3, and 4. Independent of the formulation, the largest γ increases occur

at slightly different values of α. For the GRE Math reading data, the largest jump in γ
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occurs immediately after α transitions from 0 to the first nonzero value. For the shopping

data, however, the greatest γ increase occurs somewhat subsequent to the initial nonzero α

transition. After these larger jumps, γ increases at a decreasing rate.

4.4.3 Density Metric Discussions

The three density metrics discussed in Section 4.3 are averaged over all chunks in each of

the ten data recordings, and reported in Tables 2, 3, and 4. Recall that, in keeping with Rao

(1971), density is largest for small ρ1, ρ2, and ρ3 values. Some general trends across all

experiments is that ρavg1 never exceeds ρavg2 . This is a relatively straightforward observation

because, while ρavg1 and ρavg2 have identical numerators, ρavg1 always has at least as large of a

denominator (and often larger). The ρavg3 metric evaluates the ratio of the minimal bounding

box area to the number of points in the fixation, hence is a slightly different metric and often

differs in magnitude from ρavg1 and ρavg2 .

For all datasets and formulations, the general trend is for ρavg1 , ρavg2 , and ρavg3 to increase

as α increases, implying that, on average, fixations decrease in density. For all three metrics,

both the numerator and denominator will increase as α increases, hence there are some slight

fluctuations as α varies, and among the three metrics, ρavg3 exhibits the greatest variation

for early values of α. Another observation is that the difference between ρavg1 and ρavg2

increases as the value of α increases. This increase is largely attributed to the difference in

denominators of ρavg1 and ρavg2 . For the 300 Hz dataset, as can be seen in Table 4, there is a

much larger difference between ρavg1 and ρavg2 . This is again due to the linear versus quadratic

nature of the denominators; with the 300 Hz dataset, the value of the minimum duration

threshold N is much larger, implying that each fixation should contain many more points.

Another important observation is that, independent of formulation, the fixations in GRE

Math reading data both exhibit greater density than those for the shopping data, as well as

feature longer durations. As it is known that longer fixations are representative of higher

levels of information processing (Djamasbi 2014), the results in our study give further sup-

port that the math task was cognitively more demanding than the shopping task. Moreover,

our results also provide evidence that fixations for more cognitively complex tasks are denser

than less demanding tasks. This in turn is a valuable insight for studies that use eye-tracking

to capture information processing behavior at the physiological level.

4.5 Analysis of I-VT and I-DT Methods

In this section we evaluate the performance of the I-VT and the I-DT methods for the

three datasets. Specifics related to our I-VT filter implementation were discussed in Sec-
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tion 4.2. For the I-DT filter, we use a commonly used minimum duration threshold of

dm = 100ms (Salvucci and Goldberg 2000, Salojärvi et al. 2005, Blignaut 2009, Komogort-

sev et al. 2010), measure with the same dispersion metric expressed in (1), and set the

dispersion threshold D at 1◦ of visual angle as recommended in Blignaut (2009).

4.5.1 Comparison of I-VT and I-DT Filters

Table 5 contains five evaluation metrics for each of the I-VT and I-DT filters. It reveals

that, though the I-VT and I-DT filters have different approaches to identify fixations, they

have relatively similar average fixation duration for the shopping data (0.2028 and 0.1939

seconds, respectively). The difference between average fixation duration for the math task

calculated by these two methods, however, is quite large. Independent of the method used,

average fixation duration for the math task is longer than the average fixation duration for

the shopping task. This suggests that the math task required more intense attention than

the shopping task.

I-VT Fixation Filter I-DT Fixation Filter

Dataset δavg (s) ρavg1 ρavg2 ρavg3 γavg δavg (s) ρavg1 ρavg2 ρavg3 γavg

30 Hz Shopping Data 0.2028 28.5099 70.0920 752.7819 0.4012 0.1939 25.9076 57.0907 388.4482 0.6875
30 Hz GRE Math Reading Data 0.2778 8.6233 28.4239 273.2999 0.7385 0.6240 16.9943 152.8289 154.4743 0.9770
300 Hz GRE Math Reading Data 0.2893 7.7921 318.7482 83.1764 0.7195 0.4699 12.4661 934.2180 34.5853 0.9092

Table 5: Performance of I-VT and I-DT filters on five metrics for chunks Ck, k = 1, . . . ,K
from our study. I-VT performance bears resemblance to results from larger values of α
reported in Tables 2, 3, and 4.

