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Abstract

Phytoplankton lie at the base of marine food webs and are major regulators of climate and biogeochemical

cycling, accounting for over half of primary production and the absorption of 30% of carbon emissions. With global

warming modifying ocean conditions, understanding the drivers and impacts of changing phytoplankton dynamics is

crucial. However, one-factor experiments have limited applicability due to heterogeneity in oceanic conditions and

biological responses and preferences among phytoplankton. Conversely, multi-factor experiments produce

confounding results. Therefore, a computational approach was taken wherein a series of models was developed. All

data were derived from the NOAA’s comprehensive World Ocean Database (WOD). Total oceanic chlorophyll

concentration was used as an indicator for primary production. To assess accuracy in forecasting capabilities and

potential correlations, a times series of each parameter was developed and each factor’s relationship with

chlorophyll was assessed, primarily using sinusoidal and linear regression. Model fitness was mild, as R-Squared

values for the first and second set of models ranged from 0.077 to 0.847, and 0.07 to 0.54, respectively.

Subsequently, driving parameters behind chlorophyll levels were identified using principal component analysis

(PCA). Results indicated pH, followed salinity and pressure, as the most influential parameters. Overall results

indicate that the proposed computational apparatus is viable for analyzing phytoplankton dynamics, but that iteration

in the form of model modification and greater data implementation is necessary. This apparatus could also serve as a

significant tool for policymaking related to aquatic ecosystem management.
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Computational Modeling of Phytoplankton Dynamics with Climatic and Ecological Ramifications

Phytoplankton encompass a broad range of aquatic, microscopic, photosynthetic species of viruses,

bacteria, fungi, protists, animals, and archaea. They are responsible for about half of all global primary production,

the production of nutritional organic matter from inorganic compounds via photosynthesis and other metabolic

processes (Käse & Geuer, 2018). Phytoplankton are key to biogeochemical cycling, helping circulate nitrogen,

phosphorus, silica, and other micronutrients (Sarker et al., 2023). They also absorb 30% of anthropogenic carbon

emissions (Rohr et al., 2023). Beyond photosynthesis, carbon sequestration is also performed through exportation, a

process where, after death, cellular matter sinks to the ocean floor, forming carbon sinks. Phytoplankton regulate

climate not only through controlling carbon circulation, but also through light reflection. Certain functional groups

produce dimethylsulfoniopropiothetin, a complex, sulfur-containing molecule. This compound decomposes into

dimethylsulfide, which in turn decomposes into compounds that reflect solar radiation (Deppeler & Davidson,

2017). It is in fact believed that biochemical processes such as this one helped cause the first major ice ages on Earth

(Käse & Geuer, 2018). Additionally, phytoplankton lie at the base of marine food chains, serving as prey for various

species of zooplankton and fish (Käse & Geuer, 2018; Loschi et al., 2023). Therefore, phytoplankton are an integral

part of the global climate and environmental systems, making the ability to understand how their operations and

functionalities are to change because of global warming incredibly crucial.

Understanding The Impact of Global-Warming Induced Aquatic Changes on Phytoplankton

With that in mind, the impact global warming has had on oceanic conditions themselves must first be

considered. Climate change has led oceans to becoming warmer, more acidic, anoxic, and stratified. Sea levels are

rising, while salinity and micronutrient concentrations are losing uniformity. Moreover, ocean currents have begun

to slow down (Berwyn, 2018). The thermohaline cycle involves the cycling of warmer, fresher, and less dense

pelagic (surface) water with colder, denser, saltier benthic (deep-sea) water. This allows for the mixing of nutrients,

the distribution of heat, and the regulation of climate. Analysis of past climate patterns reveals that a slower

thermohaline cycle has been associated with more extreme climate patterns (Berwyn, 2018). However, it is

important to note that changes in ocean conditions are not uniform, but rather, vary extensively by region (Winder &

Sommer, 2012). That means environmental conditions, which impact the nature of phytoplankton populations, are

not homogenous, adding a layer of complexity when determining the impacts they are to face.



Similarly, phytoplankton are undergoing some overarching changes. Common trends include shifting

phenology, a change in preferences towards smaller, more buoyant cells, and poleward migration (Ratnarajah et al.,

2023). However, under the surface, population modifications are far more complex. For example, certain groups are

favored under eutrophic conditions, that is, conditions where there are excessive micronutrients, leading to an

unhealthy amount of growth in algal blooms that deplete ecosystem resources, whereas others under fresher or

darker conditions (Winder & Sommer, 2012). There are a voluminous amount of environmental factors (e.g., light,

heat, nutrients, pH, salinity, etc.) that impact phytoplankton dynamics (Winder & Sommer, 2012). Moreover, each

species operates under different sets of ideal conditions. This raises a dilemma. To illustrate this, consider two

phytoplankton species living in the same area. Suppose that one species can tolerate a pH range of 5.9 to 6.5,

whereas another one tolerates a range of 6.7 to 7.3. With ocean acidity changing heterogeneously, if one area of the

ocean has a pH of 6, and another area a pH of 7, then each species would migrate to the area matching their

respective preferences, heavily modifying taxonomic composition, biomass, exportation, and other dynamics.

However, there are other influential environmental factors, making it important to consider how multiple factors

simultaneously impact dynamics. Using the example given, would another factor, such as dissolved oxygen, have

precedent over pH when it comes to these species seeking ideal conditions? Moreover, these migrations would leave

predators bereft of a major source of food. How would that impact the entire ecosystem? What climatic shifts may

result? The circumstances and questions raised by a scenario like this capture the essence of what this study aimed to

address.

Examples of Parametric Variability

Parameters that influence phytoplankton conditions are present at the molecular, genomic, cytological, and

ecological level. Changes in their values can impact various important biological characteristics, including primary

production and metabolic rates. For instance, biochemical processes like DNA methylation, whereby a methyl

functional group is applied to the fifth carbon in the carbon ring of the nitrogenous base of cytosine, with warming

ocean temperatures, has been found to inhibit amino acid metabolism, as well as respiration and photosynthesis in

phytoplankton, while enhancing fatty acid metabolism (Wan et al., 2023). This means that there is a slower rate of

primary production and carbon sequestration, inhibiting phytoplankton’s role both as the base of marine food chains

and as climate regulators. However, seeing as ocean temperature shall change heterogeneously, the extent to which

this trend occurs shall vary.



