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Project Description:

In order to better understand the impact of global-warming induced oceanic changes on phytoplankton
populations, the overarching goal of this project is to develop a series of computer models that simulate
phytoplankton dynamics, including biomass, growth rate, bloom phenology, exportation, and most
notably, migratory patterns. The first model is to incorporate multiple environmental factors (e.g.,
temperature, dissolved oxygen, salinity, etc.), that impact phytoplankton dynamics as parameters. Initial
model validation shall involve using one environmental metric that is widely available (likely water
temperature or a micronutrient), and comparing field data to computational data for a particular species.
Regression analysis of computational error, as well as other statistical tests, are to quantitatively verify
model validity. Other tools, such as hierarchical linear models and principal component analysis, are to
then be used to determine any presence of interrelatedness between variables. From this, driving
parameters, as well as the factors that influence the driving parameters, are to be determined to observe
the overall changes phytoplankton face. Then, the next series of computational models is to be created
with the ends of delineating the resulting climatic and ecological ramifications from the predictions of the
previous computational model. Using network theory principles, it is planned to develop a food web of
phytoplankton genera and other species, thereby illustrating possible impacts higher trophic levels may
face. Climatic implications are to be determined by modeling scenarios within the framework of existing
climate models (i.e., CMIP5). A major area of application and focus within this project could be on
utilizing micronutrient data and predictive modeling to provide insights into the occurrences of algal
blooms, which, if proven to be an accurate tool, would be valuable to local, and ideally, national and
international policymakers. Overall, it is expected that these models are able to depict the nuances of the
impact of changing ocean conditions on phytoplankton, capturing all sources of complexity to produce
clear answers to the question of how phytoplankton populations are changing, and what ecological and
climatic ramifications those changes implicate.
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Background:
Phrase One: How can the complex, multifarious impacts of global-warming induced changes in oceanic
conditions on phytoplankton be understood, and how shall these changes in phytoplankton dynamics
impact the global climate and marine ecosystems?

Phrase Two: Through developing a series of computational models that identify driving parameters and
the factors and interactions between said parameters, and translate those findings into ecological and



climatic ramifications using a neural network representation of a food web and existing climate models
respectively, the causes and impacts of changing phytoplankton dynamics can be better understood.

An Introduction to Phytoplankton
Phytoplankton encompass a broad range of aquatic, microscopic, and photosynthetic species of

viruses, bacteria, fungi, protists, animals, and archaea (Käse & Geuer, 2018). This group of species plays
a major role in biogeochemical cycling of crucial nutrients. Phytoplankton are responsible for about half
of all global primary production, the production of nutritional organic matter from inorganic compounds
via photosynthesis and other metabolic processes. They are also responsible for absorbing 30% of
anthropogenic carbon emissions (Rohr et al., 2023). Beyond photosynthesis, phytoplankton carry out
carbon sequestration through exportation, a process in which, after death, cellular matter sinks to the
ocean floor, forming carbon sinks. Through other metabolic processes, phytoplankton are also an
important component of the cycling of nitrogen, phosphorus, silica, and other micronutrients (Sarker et
al., 2023). In regulating the flow of nutrients and other substances, especially organic matter,
phytoplankton play a major role in climate regulation. Another avenue through which they regulate
climate is light reflection. Some groups of phytoplankton produce dimethylsulfoniopropiothetin, a
complex, sulfur-containing molecule. This compound decomposes into dimethylsulfide, which in turn
decomposes into compounds that reflect solar radiation (Deppeler & Davidson, 2017). It is in fact
believed that the biochemical processes of phytoplankton, such as this one, were a cause of some of the
first major ice ages on Earth (Käse & Geuer, 2018). Additionally, phytoplankton act as the base of marine
food chains, serving as prey for various species of zooplankton and fish (Käse & Geuer, 2018; Loschi et
al., 2023).

Therefore, phytoplankton are an integral part of the global climate and environmental systems.
With climate change impacting ocean conditions, it is important that the impacts that this facet of the
global climate and environmental systems is facing is well understood.

