

B.U.N.J.E.E.

Balance Utility Navigational Joints with Elastic Expansion

CEO Caroline Walczak, CIO Jianna Bixho, CTO Anthea Sun, & CMO Thomas Giolas

Advisor: Kevin Crowthers, Ph.D.

Problem Statement

People who commonly experience **syncope/limited mobility** often need to rely on others to **stabilize** them (Vasovagal Syncope). If they faint, they might fall and injure themselves. In open areas, they cannot sit on a bench or lean against a wall, so the risk of suddenly feeling faint/weak cannot be avoided.

Engineering Goal

Many **current designs** for personal seating/support, like a cane or chair, are **not easily portable**, leading to potential accidents due to their inaccessibility. The goal for this design is to create a **cane** that can contract to a **transportable size**, making it more accessible to bring around.

Methodology

Our Current Design

B.U.N.J.E.E. V2

Why We **Chose** This Design:

- More stable than the telescoping cane (Design II)
- Easier to activate
- Simpler extended position locking
- Materials allowed for light weight without sacrificing height or stability

Design I

B.U.N.J.E.E. V1

<u>Pros</u>

- Simple construction
- Modular design
- Rapid deployment (7s for 3 segments)
- Cost-effective

Cons

- Outside connectors don't perfectly fit into string connectors
- Wider than preferred when condensed
- Inconsistency in activation

Design II

TELESCOPIC CANE

<u>Pros</u>

- Extremely small size what contracted
- Modular
- Customizable length while maintaining the form factor

<u>Cons</u>

- Release system has not yet been figured out
- Has more weak points and cannot support as much weight

Design Study I

Consolidation Efficiency

<u>Purpose</u>: To measure how **quickly the** cane can extend

IV: Starting config.

DV: Time to extend device

Findings:

T_{avg}=3.91s

Design Study II

Durability

<u>Purpose</u>: To determine max **force** the device can withstand before deformation

IV: Applied force

<u>DV:</u> Deformation

<u>Findings:</u> **F**_{max}=**128.4N**

Design Study III

Streamline Comfort

<u>Purpose</u>: To determine if the handle streamlined for **comfort**

Conclusions & Future Work

- The device satisfies most of our criteria, but future work can allow for better fulfillment of these requirements
- Incorporate a locking method to keep the extended cane from deploying
- Add chamfers to guide segments together during deployment, therefore reducing extension time