Meanwhile, micronutrients also play a major role in influencing metabolic rates. For example, phosphorus

is an integral component of all forms of metabolism, making phosphorus-containing compounds crucial for

phytoplankton. However, as discussed above, varying levels of micronutrients, including these compounds, impact

dynamics in different ways. It has been found that increased phosphorus levels has allowed for all metabolic

processes to occur at faster rates, bolstering the ability of phytoplankton to sequester carbon and provide greater

biomass for its predators. However, excessive phosphorus concentrations can be toxic and lead to eutrophication (Li

et al., 2023). Moreover, toxicity and metabolic rates vary across different species.

Another example of significant environmental variability is water temperature. Different genera of

phytoplankton exhibit different responses to warming ocean temperatures. For example, using a modified Eppley

Curve, an exponential function that models the relationship between growth rates and water temperature, one

analysis found that, while growth rates are expected to increase alongside temperature, the rate at which the growth

rate increases for diatoms was greater than that of dinoflagellates, cyanobacteria, and coccolithophores (Anderson et

al., 2023). Additionally, dissimilar thermal attributes are predicted to result in differential migration patterns among

different functional groups.

In conjunction with the explanation offered in the previous section, these examples illustrate that for any

environmental parameter, there is a great amount of nuance when it comes to the impact that phytoplankton face.

This nuance only expands when multiple variables are considered in tandem. It is extremely difficult to perform an

experiment that involves multiple independent variables, as confounding factors would easily arise. The alternative

would be to perform an experiment using only one variable, which would fail to account for the multifactor

interactions that occur. The results of such a procedure across different instances would also vary, failing to paint a

solid picture of the impact of that one parameter (Chang et al., 2022).

Computational Modeling of Phytoplankton Dynamics: Progress and Current Limitations

As a result, a computational modeling approach is imperative, as it can be used to capture the nuances of

this situation, and provide greater insight into what the observed results signify. In essence, this is what the goal of

this project is: to take the complex relationships in phytoplankton populations, and organize, synthesize, and

contextualize them, delineating ramifications.

Presently, there are many limitations with computational models of phytoplankton dynamics. One major

limitation is the misunderstanding of the role zooplankton play in the modeling process. Different models have made



different assumptions about how zooplankton interact in ecological systems, leading to divergent predictions in

climate and food web scenarios (Rohr et al., 2023). Indeed, it has been found that more robust data collection

methods and raw data on zooplankton is necessary (Ratnarajah et al., 2023). It is a dearth in overall data that limits

the predictive power of these computer models. There is a particular lack of data from the Southern hemisphere

(Deppeler & Davidson, 2017).

That is not to say that accurate models have not been developed. In fact, there have been models developed

for small bodies of water, such as the Tucuruí reservoir in Pará, Brazil (Deus et al., 2013). This computer model was

based off of field data on chlorophyll a, dissolved oxygen, ammonia. Through linear regression analysis including

R2, root mean square error, and the slope of regression lines comparing computer predictions to actual results, it was

determined that the model was in fact accurate. Figure 1 (Deus et al., 2013) depicts the linear regression between the

predicted and field values of these parameters. With extremely high R2 values, the model was deemed fit to perform

other functions within study. This provides a strong example for how the accuracy in computer model predictions

can be assessed, allowing for model results and ramifications to be validated. Indeed, validation relies on some form

of statistical analysis, which varies from model to model.

Figure 1

An Example of Computational Model Validation Techniques: Tucuruí Reservoir as a Case Study

Note. Each parameter contains a larger graph depicting the raw comparison between field data and computer predictions. From lop left to bottom

right, the parameters shown are phosphate, nitrate, ammonia, dissolved oxygen and chlorophyll a. Embedded within are the linear regressions that

compare the computer model predictions against the actual field data. Therein lie the R2 values which serve to evaluate model accuracy. The R2

values for phosphate, nitrate, ammonia, dissolved oxygen, and chlorophyll a were 0.9791, 0.9506, 0.9495, 0.964, and 0.9967, respectively.



However, different models have been synthesized for different purposes. For example, some models have

focused on the identification of driving parameters in phytoplankton dynamics. Using Principal Component

Analysis (PCA), whereby the impact of parameters is measured using vectors, one study of coastal Bangladesh

found that salinity, followed by micronutrient concentrations, turbidity, and water temperature played the most

significant roles in regulating abundance and spatial variability in phytoplankton (Sarker et al., 2023). Other models

have focused on inter-parameter relationships. One study of several lakes in Wuhan, China used a hierarchical linear

model. After sorting the parameters into different levels and identifying statistically significant relationships, the one

major inter-parameter relationship identified was a negative one between grasslands and water temperature (Tian et

al., 2023). From an ecological lens, neural networks have been developed to model the changing flow caused by

changing phytoplankton conditions. At a broad level, these networks take in various rates related to energy and

matter transfer as parameters, the values of which can be modified to simulate different scenarios. Boit et al. 2012

suggests the gradual implementation of these factors through a series of successive neural networks. When applying

this approach to Lake Constance, the fit of the model to predict observed dynamics was maximized, providing a

format through which food webs of other systems can be created (Boit et al., 2012). Other studies, such as one of the

Venice Lagoon, have been able to identify keystone species (Loschi et al., 2023). From a climatic lens, a focus has

been placed on the accuracy of climate models in predicting bloom phenology, as well as other characteristics. The

Coupled Model Intercomparison Project (CMIP), with its large scope, has been a particular area of focus. For

example, one study found that bloom phenology in the Southern ocean is not accurately predicted as the sea ice

concentration levels used in the model were not reflective of on-site levels (Hague & Vichi, 2018). Overall, there

exists ample literature describing a myriad of empirical relationships and computational models of the various

aspects of the changing characteristics of phytoplankton as well as those ramifications. What is lacking, however, is

a unified apparatus to unite these models.