Understanding The Impact of Global-Warming Induced Oceanic Changes on Phytoplankton
With that in mind, the impact global warming has had on oceanic conditions themselves must first

be considered. Climate change has led oceans to becoming warmer, more acidic, anoxic, and stratified.
Sea levels are rising, while salinity and micronutrient concentrations are losing uniformity. Moreover,
ocean currents have begun to slow down (Berwyn, 2018). The thermohaline cycle allows for different
layers of water to be mixed by cycling the pelagic water, water at the surface, that is warmer, fresher, and
less dense, with the benthic water, water at lower layers of the ocean, that is colder, denser, and saltier.
This cycle is crucial in mixing nutrients, distributing heat, and regulating overall climate. Analysis of past
climate patterns reveals that a slower thermohaline cycle has been associated with more extreme climate
patterns (Berwyn, 2018). It is important to note that changes in ocean conditions are not uniform, but
rather, vary extensively by region (Winder & Sommer, 2012).

Similarly, phytoplankton are undergoing some overarching trends. Smaller, more buoyant cells
have been becoming increasingly favored, there has been migration towards the poles, and changing
bloom times (Ratnarajah et al., 2023). However, there are also more nuanced trends. For example, certain
groups of phytoplankton are favored under eutrophic conditions, that is, conditions where there are
excessive micronutrients, leading to an unhealthy amount of growth in algal blooms that deplete
ecosystem resources, whereas others are favored under fresher, or darker conditions (Winder & Sommer,
2012). There are a voluminous amount of environmental factors (e.g., light, heat, nutrient concentrations,
pH, salinity, etc.) that impact phytoplankton dynamics (Winder & Sommer, 2012). Moreover, each species
of phytoplankton operates under different sets of ideal conditions. This raises a dilemma. Consider two
phytoplankton species living in the same area. Suppose that one species of phytoplankton prefers a pH
range of 5.9 to 6.5, whereas another one prefers a range of 6.7 to 7.3. With ocean acidity changing



nonuniformly, if one area of the ocean has a pH of 6, and another area has a pH of 7, then each respective
phytoplankton species would migrate to that new area to be in a place that matches their respective ideal
conditions. However, there are other environmental factors at play, and it is important to consider how
those factors impact migratory patterns and other dynamics. Using the example given, would another
factor, such as dissolved oxygen, have a precedent over pH when it comes to these species seeking ideal
conditions? Moreover, these migrations would leave predators bereft of a major source of food. What
implications would that have for the rest of the ecosystem, and how can that be understood? Finally, what
climatic implications result from these migrations?

Phytoplankton Genomics and Examples of Parametric Variability
To add another layer of complexity, there are complex processes occurring at the genomic,

cytological, and molecular levels that contribute to changes in factors relevant to this project, namely
primary production and metabolic rates. For example, biochemical processes like DNA methylation,
where a methyl functional group is applied to the third carbon in the carbon ring of the nitrogenous base
of adenine, with warming ocean temperatures, has been found to inhibit amino acid metabolism, as well
as respiration and photosynthesis in phytoplankton, while enhancing fatty acid metabolism (Wan et al.,
2023). This means that there is a slower rate of primary production and carbon sequestration, inhibiting
phytoplankton’s role both as the base of marine food chains, as well as climate regulators.

Meanwhile, micronutrients also play a major role in influencing metabolic rates. For example,
phosphorus is an integral component to all forms of metabolism, so compounds of micronutrients
containing it are crucial for phytoplankton. However, as discussed above, varying levels of
micronutrients, phosphorus-containing compounds included, impact phytoplankton dynamics in different
ways. It has been found that increased phosphorus levels has allowed for all metabolic processes to occur
at faster rates, bolstering phytoplankton’s ability to sequester carbon and provide greater biomass for its
predators. However, excessive phosphorus concentrations can be toxic for phytoplankton and lead to
eutrophication (Li et al., 2023). Toxicity and metabolic rates vary across different species as well.