No clear trend between the I-VT and I-DT filters was discernible among the ρavg1 , ρavg2 ,

and ρavg3 metrics. We believe this to simply be due to the substantial design differences

between the I-VT and I-DT filters. We also note that the γavg values for the I-DT filter are

larger than those of the I-VT filter for every dataset. Similarly, we attribute this to the I-DT

filter tending to identify fixations of longer duration than the I-VT filter (in Andersson et al.

2016, a similar phenomenon was reported).

4.5.2 Comparing Our Methods with Existing Methods

Our final discussion compares the computational results of our proposed methods with ex-

isting methods, namely the I-VT and I-DT filters. It is important to note that many of

our comparison metrics are based on fixation properties, which in turn depend upon their

separation from saccadic events. Comparisons between the I-VT and I-DT methods are

somewhat incongruent, as their differing implementations lead to fundamental differences

in the way they identify fixations, including the total number of fixations and the fixation
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durations. Even so, of the two, our methods most closely compare with the I-VT filter – as

we use the velocity threshold strategy of the I-VT filter to divide the gaze sequence S into

chunks. We explain this data preprocessing step in Section 4.2.

Most of the I-VT filter performance in Table 5 can be viewed through the lens of the

parameter α. In particular, the I-VT results resemble those of Tables 2, 3, and 4 for increas-

ingly large values of α. That is, because the straightforward I-VT implementation has no

way of further reducing the chunks it identifies as fixations, it can be seen as the extreme of

our methods, for very high α levels. Table 5 reveals that the I-VT metrics represent the lim-

iting values for each of the five metrics, over all three datasets and both formulations. This

gives credence to the idea that fixations identified by the I-VT filter often contain additional

gaze points that should be viewed as outliers. Our methods are able to further filter these

fringe points by optimizing for inner-density, thereby refining the classification results of the

I-VT filter. The ability to use user-defined α values to distill larger chunks of data into more

refined fixations is a key feature of our proposed fixation identification approaches, as these

refined fixations represent the core of focused attention.

Concerning the I-DT filter, comparisons to our methods are at best indirect. Even so, we

make comparisons as they may have some limited utility. For the 30 Hz shopping data, the

I-DT filter performance yielded fixations with somewhat similar or slightly larger durations,

having more total gaze points covered than the results from our formulations (12a)–(12f)

and (13a)–(13f). Again, these effects may be attributable simply to the specifics of the I-

DT filter design (in a related study, Andersson et al. 2016, similar observations are made).

Moreover, on the aggregate our methods are generally able to identify fixations with greater

density than those of the I-DT filter.

Last, we remark on refining the center location of a fixation. Having already observed

that fixation duration is strongly influenced by the level of α, which controls for inner-density,

we now demonstrate that our approaches can fine-tune the locational precision of the I-VT

method. We introduce the center shift λavg, which measures the straight-line (Euclidean)

distance, in pixels, between the I-VT fixation centroid and the densest fixation centroid,

averaged over all fixations. These values are reported in Tables 2, 3, and 4. It can be clearly

seen that lower α values yield larger λavg values than do higher α values. This is because

smaller α values increase the inner-density of the resulting fixations, and in so doing, the

fixation centroids become more centralized due to the exclusion of some peripheral points

existing in data chunks.

In summary, our proposed fixation identification approach both builds on strengths of

both the I-VT and I-DT filters, and avoids shortcomings. Velocity-based methods serve as

a suitable method to group a gaze data sequence into fixation chunks by removing saccadic
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points (as per the I-VT filter). Moreover, excluding consecutive gaze points for which the

duration is below a realistic threshold is also a useful way to remove gaze points unrelated to

fixations (similar to the I-DT filter). By optimizing for inner-density on each resulting data

chunk, we essentially use a dispersion-based approach to identify fixations. A key difference

is that, rather than a static threshold used in I-DT, our dispersion threshold is dynamic –

this is directly expressed by the variable r, characterizing bounding square side length, that

is minimized in formulation (13a)–(13f). By doing so, we minimize the inclusion of fringe

points in fixations and thus improve the accuracy of fixation duration and location. Hence,

our methods are a refinement of both approaches.