Given the background information and limitations presented, this paper seeked to create a series of

computational models bound together as one entire system whereby parametric information on phytoplankton

populations could be introduced and results for their populations, and in turn, the environment and climate could be

produced. Figure 2 visualizes this overarching computational framework. This study applied this basic framework to

data from the National Oceanic and Atmospheric Administration (NOAA)’s comprehensive 2018 World Ocean

Database (WOD18). Specifically, the most spatiotemporally cosmopolitan dataset, the Ocean Station Dataset (OSD),



was analyzed. These data include millions of casts, spanning multiple centuries and covering virtually the entire

ocean (Boyer et al., 2018). Given this impressive scope, this allows the study to take a holistic approach to analysis,

partially helping to address the lack of data in computational models. Within the OSD, total oceanic chlorophyll was

used as an indicator for primary production. Factors tested include oxygen, micronutrients, pH, salinity, temperature,

pressure, and alkalinity. To assess potential forecasting capabilities and overall model strength, a time series of all

parameters (including the stated indicator), was created mainly using sinusoidal regression. Subsequently, the

relationship of each factor with the indicator was observed using linear regression. Lastly, driving parameters were

identified using Principal Component Analysis (PCA).

Figure 2

Proposed Overarching Computational Framework for Modeling of Changing Phytoplankton Dynamics

Note. This model takes the form of a systems diagram wherein an input is provided for the system stock, operations are performed, and an output

is provided. This study proposes that parametric data act as the input, that computational and statistical methods act as the operations within the

stock, and that the insights provided on phytoplankton, that is, the study goal, to act as the output. All potential tools proposed above, while useful

for achieving their respective ends, however, not all techniques were utilized within this paper.

This apparatus could serve as a viable streamlined process for experts studying phytoplankton populations

and their role in the environment and climate. Moreover, it has the potential to serve as a tool for policy makers with

regards to water body management. For example, Tian et al. 2023 used results from a multi-agent based model to



recommend a controlled increase in micronutrient concentrations and fish that feed exclusively on zooplankton

(Tian et al., 2023). As a whole, this study has provided a potentially potent framework whereby the causes and

impacts of phytoplankton conditions can be effectively observed.

Section II: Methodology

Role of Student vs. Mentor

The author of this paper was the student, who was mentored by Dr. Kevin Crowthers. From July 2023 to

February 2024, the bulk of the work, including idea generation and attainment, research, and model development,

validation, and testing, was performed by the former. The latter was responsible for monitoring project progress, as

well as offering advice, particularly on potential software usage for parametric testing.

Equipment and Materials

The primary dataset analyzed in this study was the 2018 World Ocean Database (WOD18) provided by the

National Oceanic and Atmospheric Administration (NOAA). Both spatially and temporally, this dataset provides a

highly cosmopolitan measurement of numerous environmental parameters, including water temperature,

micronutrients, pH, salinity, among many others (Boyer et al., 2018). Access to the files of this dataset was attained

through the Registry of Open Data provided by Amazon Web Services (AWS). The files used in this dataset were all

updated within the AWS S3 explorer system on 17 October 2023 when obtained. Files were organized by year from

1900 to 2023, with pre-1900 data being referred to as 1800 (Amazon Web Services, 2024). The file of each year was

systematically downloaded. Regression models were developed using Python code. The main programming

interface used was Google Colaboratory, which, when used, was most recently updated on 8 January 2024,

supporting Python 3.10.12 (Google Colaboratory, 2024). An online webpage was used to conduct PCA (Statistics

Kingdom, 2017). Across all Python programs developed, the Pandas, Xarray, NumPy, SciPy, SciKitLearn, Seaborn,

and MatPlotLib packages were utilized. Additionally, to observe the dimensions of the data files more closely, the

Panoply software, provided by the National Aeronautic and Space Administration’s (NASA’s) Goddard Institute for

Space Studies (GISS), was downloaded. The most current version, 5.3.1, was used, released 1 January 2024 (NASA

GISS, 2024).

Decisions for Parametric Model Development Based off Data Structure



Two key observations were made during preliminary use and analysis of the dataset that led to two key

decisions on the analytical procedure performed. The first observation relates to the data structure of the files used.

These were NetCDF (.nc) files, which illustrate parametric measurements at specific points of latitude, longitude,

and depth across a series of equal temporal increments (Figure 3). In the metadata attained for the .nc files, these

spatiotemporal attributes were referred to as “coordinates.” However, it was specifically noted within this directory

that all dimensions, with the exception of the numerical measurements of parametric data, had their latitude,

longitude, depth, and time alongside their measurement. Meaning, outside of the year as provided by the file, the

spatiotemporal attributes of the primary data on environmental parameters could not be accessed. Therefore, a more

holistic approach to analysis was taken, wherein the average global value of each factor was calculated for each year

of data. This helped preserve temporal analysis and offered a viable overview of environmental relationships, though

at the expense of omitting the nuances and consequences caused by dissimilar spatial attributes among parametric

data.

Figure 3

Illustration of the NetCDF Data Structure

Note. This is a common illustration of the structure of a NetCDF file. The gray circles represent specific points in longitudinal and latitudinal

space. Though not illustrated above, each of these coordinates also contains varying levels of depth. At all of these points in space, there exist

parametric measurements. These measurements are projected out through a series of time increments, forming a three-dimensional figure.

The second observation made from the metadata was that planktonic data was inaccessible. Within the

Panoply software, whereas extractable data was stored within one-dimensional arrays, the values of non-extractable

data were unavailable. Figure 4 contains an illustration of this issue. Planktonic data fell under the latter category.



Consequently, it was decided to use average global oceanic concentration of total chlorophyll as an indicator of

phytoplankton dynamics, namely primary production. This is because chlorophyll is a crucial pigment for carrying

out the photosynthetic process, and in turn, all other metabolic processes. As such, a higher concentration of

chlorophyll would indicate greater potential for primary production, whereas Though a valuable indicator, it is

important to note that it is not a direct measurement of phytoplankton traits. Although data of all available

parameters spanning 1900 to 2019 were downloaded, due to the limited temporal range of measurements for total

oceanic chlorophyll, this study focused on data from 1954 to 2017. This also reduced the number of factors assessed.

Figure 4

Inaccessibility of Planktonic Data

Note. The extractable data (black) were stored as one-dimensional arrays, whereas the values of inextricable data could not be obtained. All

planktonic data fell under the latter category.

Data Extraction and Cleaning

Using Google Colaboratory, a brief program was written to extract parametric data .nc files and save them

as Comma Separated Value (.csv) files. Within each .csv file, the average, standard error, and sample size for each



year of each parameter was calculated and compiled into a separate spreadsheet file. Supplementary Files 1 and 2 in

the Appendices section (all supplementary files may be found in the Appendices section), provide the exact code

used. The main data cleaning involved the removal of non-numerical data within .nc files when converting them to

.csv. This was achieved by the Python program written.

