
Creating Algorithms to Draw Polygons

Do this on pencilcode.net

We will develop algorithms to draw polygons using turtle graphics. Turtle graphics were

developed by Seymour Papert to create algorithmic art by moving a geometric "turtle."

Five Basic Turtle Commands

With turtle graphics, you have the following Primitive functions:

pen red Selects a line color for drawing (pen null to switch to no-color later).

fd 100 Moves the turtle forward by some pixels.

rt 90 Pivots the turtle right by some degrees.

lt 90 Pivots the turtle left by some degrees.

bk 100 Slides the turtle back by some pixels.

There are other turtle primitives, but these five are already enough to do a lot. Here is a house:

A Little Blue House

pen blue

fd 50

rt 90

bk 10

lt 45

fd 60

lt 90

bk 60

lt 45

fd 10

lt 90

fd 50

Activity #1

Polygons: Square, Triangle, and Pentagon.

Create programs to make a square, an equilateral triangle, and a regular pentagon. You can save

them using the names "square", "triangle" and "pentagon".

Since a square has four corners and four sides, it should take no more than 4+4=8 commands to

draw a square after choosing a pen color. Similarly, a triangle should take no more than six steps

after picking a pen, and a pentagon should take no more than ten steps after the pen.

Purple Square

pen purple_________

fd 50______________

rt 90 _____________

Orange Triangle

pen orange_________

fd 100_____________

Green Pentagon

_____ _____________

Even though our triangle has a smaller angle, the turtle must pivot a larger number of degrees to

make that angle. Why is that?

Exercise:

Write programs for the three regular polygons above, using only the primitives pen, fd and rt.

Include final turns to return the turtle to its starting direction in each program.

Activity #2

Simplifying an Algorithm with Loops

An algorithm can be written with Primitives, Control flow, Memory, and Arithmetic. So far

we have been able to make fine drawings using only Primitives: why use anything else?

Here is a simple loop using for to demonstrate Control flow in CoffeeScript:

pen crimson

for [1..4] # This line controls the indented block below.

 fd 50 # This indented line is repeated 4 times.

 rt 90 # This indented line is also repeated 4 times.

The result is a square again, but with a shorter program.

The for keyword repeats a block of code once for each number in a range we provide.

In CoffeeScript, indenting is important! The program will not run correctly if you do not line up

the indenting neatly.

Drawing Faster and Filling Shapes

Here are two more turtle primitives for solving common problems:

speed 10 speed 10 sets the turtle speed to 10 moves per second. speed Infinity works.

pen path

fill purple

pen path makes the turtle trace out an invisible path. Later, fill purple fills the

invisible path with color.

Exercises:

1. Which written description of a square is easier to understand: A, or B? _______

A. "A shape with a side and a corner and an equal side and an equal corner and another

equal side and another equal corner and another equal side and another equal corner."

B. "A shape with four equal sides and corners."

2. Use the for [1..n] technique to simplify your triangle and pentagon programs. How many

lines of code are in each program now? _______

3. Write a program to draw a regular polygon with 30 corners. Use speed 10.

How many lines is your program? _______

4. Write a program called "stopsign" that quickly draws a solid red octagon. Use speed

Infinity and fill red.

Shorter algorithms are usually clearer.

Activity #3

Generalizing an Algorithm Using Variables

Variables can let us generalize an algorithm. Consider a polygon algorithm that defines a

variable n to be the number of corners:

n = 6 # n is the number of corners.

k = plum # k is the color

a = 60 # a is the size of an exterior angle.

speed Infinity

pen path

for [1..n] # Loop n times:

 fd 50 # Move by 50 pixels.

 rt a # Turn by a degrees.

fill k

Wherever the program needs to know the number of corners, it uses n instead of the number.

The code above defines three variables n, a, and k, and uses them instead of numbers and colors.

Using Arithmetic To Compute Side-Length

To draw a 10-sided polygon, we would just alter n to be 10 and a to be 36 degrees.

When we add more sides, the polygon gets too big to be useful. Instead of always using fd 50, it

might be more convenient to specify the target perimeter, and automatically adjust the lengths

based on the number of corners. Some simple arithmetic does the trick:

n = 10

k = skyblue

a = 36

p = 300 # p is the desired perimeter.

speed Infinity

pen path

for [1..n]

 fd p / n # This will calculated to be 30.

 rt a

fill k

Exercise: Writing Elegant Algorithms for Polygons

Create a program similar to the examples on this page, but eliminate the variable a and compute

the needed angle automatically.

Activity #4

Introduction to Functions

Our goal is to create a new function polygon so that we have a way to draw any regular polygon

with n sides of l length, and color k. For example, polygon 12, 100, blue draws a blue regular

12-sided polygon (dodecagon) where each side length is 100.