Another example of significant environmental variability is with water temperature. Different
genera of phytoplankton exhibit different responses to warming ocean temperatures. For example, using a
modified Eppley Curve, an exponential function that models the relationship between growth rates and
water temperature, one analysis found that, while growth rates are expected to increase alongside
temperature, the rate which the growth rate increases for diatoms was greater than that of dinoflagellates,
cyanobacteria, and coccolithophores (Anderson et al., 2023). Moreover, dissimilar thermal attributes are
predicted to result in differential migration patterns.

In conjunction with the explanation offered in the previous section, these examples illustrate that
for any environmental parameter, there is a great amount of nuance when it comes to the impact that
phytoplankton face. This nuance only expands when multiple variables are considered in tandem.

Computational Modeling of Phytoplankton Dynamics: Progress and Current Limitations
As a result, computationally modeling these dynamics is important, as it can be used to capture

these details, and provide greater insight into what the observed results signify. In essence, this is what the
goal of this project is: to take the nuanced trends in phytoplankton populations, organize, synthesize, and
contextualize them, and provide ramifications of these trends.

Presently, there are many limitations facing computational modeling of phytoplankton dynamics.
One major limitation is the misunderstanding of the role zooplankton play in the modeling process.
Different models have made different assumptions about how zooplankton interact in ecological systems,
leading to different predictions in climate and food web scenarios (Rohr et al., 2023). Indeed, review
articles regarding zooplankton dynamics have discussed the need for developing more robust data
collection methods and attaining more data (Ratnarajah et al., 2023). Moreover, there are other limitations



to current computer models on phytoplankton, such as the fact there is a dearth of relevant data from the
Southern hemisphere (Deppeler & Davidson, 2017).

That is not to say that successful models have not been developed. In fact, there have been models
developed for small bodies of water, such as the Tucuruí reservoir in Pará, Brazil. This computer model
was based off of field data, and through regression analysis including R2, root mean square error, and the
slope of regression lines comparing computer predictions to actual results, it was able to be determined
that the model was in fact accurate. Namely, the environmental parameters of chlorophyll a, dissolved
oxygen, ammonia, nitrates, and phosphates were all able to be predicted very reliably. Figure 1 (Deus et
al., 2013) depicts the linear regression between the predicted and field values of these parameters. The R2

values for phosphate, nitrate, ammonia, dissolved oxygen, and chlorophyll a were 0.9791, 0.9506, 0.9495,
0.964, and 0.9967, respectively. These extremely high R2 values indicate that there was a strong
connection between the field and predicted data, and thus that the model had good accuracy. This
provides a strong example for how the accuracy in computer model predictions can be assessed, by
extension allowing for model results and ramifications to be validated.

Figure 1
An Example of Computational Model Validation Techniques: Tucuruí Reservoir as a Case Study

Note. Each parameter contains a larger graph depicting the raw comparison between field data and computer predictions. From lop left to bottom
right, the parameters shown are phosphate, nitrate, ammonia, dissolved oxygen and chlorophyll a. Embedded within are the linear regressions that
compare the computer model predictions against the actual field data. Therein lie the R2 values which serve to evaluate model accuracy.

With such examples in mind, this project seeks to perform predictive modeling, using more
environmental parameters as input, and projecting findings to a global scale, making use of as much
available data as possible. Presently, it is believed that a computer model that takes into account changes
among different phytoplankton species, numerous relevant environmental parameters, and uses
appropriate statistical tools to be validated can produce results regarding changing phytoplankton
dynamics and their drivers, and the climatic and ecological implications. Applications of this model could
be widespread, being used as an important tool for decision makers, managing failing aquatic ecosystems,
and predicting future climate and ecological conditions.