Our computational findings have important implications for eye-tracking research. First,

they show that considering fixations at a more refined scale can provide important insights

into cognitive processing levels, as our computational experiments reveal that tasks with

greater cognitive complexity featured longer-lasting fixations with heightened density. Hence,

the results provide a rationale and theoretical direction for studying behavior via a new met-

ric in user experience and human-computer interaction studies. Additionally, our results

demonstrate that inner-density is a valuable concept; when combined with optimization-

based approaches, it is a useful and novel way to identify fixations. In particular, the

inner-density parameter α provides a previously unavailable level of control for studying fo-

cused fixation, which we believe will prove fruitful in many fields of study that use fixation

duration and location to identify behavior, including marketing, user experience, human-

computer interaction, and medical diagnosis.

5. Conclusions

This paper addresses the task of identifying eye-movement fixation events in temporal (x, y)

gaze data obtained from eye-tracking devices. Fixations carry information about cognitive

processing and thus their properties, including fixation duration and location, are often used

to understand behavior (Poole and Ball 2005). Fixation duration refers to the temporal

length of a fixation, calculated as the number of gaze points within a fixation divided by the

recording frequency, whereas fixation location refers to the center (centroid) of a gaze point

cluster identified as a fixation event. Both duration and location properties are sensitive to

how gaze points are grouped into fixations because they are influenced by the number, and

the spatial proximity, of gaze points in an individual fixation.

Common methods of identifying fixations, such as the I-VT and I-DT filters, can lead to

issues with precision regarding duration and location of fixations. This can have unintended

ramifications when exact, rather than approximate, oculomotor behavior location or duration
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are key outcomes. Indeed, in some eye-movement applications such as psychopathological

diagnoses (such as Autism spectrum disorder – see, e.g., Sabatos-DeVito et al. 2016, Thorup

et al. 2016), it can be argued that such accuracy is essential.

Figure 5 contrasts the performance of the raw I-VT filter with the performance of formu-

lation (13a)–(13f) and α = 0.1 on the same data sequence depicted in Figure 1. The callouts

denote saccadic points by stars, fixation points by circles, and points that are eliminated by

our approach by triangles. The smallest 2D boundaries for both approaches are also drawn.

Some I-VT fixations (e.g. Fixation 1) contain nearly 35% more points as compared to ours

(66 vs. 49 points). This refinement can have a large affect on key gaze metrics such as

fixation duration and center.

Figure 5: Comparing fixations identified with standard I-VT, versus formulation (13a)–(13f),
α = 0.1, in the gaze stream depicted in Figure 1. Some I-VT fixations contain nearly 35%
more points than our approach.

Fixations indicate user effort to stabilize gaze when viewing an object, and the density

of gaze points within a fixation carry information about user focus on that object; denser

fixations represent more focused attention (Shojaeizadeh et al. 2016). This inner-density

property of individual fixations, however, has gone largely unstudied in eye-tracking research.

In this work we approach the problem of identifying fixations from the perspective of inner-

density. Inner-density intrinsically values both duration of gaze, as well as the compactness

of fixations, and so can reasonably represent focused processing. Additionally, because dense

fixations place a high value on proximity, they are less likely to include outliers, and hence

their duration and location measures are likely to be more accurate and representative. We

provide several alternative mathematical programming formulations together with an algo-

rithm to identify the densest fixations in a sequence of gaze data. To our best knowledge,
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there are no explicit density-based approaches to identify fixations in gaze data, nor are there

any that optimize for density.

Our computational experiments on two actual shopping and GRE Math reading datasets

yielded encouraging results, in particular formulation (13a)–(13f) is quite robust to the larger

300 Hz GRE Math reading dataset over a variety of parametrized α values. The reasonable

runtimes suggest further scalability for formulation (13a)–(13f). Moreover, both formulations

are able to identify fixations with greater density than the standard I-VT filter, revealing

that finer detail is available than what the I-VT can otherwise provide.