However, for total oceanic chlorophyll and alkalinity, the data processing was more complex. When

originally creating a time series for the former, it was noted that model strength was inhibited by abnormally high

measurements around the early 2000s. Supplementary File 3 (specifically Supplementary Figure 3), provides a

visualization of this. Upon further investigation of the .csv files, it was noted that this was due to the abnormally

high amount of outliers. In order to maximize model fitness, for chlorophyll data spanning 1998 to 2008, any and all

measurements in excess of 20 μg/L were removed, and new averages, standard deviations, and sample sizes were

determined. The next iteration of the time series had a stronger fit as a result. For alkalinity, many years had errors in

how the data was recorded, in that the decimal place was improperly positioned. This led to values that were orders

of magnitude too high for the dataset, and in turn, skewed summary statistics. As such, any such data was eliminated

from the set, with summary statistics adjusted accordingly. Besides the processes described, all parametric data from

1954-2017 was preserved when performing data analysis.

Statistical Analysis

A variety of statistical tests and computational tools were used for the three major sets of models developed

for this study. The time series for each parameter developed was created primarily using sinusoidal regression. The

strength of each regression model was measured using a Pearson’s Correlation, including both r and R2. To assess

correlation between each factor and total oceanic chlorophyll, linear regression, in conjunction with a Student’s t-test

for relationship significance and Pearson’s correlation for relationship strength, was used. Finally, driving

parameters were identified using PCA, along with supplementary techniques.

Sinusoidal Regression Including Pearson Correlation

Environmental features tend to be periodic in nature. The sine and cosine functions provide an effective

way to model cyclical trends. Therefore, this specific type of a regression model was chosen, with R2 and r

measuring model strength and accuracy. This allowed for the evaluation of the validity of the overall computational

system as well as projection abilities. Equation 1 represents the template function used for all time series models:

(1)𝑓(κ) =  𝐴𝑠𝑖𝑛((2πγ)β + ε ) +  ϕ



Where is the function for the total chlorophyll concentration , is the amplitude, represents the𝑓(κ) κ 𝐴 2πγ

length of the period (using radians, alone being in degrees), is the given environmental factor (the next sectionγ β

enumerates the variable designation of each parameter), is the phase shift, and is the offset.ε ϕ

Additionally, using the offset as a midline for the sinusoid and the amplitude as a sort of ruler, an interval of

all measurements projected by the sinusoid of each parameter was developed. Equation 3 represents the basic

construction of the described sinusoidal interval:

(2)ϕ ± 𝐴 

Linear Regression Including Pearson Correlation and Student’s t-test

For the relationship of every parameter with the indicator, total chlorophyll concentration, a Linear

Regression model was developed. On a functional level, assessing each individual parameter’s relationship with

total chlorophyll acted as a precursor to identifying which of them had a significant influence on chlorophyll when

all parameters were considered in tandem. In essence, performing linear regression acted as a prerequisite for then

performing PCA. The significance of relationships were determined using a Student’s t-test for Linear Regression at

α = 0.05. Both double- and single- tailed p-values were attained. This was done in conjunction with the use of R2

and r to measure model accuracy and strength. Similar to the previous set of models, Equation 3 provides a template

wherein each parameter’s regression model was represented:

(3)𝑓(κ) =  𝑚β +  β
0

Where is the function for the total chlorophyll concentration , is the predicted slope of the line,𝑓(κ) κ 𝑚 β

is the given parameter, and is the y-intercept of the model.β
0

PCA

In order to identify the driving parameters behind total chlorophyll concentrations, PCA was used. PCA is a

dimension reduction technique that compresses multiple independent variables into fewer dimensions so as to

summarize overarching data patterns and allow for ease of data visualization. Before performing PCA, the data must

be standardized so that scale does not impede the accuracy of results. In this study, before PCA was performed, all

data of the indicator (chlorophyll) and every parameter were standardized using minimum-maximum normalization.

Within the setting of PCA, the total variance of the data is measured. This variance is captured by a finite set of

portions of the data known as principal components. In two-dimensional representations, the first two principal

components, that is, the two components that account for the highest amount of variance, denoted PC1 and PC2, are



placed on the horizontal and vertical axes respectively. Since information from the other principal components (PC3,

PC4, … PCn) is omitted, it is important that most variance is captured by PC1 and PC2. This is measured by each

principal component’s eigenvector values, which are derived from various matrix operations performed on the data.

Then, to standardize the amount of variation each principal component captures, the eigenvalues are divided by the

total variance of the dataset. A scree plot is used to depict the cumulative coverage of variance by all principal

components. Along with a PCA plot, a scree plot was used to illustrate these notable properties of the principal

components. In two-dimensional PCA, every parameter assessed captures some amount of either principal

component, and holds either a positive or negative relationship with the directionality of component variances. This

magnitude and directionality is represented by a pair of coordinates that form a vector. The greater the magnitude of

variance represented by a parametric vector, the more influential that parameter is relative to the overall data, and in

turn, driving the dependent variable. For the study, the magnitude of each parameter was calculated as depicted by

Equation 4:

(4)𝑀(β) = (𝐶
𝑃𝐶1

)2 · ν
𝑃𝐶1

 +  (𝐶
𝑃𝐶2

)2 · ν
𝑃𝐶2

 

Where is the function of the magnitude of parameter , is the contribution of the parameter to𝑀(β) β 𝐶
𝑃𝐶1

the variance of PC1, while is the contribution of the parameter to the variance of PC2, and is the proportion𝐶
𝑃𝐶2

ν
𝑃𝐶1

 

of the total variance represented by PC1, and is the proportion of the total variance represented by PC2.ν
𝑃𝐶2

 

The magnitudes of each parameter were calculated using the above equation, and then subsequently ranked

by descending magnitude values. The parameters with the highest calculated magnitude were identified as driving

parameters of chlorophyll concentrations. Additionally, to assess the presence of inter-parameter relationships, a

covariance matrix was used. A covariance matrix is an intermediate operation performed in the complex matrix

calculations involved with PCA wherein all independent variables are arranged in a square array. The cells of this

matrix contain the covariance between the row and column parameters. Values vary between 0 and 1, and can be

either positive or negative based on the directionality of the relationship. A greater magnitude indicates a stronger

relationship between the two parameters. The diagonal cells represent the variance of that individual parameter

following dimension reduction procedures. The results from these three sets of computational models were then put

into biogeochemical, ecological, and climatic context.