Relevance/Significance
Since phytoplankton play a major role in biogeochemical cycling, climate regulation, and

ecological stability, they are important facets of the global climate and environmental systems. Thus,
capturing the complexity of the multifarious stressors they are facing is key to understanding how they
will be impacted overall, and in turn, what that means for the environment. If developed to be accurate
and efficient, this model would have significant ramifications for policymakers. Namely, since
phytoplankton play a major role in the formation and changes of an algal bloom, having a model to



predict their population given, for example, micronutrient concentrations, policymakers would be able to
make informed decisions about lake management. For instance, one study focusing on lake ecosystems in
Wuhan, China devised an accurate computational model that was able to run hypothetical scenarios. From
these scenarios, concrete policy recommendations were made, including control of the nutrient
stoichiometry between nitrogen and phosphorus, as well as increasing the presence of exclusively
zooplankton-feeding fish (Tian et al., 2023). If a model on a larger scale is successfully devised, then
policymaking applications would be greater in magnitude, and more versatile to a wider range of different
types of bodies of water. Clearly, carrying out this project would have significantly useful and beneficial
impacts both in science and policy.
Innovation

Presently, there exists a wide variety of computational techniques to model phytoplankton
dynamics. However, different models have different focuses. Some computer models may focus on a
specific body of water. For example, computational modeling has been used for phytoplankton dynamics
both in the coastal waters of Bangladesh and Wuhan (Sarker et al., 2023; Tian et al., 2023). However,
being two very different regions with different conditions, those models had very different structures and
made use of very different techniques. Function is another major avenue through which models vary. For
instance, while both of these examples aimed to make sense of the multiple stressors phytoplankton face
by sifting through many environmental parameters, a model dedicated to depicting a food web between
phytoplankton genera and predators would have significantly different architecture.

By seeking to specifically create a series of computational models, these heterogeneously
designed computer algorithms may be brought under one central system. Since this project aims to model
phytoplankton dynamics on a global scale, taking into account many parameters, the model shall be
highly versatile and adaptable to the unique circumstances of a given aquatic ecosystem. Multiple
different purposes, including identifying driving parameters, differentiating impact among various
species, projecting climatic and environmental implications can also be achieved with this model. Hence,
by consolidating many important empirical functions through a large scope, this project shall produce a
unique way to computationally model phytoplankton dynamics.

Experimental Design/Research Plan Goals:
Major Parts of the Project (rough outline) will continue to evolve over time and should be updated
frequently.
The independent variable shall be the configuration of the computer model with respect to the
environmental factors included as parameters, the sources of data used, and the computational techniques
employed to produce predictions relating to phytoplankton dynamics, and ramifications for the climate
and environment.
The dependent variables shall be the model validity, which shall act as a prerequisite to other dependent
variables, which shall include the changing phytoplankton dynamics in their own right, the driving factors
behind those changes, as well as the climatic and environmental implications.

There shall be multiple rounds of iteration for the computer model.

Materials List
This study plans to make use of various computational tools to model phytoplankton dynamics such as:

- NetLogo
- TensorFlow and other Artificial Intelligence modeling tools

This study plans to make use of various sources of data to feed into the model as input for predictions and
scenarios such as:

- Environmental Protection Agency
- Massachusettes Department of Environmental Protection



- United States Department of Agriculture
- Datasets from previous experiments

Methodology
Specific Aim #1

The first task in constructing the computational model shall be validation of the model. This shall
be achieved through the comparison of the constructed computer model with field data, using a widely
known parameter. One parameter, and its impact on one particular species, is to be modeled.

Justification and Feasibility. The findings of any computational model offer no value unless it is
ensured that the model is accurate. Therefore, devising some plan to implement statistical or
computational techniques that verify model validity shall be imperative. This is a highly feasible approach
as there exists a wide variety of software tools on which a myriad of statistical algorithms may be run. For
example, the above mentioned study regarding the Tucuruí reservoir alone used three metrics, including
root means square error, R2, and the slope of the least squares regression lines, to evaluate model
accuracy, thereby allowing for model validation (Deus et al., 2013). It is likely that other error analysis
tools, such as a Student’s t-test, among other hypothesis tests, may be used to assess the significance of
the differences in observed and computer data.

Expected Outcomes. It is expected that once the statistical tool or tools used to validate the
model is applied, insight into model validity can be attained. For example, as explained with Figure 1
(Deus et al., 2013) in the introduction, conclusions about model accuracy could be reached using R2.
Thus, it is expected that the metric or metrics within the tool chosen for model validation be indicators of
model validity.