We note some limitations. Our formulations (12a)–(12f) and (13a)–(13f) can accom-

modate multiple dense fixations within a given data chunk, and especially for the latter,

sequences of reasonably large size. Through limited manual inspections on individual data

chunks separated by the I-VT filter, we overwhelmingly observed that a single actual dense

fixation existed within a given data chunk. However, multiple fixations may occasionally

exist within a single chunk. Here, the size of the formulations and the complexity in solv-

ing them also grow with the size of Fmax, so we would expect the runtime performance of

our approaches to deteriorate as Fmax increases. On the other hand, when seeking multiple

fixations, symmetry exists in formulations (12a)–(12f) and (13a)–(13f), and hence symmetry-

breaking constraints may help improving computational progress toward global optimality.

A future avenue of work may involve ways to automatically detect the number of fixations

within a given data chunk, and whether there exist statistical measures that can account,

or even optimize, for these. We could also conduct side-by-side runtime performance com-

parisons of our methods with I-DT and I-VT filters, which require more information than is

presently available in the data obtained from Tobii eye-tracking software (Olsen 2012). Fu-

ture studies involving customized I-VT and I-DT implementations using eye-tracking SDKs

are needed to enable such comparisons.

Formulation (12a)–(12f) does not perform well computationally, for at least some α val-

ues, when the number of gaze points exceeds approximately 100. We attribute this to the

nonlinearity of the initial formulation, and subsequent increase in model size required by the

linearization. On the other hand, formulation (13a)–(13f) appears to demonstrate greater

scalability. However, a potential limitation is that it uses a square bounding box, when there

is no specific reason to expect that fixations will be bounded by a quadrilateral of equal sides.

Future work includes exploring alternative bounding regions such as circles, rectangles, and

ellipses which, while likely more representative, require more expressive modeling through

nonlinear representations of area.

Viewed at the two extremes of α = 0 and very large α, our formulations can be seen as ei-

ther finding very compact fixations of short duration, or alternatively an essential equivalent
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to the I-VT filter. In between these extremes, it will prove interesting to explore appropriate

levels of α for varying tasks (e.g. recognition or selection) and stimuli (e.g. dynamic or

interactive). This may be the focus of subsequent investigations. Another idea is to allow

for the possibility of slightly relaxing the fairly restrictive temporal adherence conditions

outlined in Proposition 1. This could replace that constraint set with an alternative that

could allow for small deviations from absolute time consistency. Moreover, while the solution

approaches presented in this paper specifically address 2D gaze data, the increasing trend of

exploring and interpreting 3D gaze data (see, e.g., Blascheck et al. 2014) presents additional

opportunities. Formulations (12a)–(12f) and (13a)–(13f) can both readily accommodate 3D

gaze data with minor modifications (namely, adapting the dij measure in the former to rep-

resent 3D distances, and incorporating a continuous variable for the dimension beyond x

and y together with associated box constraints).

Finally, gaze data likely exhibits different tendencies when stimuli and task vary. We

observed this when comparing the shopping versus GRE Math reading data – eye movement

metrics such as average fixation duration and average cover rate had discernible changes

across stimuli. Further, eye movement metrics are likely sensitive to subject variation. We

believe our algorithmic approaches are extendible to recognize fixations under a variety of

different scenarios. Moreover, because we focus only on refining fixations, our approaches

pose no issue, and may even enhance, the identification of less studied eye movement events

such as smooth pursuit and glissades.
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7. Appendices

7.1 Proof of Proposition 1

Proof. For any fixation f , the variables corresponding to every consecutive time pair (ztf ,

zt+1,f ) can take one of four alternatives: i) (0, 0) is outside of f ; ii) (0, 1) starts f ; iii) (1, 1)

is inside of f ; and iv) (1, 0) terminates f . The constraint set causes no restriction for the first

three alternatives, as every constraint is trivially satisfied with a right-hand side of (T −t) or

2(T − t). The right-hand side constrains only for alternative iv), with ztf = 1 and zt+1,f = 0.
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Here it becomes zero, immediately ensuring that zt,f = 0 for all t + 1, . . . , T . Constraints

corresponding to t = 1, . . . , T − 1 ensure this to be in effect over all pairs of time points,

thereby disallowing fixation f to terminate more than once. This completes the proof.