Section III: Results

As outlined in the methodology section, three sets of computational models were produced. The first set of

models involved using sinusoids to create time series for the indicator, global oceanic chlorophyll, as well as all

other factors. Table 1 provides the properties of each regression for each environmental measure. Parameters are

ranked by descending R2 values. In conjunction with a color gradient that spans from red to blue, where

warmer colors correspond to higher R2 values and cooler ones to lower values, this provides a gradient

wherein the progressive decline in R2 values and their corresponding parameters can be observed. In

addition, offset and amplitude values, and the corresponding sinusoidal intervals, are depicted. It is

important to note that this table is the first instance of variable denotation of environmental parameters.

Henceforth, those designations are used in data presentation.

Table 1

Properties of Sinusoidal Time Series Models of Environmental Parameters

Parameter Variable
Designation

R2 Value (r) Offset ( )ϕ Amplitude
( )𝐴 

Parametric Range Projected
by Sinusoid ( )ϕ ± 𝐴 

Salinity (ppt) s 0.847 (0.920) 30.112 3.724 (26.388, 33.836)

pH φ 0.825 (0.908) 8.001 0.135 (7.866, 8.136)

Total Chlorophyll
(μg/L)

κ 0.648 (0.805) 289.542 289.457 (0.085, 578.999)

Dissolved Oxygen
(μmol/kg)

d 0.500 (0.707) 215.281 -12.543* (202.738, 227.824)

Nitrate (μmol/kg) η 0.381 (0.617) -3650.602 3665.327 (-7315.929, 14.725)

Phosphate
(μmol/kg)

q 0.336 (0.580) 1.191 0.118 (1.073, 1.309)

Temperature (℃) t 0.327 (0.572) 9.640 1.045 (8.595, 10.685)

Silicate (μmol/kg) h 0.270 (0.520) 33.095 6.120 (26.975, 39.215)

Alkalinity
(milli-equivalent/lit

er CaCO3)

c 0.239 (0.489) 2.268 0.098 (2.170, 2.366)

Pressure (decibars) ⍴ 0.077 (0.277) 489.463 109.099 (271.265, 598.562)



Note. *Although the amplitude for the sinusoid projecting dissolved oxygen is negative, this does not interfere with interval construction, as that

is a matter of both adding and subtracting the magnitude of the amplitude from the offset, meaning the net output is the same. In addition to the

ones listed above, variable “y” represents the year.

R2 values of these regression models measure the proportion of the variation observed in the model

predictions that are a result of the actual oceanographic data collected. This means a higher R2 value indicates

greater strength in model forecasting capabilities. In conjunction with this table, the sinusoidal regression for

salinity, the parameter with the highest R2 value, as well as pressure, the parameter with the lowest R2 value, are

provided. By representing the most and least fit models, the sinusoidal regression models for salinity and water

pressure act as landmarks for the upper and lower bounds in forecasting capabilities observed among the time series

models produced. Time series models of other parameters can be found in Supplementary File 3.

Figure 5

Time Series of Average Global Oceanic Salinity (ppt) from 1954-2017

Note. The time series for salinity (s) for year y is described by the sinusoidal regression function of f(s) = 3.724*sin(6.220y +

80.552) + 30.112; R2 = 0.847. Blue points represent individual average salinity levels, while the red line depicts the sinusoid.

Figure 6

Time Series of Average Global Oceanic Pressure from 1954-2017 (Decibars)



Note. The time series for pressure (⍴) for year y is described by the sinusoidal regression function of f(⍴) = 109.099*sin(6.951y +

43.661) + 489.463; R2 = 0.077

Due to the extremely low R2 value observed for water pressure, to increase forecasting capabilities, an

alternative time series was constructed using linear regression. This model had a higher R2 value and demonstrated a

significant increase in water pressure from 1954 to 2017 (Figure 7, α = 0.05, p < 0.0001***).

Figure 7

Alternative Time Series of Average Global Oceanic Pressure from 1954-2017 (Decibars)

Note. The alternative time series for pressure (⍴) for year y uses linear regression is described by the function of f(⍴) = 9.904*y - 19176.54; Since R2 = 0.44, the

forecasting fitness for water pressure has successfully been increased.



Following the analytical flow detailed in the methodology, the next operation performed was the creation of

linear regression models representing each environmental factor’s relationship with total oceanic chlorophyll

concentrations. For every relationship combination, a scatterplot of chlorophyll concentrations and the

corresponding parametric value for eaR2 ch year from 1954 to 2017 was generated. From this, the regression line

was formed. Table 2 supplies the strength (R2) and significance (p) of each regression model, as well as the equation.

In a similar fashion to the first set of models presented, Table 2 ranks parameters by highest to lowest R2 values

(which also correspond to increasing p-values, or decreasing statistical significance), with a color gradient visually

enumerating the descent of this metric and corresponding factors along the way. Subsequently presented are the

linear regression models with the highest and lowest R2 values, which are s (salinity) and c (alkalinity), respectively.

Meanwhile, the linear models of all other parameters are provided in Supplementary File 3.

Table 2

Linear Regression Information of Parametric Factors Related to Total Oceanic Chlorophyll

Variable R2 Value (r) p-value (single-tailed
p-value) α = 0.05

Equation

s 0.54 (0.735) 0.0000 (0.0000)*** f(κ) = -0.2248s + 8.6275

φ 0.27 (0.520) 0.0000 (0.0000)*** f(κ) = -3.9346φ + 33.0813

d 0.25 (0.500) 0.0000 (0.0000)*** f(κ) = 0.0333d - 5.6467

⍴ 0.22 (0.469) 0.0001 (0.00005)*** f(κ) = 0.0014⍴ + 0.9536

q 0.10 (0.316) 0.0130 (0.0065)* f(κ) = 1.8526q - 0.5389

η 0.09 (0.300) 0.0171 (0.0086)* f(κ) = 0.0634η + 0.8126

h 0.08 (0.283) 0.0244 (0.0122)* f(κ) = 0.0324h + 0.6060

t 0.07 (0.265) 0.0318 (0.0159)* f(κ) = -0.1641t + 3.2049

c 0.07 (0.265) 0.0368 (0.0184)* f(κ) = 1.4551c - 1.6810
Note. From highest to lowest R2 value, the parameters are: salinity, pH, dissolved oxygen, pressure, phosphate, nitrate, silicate, temperature, and

alkalinity. Significance levels of p < 0.001 are denoted with three astrices. When p < 0.05 is true, only one asterisk is used. No significance values

between 0.01 and 0.001 were attained, so no significance values were denoted with two asterisk. Alkalinity is placed below temperature due to

having a lower p-value. This addresses their equivalent R2 values.