Potential Pitfalls and Alternative Strategies. There exist a wide variety of techniques to ensure
model validity. Each test offers a unique set of advantages and disadvantages with regards to the factors
taken into account. For example, using metrics from a linear regression model (i.e. slope, R2), that
compares predicted data to actual data allows for some aspects of model validity to be captured. However,
linear models are often subject to many confounding and lurking factors, which may inhibit its quality as
a marker for computational accuracy. However, alternative statistical and computational tools may be
used in conjunction with linear regression in order to account for factors that regression fails to.
Conversely, linear regression would be able to account for actors these other statistical tools might miss.
With this understanding, an approach using multiple validation techniques shall be devised.
Specific Aim #2

Once the model is validated, implement more species and more parameters. Utilize statistical
tools to identify driving parameters in the observed phytoplankton dynamics. In addition, assess the
factors that influence what the driving parameters are in different areas, and how all parameters impact
one another to exert a net impact on phytoplankton throughout different global regions.

Justification and Feasibility. As previously discussed, there are numerous factors that influence
phytoplankton dynamics. Experimenting with these parameters on phytoplankton simultaneously is not
viable, as that would lead to too many confounding variables to be able to discern any meaningful
relationship or trend. Hence, incorporating all of these factors into a computational model would help
eliminate this ambiguity. In order to better understand the observed changes in phytoplankton dynamics,
the driving factors behind these changes need to be understood. That way, any possible mitigation
strategies to aid ecosystems can be created. Since computational modeling offers the ability to disentangle
the driving parameters, as well as their relationships, and the factors behind the driving parameters, it is a
viable approach to choose for this project.

Expected Outcomes. Through the use of principal component analysis (PCA), as well as a
hierarchical linear model of environmental parameters, driving parameters, as well as their relationship
with one another, and the factors that influence them can be detected. Using PCA, multiple different
parameters can be condensed into vectors in order to simplify the complex, multi-variable dynamics of a
dataset. In doing so, the magnitudes of the vectors can be analyzed, and from there, the driving parameters
can be identified. For example, Figure 2 (Sarker et al., 2023) depicts a PCA performed on environmental
parameters measured for the impact on phytoplankton for coastal Bangladesh. Turbidity, silicate, and



salinity, with the largest magnitude, were identified as the most important driving parameters in the study.
PCA is a robust example of how driving parameters may be identified.
Figure 2
An Example of Using Principal Component Analysis to Identify Driving Factors

Note. This graph depicts the PCA performed on the seven parameters measured in coastal Bangladesh. Each vector describes the extent to which
each parameter impacts the observed phytoplankton dynamics.

Another way driving parameters, and more importantly, the relationship they hold between one
another, can be determined through a hierarchical linear model (HLM). An HLM is a type of
multivariable regression that splits up parameters into different levels. For example, for the model created
for phytoplankton in Wuhan, China, the broader, ecological parameters were placed at level 2 within the
hierarchy, whereas, smaller-scale physicochemical parameters were placed at level 1. This neat
assortment of factors allowed the authors to determine the driving parameters by using t-tests for linear
regression between the level 1 parameters and the phytoplankton dynamics (which, in this study, was
primary production), level 2 and primary production, as well as between levels 2 and 1. It is this
comparison that takes place between level 1 and 2 (and higher levels, if used) that allows parameter
relationships, and from there, the factors behind the driving parameters, to be determined (Tian et al.,
2023). Although, it is important to understand that the factors behind the driving parameters are not
deduced by statistics, but rather, by the science of the situation. For example, since the Tucuruí reservoir
was man-made, the hydrodynamical forces causing the inflow and outflow of water into the reservoir was
what drove phytoplankton population changes. The man-made artificiality of the dam was what made the
rapid inflow and outflow the driving parameter (Deus et al., 2013). This simple deduction was done using
analysis of the environment rather than statistics. The point, then, of using an HLM, is to help sort the
parameters and identify their significance in an organized manner, to help contextualize the driving
factors behind the identified driving parameters. In the context of this study, it was found that nitrogen,
phosphorus, water temperature, and the Rotifera genus of zooplankton were driving parameters (Tian et
al., 2023).