Functions can take inputs (called arguments). This code defines a polygon function with three

inputs, n, l, and k. Can you complete the function using your algorithm to correctly draw the

polygon based on the input arguments?

polygon = (n, l, k) -> # define a function polygon with three inputs, code to follow:

 pen k # use the chosen color.

 # insert your algorithm here (remember to indent)!!

speed 10 # draw fast!

polygon 12, 100, blue # use our newly-defined function!

Exercises:

1. Custom Star: Instead of drawing a regular polygon, can you draw a custom star using input

arguments? The function star below has one argument n that is used to represent how many

corners (points) are drawn in the star. Can you draw a five-pointed star or a nine-pointed star?

Can you make it work for all numbers?

star = (n) ->

2. Super Star: Add more arguments by declaring star = (n, m, s) ->. m is the

multiplier used when calculating the angle, and s is the length of a side. Can you draw an 8-

pointed star?

Reference — pencilcode.net
Movement

fd 50 forward 50 pixels
bk 10 backward 10 pixels
rt 90 turn right 90 degrees
lt 120 turn left 120 degrees

rt 90, 50 do a 90° arc of radius 50
home() go to the page center

slide x, y slide right x and forward y
moveto x, y go to x, y relative to home
turnto 45 set direction to 45 (NE)
turnto obj point toward obj
speed 30 do 30 moves per second

Appearance
ht() hide the turtle
st() show the turtle

scale 8 do everything 8x bigger
wear yellow wear a yellow shell
fadeOut() fade and hide the turtle
remove() totally remove the turtle

Output
see obj debug the value of obj

write 'hello' writes a line of HTML
p = write 'hm' saves an HTML element
p.html 'done' changes old text
append 'ok' text without a new line
button 'go',

-> fd 10
adds a button with
an action

read (n) ->
write n*n

adds a text input with
an action

t = table 3,5 adds a 3x5 <table>
t.cell(0, 0).
text 'aloha'

selects the first cell of the
table and sets its text

ct() clear text

Drawing
pen blue draw in blue

pen red, 9 9 pixel wide red pen
pen null use no color
pen off pause use of the pen
pen on use the pen again

label 'X' draw the letter X
dot green draw a green dot

dot gold, 30 30 pixel gold circle
pen path trace an invisible path
fill cyan fill traced path in cyan

cg() clear graphics

Properties
turtle name of the main turtle
getxy() [x, y] position relative to home

direction() direction of turtle
hidden() if the turtle is hidden

touches(obj) if the turtle touches obj
inside(window) if enclosed in the window

Objects
t = new Turtle make a new turtle

p = new Piano 88 make a new 88-key piano
g = $('img') select all as a set

Other Functions
tick 5, -> fd 10 go 5 times per second
click -> fd 10 go when clicked
random [3,5,7] return 3, 5, or 7

random 100 random [0..99]
play 'ceg' play musical notes
$(window) the visible window

$('p').eq(0) the first <p> element
$('#zed') the element with id="zed"

Colors
white gainsboro silver darkgray gray dimgray black

whitesmoke lightgray lightcoral rosybrown indianred red maroon

snow mistyrose salmon orangered chocolate brown darkred

seashell peachpuff tomato darkorange peru firebrick olive

linen bisque darksalmon orange goldenrod sienna darkolivegreen

oldlace antiquewhite coral gold limegreen saddlebrown darkgreen

floralwhite navajowhite lightsalmon darkkhaki lime darkgoldenrod green

cornsilk blanchedalmond sandybrown yellow mediumseagreen olivedrab forestgreen

ivory papayawhip burlywood yellowgreen springgreen seagreen darkslategray

beige moccasin tan chartreuse mediumspringgreen lightseagreen teal

lightyellow wheat khaki lawngreen aqua darkturquoise darkcyan

lightgoldenrodyellow lemonchiffon greenyellow darkseagreen cyan deepskyblue midnightblue

honeydew palegoldenrod lightgreen mediumaquamarine cadetblue steelblue navy

mintcream palegreen skyblue turquoise dodgerblue blue darkblue

azure aquamarine lightskyblue mediumturquoise lightslategray blueviolet mediumblue

lightcyan paleturquoise lightsteelblue cornflowerblue slategray darkorchid darkslateblue

aliceblue powderblue thistle mediumslateblue royalblue fuchsia indigo

ghostwhite lightblue plum mediumpurple slateblue magenta darkviolet

lavender pink violet orchid mediumorchid mediumvioletred purple

lavenderblush lightpink hotpink palevioletred deeppink crimson darkmagenta