Figure 8

Linear Regression Model of Total Oceanic Chlorophyll (μg/L) Given Salinity (ppt)



Note. This regression model, with the highest R2 value, possesses the strongest predictive capability between total chlorophyll and an

environmental measure. Blue points represent corresponding salinity and chlorophyll measurements for each year between 1954 and 2017, while

the equation, f(κ) = -0.2248s + 8.6275, is represented by the blue line.

Figure 9

Linear Regression Model of Total Oceanic Chlorophyll (μg/L) Given Alkalinity (meq/L of CaCO3)

Note. This regression model, with the highest R2 value, possesses the weakest predictive capability between total chlorophyll and an

environmental measure. Blue points represent corresponding alkalinity and chlorophyll measurements for each year between 1954 and 2017,

while the equation, f(κ) = -0.2248s + 8.6275, is represented by the blue line.

Finally, PCA was performed to identify driving parameters. Figure 10 provides the image of the raw PCA

plot produced upon inputting data into the online webpage and calculating results.

Figure 10

PCA Plot of Driving Parameters Behind Total Oceanic Chlorophyll Chlorophyll Concentrations



Note. The horizontal and vertical axes are represented by PC1 and PC2 respectively. The individual dots of varying color represent various

instances of location of chlorophyll measurements relative to the first two principal components following dimension reduction. The red lines

sprouting from the origin represent the vectors of each parameter’s contribution to the variance of the first two principal components. Parametric

abbreviations are designated as follows: pH (pH), salinity (sal), temperature (temp), nitrate (NO3), pressure (Press), silicate (Silicate), phosphate

(PO4), alkalinity (alk), and dissolved oxygen (DO).

PC1 accounts for 46.23% of overall variance of the dataset, whereas PC2 accounts for 14.25%. Figure 11

provides a scree plot depicting the cumulative coverage of whole-dataset variance among the total nine principal

components.

Figure 11

Scree Plot of Cumulative Dataset Variance Coverage Among Principal Components



Note. The blue bars with the white numbers represent the contribution of each principal component to total variance in the form of an eigenvector

value. This is not to be confused with the standardized contribution of each component to total dataset variance, which is attained only after

dividing these eigenvector values by the total dataset variance. The orange line represents the cumulative progression of coverage of this variance.

As with the previous two stages of computational models, a table utilizing a color gradient to represent the

progression of statistical measurements is provided. Table 3 orders parameters from the highest to lowest magnitude,

the measurements of which were based off of the operations enumerated in Equation 4.

Table 3

Magnitude of Parametric Contributions to the Primacy Principal Components

Variable Contribution to PC1 Contribution to PC2 PC1/PC2 Magnitude*

φ 0.5229155 0.2942522 0.3724914

s 0.4967389 0.2542255 0.3511156

⍴ -0.3944697 0.5453883 0.3381172

h -0.3350876 0.2544652 0.2472569

t 0.2481767 0.4774918 0.2469081

η -0.2119327 0.4106519 0.2116481

q -0.2929772 0.1256602 0.2047729

d -0.1187105 -0.2619915 0.1276556

c -0.07405966 0.07430118 0.0576397



Note. *As enumerated in equation for 4, these measurements were attained via the following formula (refer to Equation 4 for variable

definitions): . Given that all contributions are squared, regardless of the directionality of the𝑀(β) = (𝐶
𝑃𝐶1

)2 · ν
𝑃𝐶1

 +  (𝐶
𝑃𝐶2

)2 · ν
𝑃𝐶2

 

contribution of parameters towards the first two principal components, the magnitude is expressed as a positive value.

Finally, the last data analysis technique presented is a covariance matrix depicting the inter-parameter

relationships between the environmental factors within the WOD18 dataset that were tested for this study (Table 4).

Table 4

Covariance Among Oceanic Parameters in OSD Dataset of WOD18, 1954-2017

Temperature
(℃)

Salinity
(ppt)

Dissolved O2
(μmol/kg)

Pressure
(decibars)

pH Alkalinity
(meq/L
CaCO3)

NO3
(μmol/kg)

PO4
(μmol/kg)

Silicate
(μmol/kg)

Temperature
(℃)

0.05679

Salinity (ppt) 0.03166 0.08317

Dissolved O2
(μmol/kg)

-0.01647 -0.01959 0.04698

Pressure
(decibars)

-0.005877 -0.03823 0.01677 0.08013

pH 0.03188 0.06853 -0.01324 -0.03891 0.09541

Alkalinity
(meq/L
CaCO3)

0.006023 -0.01187 0.001403 0.009997 -0.01088 0.02999

NO3
(μmol/kg)

-0.001303 -0.01835 0.003703 0.03955 -0.01663 0.0009591 0.03353

PO4
(μmol/kg)

-0.0178 -0.02756 -0.003317 0.02564 -0.03468 0.002638 0.017 0.05649

Silicate
(μmol/kg)

-0.02261 -0.03465 -0.007556 0.029 -0.03073 0.004527 0.02327 0.02543 0.06992

Note. Green cells represent the diagonal cells of the covariance matrix. These quantities, rather than inter-parameter covariance, represent the

variance observable within the specified parameter. For example, the cell 0.08013 represents the variance seen within water pressure. By contrast,

the cell below, -0.03891, represents the covariance between pH and water pressure.

Section IV: Discussion and Conclusions

Analysis and Ramifications of Time Series Models



Given the wide range of R2 values, in conjunction with the varying practicality of the quantities projected

by the sinusoidal intervals observed among all environmental variables, overall model fitness appears to be

moderate, with extreme variability given the parameter of interest.