Potential Pitfalls and Alternative Strategies. HLMs and PCAs are only two techniques that
could be used to disentangle the driving parameters of phytoplankton dynamics. HLMs pose an advantage
in that they can compartmentalize, and consequently, draw conclusions not only about what factors are
driving parameters, but relationships that lie therein. However, it is harder to integrate a very large
number of parameters into an HLM. Conversevely, although PCA does not compartmentalize factors, its
vectors provide a more concise and visual way of understanding which parameters are significant. Similar
to Specific Aim #1, great care in maximizing the use of statistical tools to achieve the specified end must
be taken. That way, overall error is minimized as each test collectively contributes information about all
relevant metrics.
Specific Aim #3

Determine climatic and ecological ramifications. Construct a neural network for a food web
containing phytoplankton genera and their predators. Climatic ramifications are to be modeled through



testing climate scenarios that result from the results from Specific Aim 2 within the framework of current
Climate models (i.e., CMIP5).

Justification and Feasibility. At this point, since the impact phytoplankton face would be
apparent, with all matters of the parameters being determined, the next step would be to determine what
impacts the changes phytoplankton face would have on marine ecosystems as well as the climate.
Knowing this information is crucial, given the major role phytoplankton play in biogeochemical cycling,
marine food webs, and climate regulation. With marine ecosystems and the climate in a comparatively
dire state, any facet of these systems, especially one as important as phytoplankton, being impacted, will
have significant ramifications. Understanding what those ramifications are is important. There have been
past instances where neural networks and network theory principles have been utilized in constructing and
analyzing food webs with phytoplankton. For example, one study of the coastal area around Venice was
able to successfully model a food web of the area. Each node was assigned a set of parameters, most of
which related to the transfer of energy and organic matter among predators, prey, decomposer, and other
ecological players. The authors were able to model how energy transfer was changed due to
environmental parameters, and how those changes impacted the ecosystem (Loschi et al., 2023).
Meanwhile, for climatic ramifications, CMIP5, known as the Coupled Model Intercomparison Project, is
a project that climatologists have used to aggregate data about climate change, as well as climate models.
By using this interface of models and predictions as a place for implementing scenarios of
phytoplankton-induced changes to climate, climatic ramifications can be discerned.

Expected Outcomes. It is expected that, given some input from relevant parameters, which
would include driving parameters identified from the previous subtask as well as those relevant to energy
transfer, the neural network would present how energy transfer from phytoplankton to the higher parts of
the trophic pyramid would be modified. It is expected that the change in abundance of the species is
noted. Other ecological ramifications of the observed changes in the food web should also be either
reported, or inferred from the neural network model. It is expected that, when phytoplankton-induced
climate scenarios are modeled within the existing CMIP5 framework (and potentially other climate
databases), that climatic implications of changes in phytoplankton dynamics can be attained.

Potential Pitfalls and Alternative Strategies. Network theory could potentially be a tenuous
way to computationally model a food web. The use of a neural network would necessitate the use of
numerous other correcting mechanisms and other functions in order to be operational and accurate. If the
neural network is too complex, which, given the complex nature of this scenario, this is likely to be the
case, then making a neural network may be immensely difficult. It may be fruitful to search for an
alternative approach to computationally modeling a food web. Finally, CMIP5 may not be the ideal
software by which to model the ramifications of phytoplankton-induced climate scenarios. It may be
necessary to research other climate modeling software in order to model these ramifications.

Risk/Safety/Ethical Concerns:
Given that the scope of this project is computational, it should not pose any safety concerns. No

individuals, animals, nor any other facet of the natural or anthropological environment should be harmed
by this project. Changes in ocean conditions are all simulated. Consequently, there are no artificial
modifications to any actual water body will undergo. The planned methodologies for this study strongly
deter any possible risk with regards to ethics and safety.