7.2 Sensitivity Analysis for Objective Function Density Terms

We consider the sensitivity of objective functions of formulations (12a)–(12f) and (13a)–

(13f), for constant ᾱ, in balancing the tradeoff between including additional points in the

fixation versus the spatial compactness of the fixation. We analyze a general chunk Ck with

T k gaze points. Without loss of generality, suppose F = 1, so the fixation subscript f may

be omitted for notational simplicity. Further suppose a feasible solution X̄ = {ū, v̄, ȳ, z̄}
exists for formulation (12a)–(12f), and consider the equivalent form of the objective found

in (7a). The objective function value for feasible solution X̄ is:

Zfeas =

∑T k−1
i=1

∑T k

j=i+1 dij z̄iz̄j∑T k

i=1 z̄i
+ ᾱ

T k∑
i=1

(1− z̄i). (14)

Now suppose there exists a gaze point ` ∈ Ck that is not presently contained in the fixation

and immediately precedes the first gaze point in the fixation (or succeeds the last). We

consider whether to add gaze point `. The new objective function would then be:

Znew =

∑T k−1
i=1

∑T k

j=i+1 dij z̄iz̄j +
∑T k

i:z̄i=1 di`∑T k

i=1 z̄i + 1
+ ᾱ

T k∑
i=1

(1− z̄i)− ᾱ. (15)

Adding gaze point ` improves the objective if Zdiff = Znew − Zfeas < 0, where Zdiff , the

difference between Znew and Zfeas, is (after some algebraic rearrangement):

Zdiff =

(∑T k

i=1 z̄i

)(∑T k

i:z̄i=1 di`

)
−
∑T k−1

i=1

∑T k

j=i+1 dij z̄iz̄j(∑T k

i=1 z̄i

)(∑T k

i=1 z̄i + 1
) − ᾱ. (16)

Hence, the new gaze point ` improves the objective, and should be added to the fixation,

whenever the penalty ᾱ >

(∑T k

i=1 z̄i

)(∑T k

i:z̄i=1 di`

)
−
∑T k−1

i=1

∑T k

j=i+1 dij z̄iz̄j(∑T k

i=1 z̄i

)(∑T k

i=1 z̄i+1
) .

A similar derivation exists for formulation (13a)–(13f). Suppose there is a feasible solu-

tion X̄ = {r̄, x̄, ȳ, z̄}. Consider whether to add a new gaze point ` ∈ Ck that is presently

outside of the bounding box formed by r, x, and y, yet temporally adjacent to the first or
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last point in the fixation. The radius will increase from r̄ to r̄+ δr, and one additional point

will be included in the fixation, which will contribute −ᾱ to the objective. Hence the gaze

point ` should be included in the fixation if ᾱ > δr.

Through this analysis we can see that varying α affects the density of resulting fixations

in both formulations (12a)–(12f) and (13a)–(13f). Depending on such factors as the task and

stimuli, different α levels may be necessary to induce desired levels of fixation density.

References

Andersson, Richard, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, Marcus Nyström. 2016.

One algorithm to rule them all? An evaluation and discussion of ten eye movement event-

detection algorithms. Behavior Research Methods 1–22.

Bertsimas, Dimitris, Angela King. 2015. OR Forum–An algorithmic approach to linear regression.

Operations Research 64 2–16.

Bingham, Ella. 2010. Finding segmentations of sequences. Inductive Databases and Constraint-

Based Data Mining . Springer, 177–197.

Blascheck, T., K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, T. Ertl. 2014. State-of-the-Art

of Visualization for Eye Tracking Data. R. Borgo, R. Maciejewski, I. Viola, eds., EuroVis -

STARs. The Eurographics Association.

Blignaut, Pieter. 2009. Fixation identification: The optimum threshold for a dispersion algorithm.