Salinity has the highest R2 value, standing at 0.847 (Table 1). In context, this suggests that about 84.7% of

the variability seen in model predictions of salinity is as a result of the relationship between predictions and the

temporal progression of oceanic salinity. This strong connection is visually complemented by the relative proximity

of data points to the sine wave (Figure 5). This provides evidence that some parameters can in fact be reliably

forecasted using a computational time series. On the other hand, water pressure has the lowest R2 value, sitting at

0.077 (Table 1). This means that only approximately 7.7% of model predictions are a result of the relationship held

with the temporal distribution of water pressure. The weak connection between the variables is made apparent by the

divergence of the majority of data from the projected sinusoid (Figure 6). However, it is clear that this lack of fitness

can be rectified by using an alternative function. In the case of pressure, using linear regression as opposed to

sinusoidal regression increases model fitness, with R2 rising to 0.44 (Figure 7). Pressure acts as a parameter that

provides conclusions contradictory to those of salinity. Whereas salinity’s results indicate the possibility of a time

series to accurately model parametric values, pressure’s results provide evidence of the existence of cases where the

exact opposite is true. Moreover, given that an improvement of model fit was attained via using an alternative form

of regression, the necessity of employing multiple types of functions to maximize model fitness, as opposed to

homogeneously using one function as done in this paper, is made clear. Salinity and pressure merely represent the

upper and lower bounds of forecasting capabilities. Between R2 = 0.847 and R2 = 0.077 lie a range of R2 values that

represent varying abilities to provide accurate forecasting as well as varying degrees of divergence of data from the

centralized sinusoid.

Another indication of model fitness is the sinusoidal intervals calculated by using the offset and amplitude

values of the sinusoids. In other words, the values of the peaks and troughs of the sine wave were noted. In some

instances, these values aligned very closely with the data. For example, salinity has a peak-trough interval ranging

from 26.388 ppt to 33.836 ppt, which encompasses the range of the majority of data (Table 1; Figure 5). By contrast,

other peak-trough intervals are impractical, including negative values in contexts that do not make sense, as well as

going far beyond the range of the values of the empirics being attained and modeled. For example, the troughs of

nitrate concentrations reach far into negative values, trough reaching -7315.929 μmol/kg (Table 1). Concentration



levels of a substance cannot be expressed as negative values, making these predictions impractical. This limits the

temporal applicability of the sinusoidal model, as certain years, when plugged into the model, would result in these

quantities. Once more, a gradient among model attributes can be observed, in this case of the practicality of each

parameter’s sinusoidal intervals. Similar model liabilities appear to be present with total chlorophyll concentrations,

whereas other parameters, such as phosphate and temperature, have sine waves whose peaks and troughs properly

encompass experimental values.

Analysis and Ramifications of Linear Regression Models

An analysis of R2 and p values among the series of linear regression models depicting the relationship of

different parametric variables with chlorophyll concentrations reveals that while relationships are weak, the

directional value of each relationship is statistically significant.

The highest linear regression model had an R2 value of about 0.54, that being for the relationship of

chlorophyll levels given salinity, whereas all other models have ones below 0.3 (Table 2). This means that for most

of the time, less than 30% of the observed variation in chlorophyll concentrations is due to its relationship with the

given environmental variable. Looking at scatterplots for both the strongest and weakest relationships, most data

diverge significantly from the trendline (Figure 8; Figure 9). Nonetheless, the directionality of these relationships are

still statistically significant, with the p-values for all double-tailed t-tests for linear regression being less than α =

0.05. The single-tailed p-values, being half the amount and focused specifically on relationship directionality,

provide even stronger evidence for observed positive and negative relationships between chlorophyll and parameters

(Table 2, p < 0.05*). By seeing how each individual parameter impacts chlorophyll concentrations, crucial

ecological and climatic insights can be drawn, given the pigment’s role in facilitating photosynthesis, which in turn

influences the transfer of trophic energy, sequestration of carbon, cycling of biogeochemical nutrients, and other

important functions for the global climate and environmental systems.

Chlorophyll concentrations hold a negative relationship with pH, temperature, and salinity (Table 2, p <

0.05*). Indeed, past literature has noted the overall increase in global oceanic temperatures and acidity (Berwyn,

2018). Moreover, salinity is known to inhibit chloroplast activity (Hnilickova et al., 2021). The implications of rising

temperature, acidity, and salinity are not simple directional impacts on phytoplankton norms. Primary production

capabilities (and more broadly, other traits), increase alongside temperature, pH, as well as any other parameter, until

the optimum level is reached, after which there is a decline (Dedman et al., 2023). Using chlorophyll concentrations



as an intermediate indicator, this may imply that many phytoplankton species are under conditions suboptimal for

optimally performing primary production. This may be observable in the form of slower metabolic rates and other

biological indicators. However, lower chlorophyll concentrations would indicate lower metabolic capabilities for

phytoplankton, due to the implied dearth of resources to photosynthesize. These data provide evidence that as ocean

temperatures warm, primary production in phytoplankton shall decline. This means lower levels of energy being

sent up the trophic pyramid, lower rates of nutrient cycling, and the inhibition of carbon sequestration and other

climate regulation processes. In addition to this overall decline, primary production levels can be expected to

become increasingly heterogeneous along the spatial gradient. Salinity and nutrient concentrations are projected to

become less uniformly concentrated (Berwyn, 2018). With the former parameter holding a negative relationship

with total chlorophyll (Table 2), this implies that the decrease in chlorophyll will be dissimilar among locations,

provided different salinity levels. A similar logic may be applied to the latter variables, which have positive

relationships with total chlorophyll (Table 2). This lack of spatial homogeneity in primary production further limits

ecological stability. Therefore, as oceanic parameters continue to evolve, it appears that the stability and health of

climatic and ecological systems shall continue to decline.

Meanwhile, all other parameters, mainly including oxygen and various micronutrients, hold a significant

positive relationship with chlorophyll concentrations (Table 2, p < 0.05*). Indeed, when there is a greater presence

of chlorophyll, that indicates that a greater amount of photosynthesis can occur, stimulating subsequent metabolic

pathways that facilitate nutrient cycling, allowing for micronutrient concentrations to grow. This tie of chlorophyll to

the stimulation of micronutrients could have led to the positive relationships observed. In essence, the data may

serve as support for principles in biogeochemical cycling as well as similar areas.

These results indicate the need to address ways in which rises in ocean temperature can be perturbed, as

well as the need to regulate the concentrations of nutrients and other variables. In conjunction with the time series

models provided above, this provides a potent source for prediction and decision-making. Knowing the impact a

given level of a parameter may have on an aquatic ecosystem can be crucial for policymakers and scientists. If it is

known, from a strong time series model, that a certain level of, for example, phosphorus, shall lead to a harmful

amount of eutrophication (or other phytoplankton trait), a conclusion reached from observing a model from the

current set being presented, then decisive policy action may taken, provided these crucial details.