Data Analysis:
The data collected from computer simulations is planned to be subject to a series of statistical

tools in order to assess model validity. Previous instances of computational models of systems of
phytoplankton system used regression analysis, comparing actual data to model predictions. Metrics like
root means square error, R2, and the slope of the least squared regression lines have been used to evaluate
model accuracy, thereby allowing for model validation (Deus et. al. 2013). A Student’s T-test, among
other hypothesis tests, may be used to assess the significance of the differences in observed and computer



data. Moreover, in order to identify driving factors of phytoplankton dynamics, it is planned to use
ANOVA tests to compare the significance of the impact of different parameters on phytoplankton
dynamics. Subsequent Post-Hoc tests would be performed to investigate this further, as has been done in
previous instances (Sarker et. al. 2023). Similar statistical tools may have to be applied to the networks
created for depicting ecological ramifications. Additionally, with so many parameters at play in this study,
performing procedures such as principal component analysis, as well as non-metric multidimensional
scaling, are to be imperative in order to simplify data so as to make it understandable, and thereby reveal
all of its insights. One way climatic ramifications could be assessed empirically is through looking at rates
in metabolism, primary and export production, light reflection, among other metrics. Climatic
implications can also be determined more indirectly through factors including biomass, diversity, and
chlorophyll concentrations. Overall, the above outline of the methodology provides a solid base of
information for the data analysis to be performed.
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Timeline: (with action steps identified- sub-deadlines will continue to evolve):
Rough timeline of major phases. As these phases get established, specific tasks under these phases will be
defined further.

September
- Brainstorming Project Ideas
- Establishment of Phytoplankton as an Area of Focus
- Establishment of Dual-Focus

- Modeling Phytoplankton Biochemistry and Genomics Given Micronutrient
Concentrations and other Environmental Factors

- Impact on primary production, metabolic processes, among other areas
- Computationally Modeling Phytoplankton Dynamics (biomass, phenology, migratory

patterns, etc.)
- Impact on climate and food web
- Using environmental conditions as parameters.

October
- Narrowing Down Project Focus

- Identifying Computationally Modelling as Primary Approach
- Researching on Computational Techniques, Software, Possible Sources of Data For Input

- NetLogo
- TensorFlow and other Artificial Intelligence Modelling and Machine and Deep Learning

Tools
- Network Theory, Neural Networks, Louvain Method,
- EPA, MassDEP, and other potential databases

November
- Choosing Software Tools and Sources of Data
- Initial Model Validation

- Done using one wide-known variable, such as Dissolved Oxygen of Water Temperature
- Establishing statistical tools used to validate model for this project, such as R^2, RMSE,

hypothesis tests, among other tools
- Develop Testing Strategy. This should begin to be performed. It should follow this vague outline:

- Once model is validated, incorporate more parameters
- Salinity, pH, micronutrients, turbidity, zooplankton, among other factors

- Incorporate data for multiple species of phytoplankton
- Utilize techniques such as network theory, multi-agent programming, among other tools,

to model the impact of changing phytoplankton dynamics
- Apply parameters to these models to assess trophic ramifications.

- Employ chosen statistical tools to evaluate results with the following metrics:
- Model accuracy
- Driving Factors of the Observed Changes in Phytoplankton Dynamics
- Impact on Higher Trophic Levels

December
- Continue executing the developed test strategy. Ensure that:

- Phytoplankton dynamics, including
- Changing phytoplankton dynamics can applied and/or parameterized into network models

including higher level organisms in order to assess ecological impact
- Begin to statistically analyze results

- Use tests and techniques to identify driving factors
- Provide Data/Evidence on Climatic Ramifications as well
- Models should be being iterated upon, and data should be being collected across different models.

January
- Finalize models and results



- Complete data analysis on ecological and climatic ramifications, identifying driving factors
- Applying these procedures through the lens of tracking eutrophication and local, ideally even

higher level, policymaking.
- Identify future areas of focus

February
- Develop necessary products (clean up Project Notes and Logbook, STEM Fair poster, etc.)
- Present results