Attention, Perception, & Psychophysics 71 881–895.

Bradley, Paul S, Olvi L Mangasarian, W Nick Street. 1997. Clustering via concave minimization.

Advances in Neural Information Processing Systems 368–374.

Charikar, Moses, Chandra Chekuri, Tomas Feder, Rajeev Motwani. 2004. Incremental clustering

and dynamic information retrieval. SIAM Journal on Computing 33 1417–1440.

Chen, Chuan-Chong, Khee-Meng Koh. 1992. Principles and Techniques in Combinatorics. World

Scientific.

Cockerham, Glenn C, Eric D Weichel, James C Orcutt, Joseph F Rizzo, Kraig S Bower. 2009.

Eye and visual function in traumatic brain injury. Journal of Rehabilitation Research and

Development 46 811–818.

Djamasbi, Soussan. 2014. Eye tracking and web experience. AIS Transactions on Human-Computer

Interaction 6 37–54.

Djamasbi, Soussan, Marisa Siegel, Tom Tullis. 2010. Generation Y, web design, and eye tracking.

International Journal of Human Computer Studies 66 307–323.

Engelke, Ulrich, Hantao Liu, Junle Wang, Patrick Le Callet, Ingrid Heynderickx, Hans-Jurgen

32



Zepernick, Andreas Maeder. 2013. Comparative study of fixation density maps. IEEE Trans-

actions on Image Processing 22 1121–1133.

Estivill-Castro, Vladimir. 2002. Why so many clustering algorithms: A position paper. ACM

SIGKDD Explorations Newsletter 4 65–75.

Goldberg, Joseph H, Xerxes P Kotval. 1999. Computer interface evaluation using eye movements:

Methods and constructs. International Journal of Industrial Ergonomics 24 631–645.

Goldberg, Joseph H, Mark J Stimson, Marion Lewenstein, Neil Scott, Anna M Wichansky. 2002.

Eye tracking in web search tasks: Design implications. Proceedings of the 2002 Symposium on

Eye Tracking Research & Applications. ACM, 51–58.

Gurobi Optimization, Inc. 2016. Gurobi Optimizer 6.5.0 Reference Manual.

Hochbaum, Dorit S, Wolfgang Maass. 1985. Approximation schemes for covering and packing

problems in image processing and VLSI. Journal of the ACM (JACM) 32 130–136.

Holmqvist, Kenneth, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka Jarodzka,

Joost Van de Weijer. 2011. Eye Tracking: A Comprehensive Guide to Methods and Measures.

Oxford University Press.

Komogortsev, Oleg V, Denise V Gobert, Sampath Jayarathna, Do Hyong Koh, Sandeep M Gowda.

2010. Standardization of automated analyses of oculomotor fixation and saccadic behaviors.

IEEE Transactions on Biomedical Engineering 57 2635–2645.

Li, Beibin, Quan Wang, Erin Barney, Logan Hart, Carla Wall, Katarzyna Chawarska, Irati Saez

de Urabain, Timothy J Smith, Frederick Shic. 2016. Modified DBSCAN algorithm on ocu-

lomotor fixation identification. Proceedings of the Ninth Biennial ACM Symposium on Eye

Tracking Research & Applications. ACM, 337–338.

MathWorks, Inc. 2016. MATLAB Users Guide.

Nyström, Marcus, Kenneth Holmqvist. 2010. An adaptive algorithm for fixation, saccade, and

glissade detection in eyetracking data. Behavior Research Methods 42 188–204.

Olsen, Anneli. 2012. The Tobii I-VT fixation filter. Copyright c© Tobii Technology AB .

Over, Eelco AB, Ignace TC Hooge, Casper J Erkelens. 2006. A quantitative measure for the

uniformity of fixation density: The Voronoi method. Behavior Research Methods 38 251–261.

Poole, Alex, Linden J. Ball. 2005. Eye tracking in human-computer interaction and usability

research: Current status and future. C. Ghaoui, ed., Encyclopedia of Human Computer In-

teraction. Idea Group Reference, Hershey, Pennsylvania, 211–219.
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