Analysis and Ramifications of PCA



Based off of PCA results, as well as data provided the covariance matrix and scree plot, it is apparent that

pH, followed by salinity and pressure, on a global scale, are driving parameters behind chlorophyll concentrations,

and in turn, primary production capabilities. Moreover, each parameter is independent of one another. However,

these conclusions are limited by the low variance coverages of PC1 and PC2. Being a two-dimensional PCA, much

variance information was lost by solely focusing on PC1 and PC2. Together, these contain an eigenvector value of

only about 0.33 (Figure 11). When standardized, this means that only about 60% of variance of the overall dataset is

covered (Figure 10). With nearly half of the data information lost from the process, the conclusions that can be

drawn have a rather limited scope.

The contribution of each parameter to the variance of both PC1 and PC2, providing further evidence of

inadequate variance coverage. Being measured on a scale with a magnitude of 1, the highest contribution to variance

coverage of PC1, captured by pH, was only 0.523, while the highest contribution to variance coverage of PC2,

captured by water pressure, was just 0.545 (Table 3). These contributions are at best, moderate in coverage. Seeing

as most contributions are lower than this value, it is clear that most parameters do not particularly account for

overall data variance. Nonetheless, in calculating the magnitudes (Equation 4) and ordering the results, it was found

that pH, followed by salinity and pressure, are driving parameters of total oceanic chlorophyll concentrations, and in

turn, primary production and other aspects of ecology (Table 3). While this may indicate a potential need to study

the impact of these parameters on phytoplankton primary production and other dynamics, such a decision must be

made cautiously. This because of both the lack of variance coverage from which these results are drawn, as well as

the fact omitting factors would create a less representative understanding of empirical quantities and trends.

The covariance matrix values suggest data homogeneity within parameters and independence among

different factors. Among the diagonal cells of the covariance matrix, the highest observable covariance stands at

0.083, with salinity. That means, among the values serving as measures of variance, that is, spread, the highest

among these values was only 0.083, on a scale of 1 (Table 4). With all intra-parameter variance values being of this

small of a magnitude, it appears that data values for parameters are homogenous. This may provide evidence into the

consistency of the data. While this analysis was performed on a global scale using data spanning sixty years, even at

scope this broad, some level of parametric homogeneity and consistency of ocean data is implicated. The diagonal

cells, consequently, provide indirect evidence for the ocean as a system with properties that have a noticeable level

of stability. Moreover, all other cells have even smaller covariance values for the inter-parameter relationships, the



vast majority failing to exceed a value of 0.1 (Table 4). With highly weak covariance values, this indicates that

oceanic variables may be independent of one another. This is in terms of impacting the levels among one another,

rather than with regards to phytoplankton dynamics. Given the focus of this paper and the results compiled among

these three sets of computational models, it is clear that parameters exert a complex net impact on phytoplankton

dynamics, even if they themselves may not impact their own values.

An additional observation is that salinity, and to an extent, pH and pressure, had some combination of

notable R2, p-values, covariance, and principal component contribution values across all three sets of computational

models.

In terms of policy and scientific investigation, a tool such as PCA and covariance matrices would serve as

preliminary analysis tools for aquatic ecosystems. This would help establish a framework of general understanding

of a given ecosystem. From this vantage point, deeper empirical trends can be performed. Subsequently, this would

allow for the development of both scientific and policy-related investigations, allowing for insights to be reached.

Additional Limitations and Ramifications, and Suggestions for Future Research

Beyond what has already been discussed in the methodology as well as in analyzing the data and its

ramifications, a major limitation of this study is its scope. While the dataset is highly comprehensive geographically,

helping in part to rectify past limitations induced by data unavailability, there are still severe spatiotemporal

limitations. As mentioned, all parametric data lacked any provision of spatiotemporal attributes. Moreover, due to

the lack of direct quantifications of phytoplankton dynamics, the singular dynamic of primary production had to be

indirectly assessed using total oceanic chlorophyll concentrations. This led to the data only being assessed

Nonetheless, the ideas behind the computational framework applied in this study are still viable. Having a

system wherein data is provided and the changes in phytoplankton dynamics, including with their causes and effects,

can be assessed is highly powerful. Many aspects of this apparatus were achieved through this study. Data was

attained from WOD18, known for being one of the most comprehensive sources for oceanographic metrics. In

creating numerous time series models, a potential forecasting tool was provided for scientists and policymakers alike

to predict future levels of oceanographic metrics, and in turn make potential research and policy decisions. However,

further iterations making use of a variety of regression models is needed. In performing linear regression on total

oceanic chlorophyll concentrations, phytoplankton primary productions could be analyzed, albeit indirectly. Within

this process, ecological and climatic impacts were assessed. Future work may be bolstered by using exact models for



these metrics. For example, using neural networks to model food chain interactions given changing phytoplankton

dynamics, or, climatically, using the Coupled Model Intercomparison Project or other models, as done in the past

(Hague & Vichi, 2018). Driving parameters and inter-parameters relationships were characterized using PCA and

covariance matrices, respectively. However, due inadequate variance capture of the principal components generated

and analyzed, the resulting conclusions were limited in scope. Future data investigation should be performed, and it

should be endeavored to increase variance coverage. Overall, a viable and applicable apparatus for studying

phytoplankton dynamics has been provided and applied. However, future iterations will improve model fitness and

result applicability.



Section V: Appendices

The appendices section include links to supplementary files containing the specific material referenced

within the paper.

Original Dataset

Supplementary File 1

Supplementary File 2

Supplementary File 3

Supplementary File 4

https://drive.google.com/file/d/1jyH6CHp9rUvVDd6rEL3xyodTlHmb1Mw5/view?usp=sharing
https://drive.google.com/file/d/1CtZCbt0yUogv4WK_PR5oEd5o-BPrkUM1/view?usp=drive_link
https://drive.google.com/file/d/12U6USh9pza0upVZ2y4_tCSeu22b65UUI/view?usp=sharing
https://drive.google.com/file/d/1yihXPAzR8Pl0vfHnXaHjMHLdtsbi5PjS/view?usp=sharing
https://drive.google.com/file/d/1IehUQIp4n5LiIVzifuoHz01FyaujcCWi/view?usp=sharing
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