
Methodology

Role of Student vs. Mentor

The author of this paper was the student, who was mentored by Dr. Kevin Crowthers. From July 2023 to

February 2024, the bulk of the work, including idea generation and attainment, research, and model development,

validation, and testing, was performed by the former. The latter was responsible for monitoring project progress, as

well as offering advice, particularly on potential software usage for parametric testing.

Equipment and Materials

The primary dataset analyzed in this study was the 2018 World Ocean Database (WOD18) provided by the

National Oceanic and Atmospheric Administration (NOAA). Both spatially and temporally, this dataset provides a

highly cosmopolitan measurement of numerous environmental parameters, including water temperature,

micronutrients, pH, salinity, among many others (Boyer et al., 2018). Access to the files of this dataset was attained

through the Registry of Open Data provided by Amazon Web Services (AWS). The files used in this dataset were all

updated within the AWS S3 explorer system on 17 October 2023 when obtained. Files were organized by year from

1900 to 2023, with pre-1900 data being referred to as 1800 (Amazon Web Services, 2024). The file of each year was

systematically downloaded. Regression models were developed using Python code. The main programming

interface used was Google Colaboratory, which, when used, was most recently updated on 8 January 2024,

supporting Python 3.10.12 (Google Colaboratory, 2024). An online webpage was used to conduct PCA (Statistics

Kingdom, 2017). Across all Python programs developed, the Pandas, Xarray, NumPy, SciPy, SciKitLearn, Seaborn,

and MatPlotLib packages were utilized. Additionally, to observe the dimensions of the data files more closely, the

Panoply software, provided by the National Aeronautic and Space Administration’s (NASA’s) Goddard Institute for

Space Studies (GISS), was downloaded. The most current version, 5.3.1, was used, released 1 January 2024 (NASA

GISS, 2024).

Decisions for Parametric Model Development Based off Data Structure

Two key observations were made during preliminary use and analysis of the dataset that led to two key

decisions on the analytical procedure performed. The first observation relates to the data structure of the files used.

These were NetCDF (.nc) files, which illustrate parametric measurements at specific points of latitude, longitude,

and depth across a series of equal temporal increments (Figure 3). In the metadata attained for the .nc files, these

spatiotemporal attributes were referred to as “coordinates.” However, it was specifically noted within this directory



that all dimensions, with the exception of the numerical measurements of parametric data, had their latitude,

longitude, depth, and time alongside their measurement. Meaning, outside of the year as provided by the file, the

spatiotemporal attributes of the primary data on environmental parameters could not be accessed. Therefore, a more

holistic approach to analysis was taken, wherein the average global value of each factor was calculated for each year

of data. This helped preserve temporal analysis and offered a viable overview of environmental relationships, though

at the expense of omitting the nuances and consequences caused by dissimilar spatial attributes among parametric

data.

Figure 3

Illustration of the NetCDF Data Structure

Note. This is a common illustration of the structure of a NetCDF file. The gray circles represent specific points in longitudinal and latitudinal

space. Though not illustrated above, each of these coordinates also contains varying levels of depth. At all of these points in space, there exist

parametric measurements. These measurements are projected out through a series of time increments, forming a three-dimensional figure.

The second observation made from the metadata was that planktonic data was inaccessible. Within the

Panoply software, whereas extractable data was stored within one-dimensional arrays, the values of non-extractable

data were unavailable. Figure 4 contains an illustration of this issue. Planktonic data fell under the latter category.

Consequently, it was decided to use average global oceanic concentration of total chlorophyll as an indicator of

phytoplankton dynamics, namely primary production. This is because chlorophyll is a crucial pigment for carrying

out the photosynthetic process, and in turn, all other metabolic processes. As such, a higher concentration of

chlorophyll would indicate greater potential for primary production, whereas Though a valuable indicator, it is

important to note that it is not a direct measurement of phytoplankton traits. Although data of all available



parameters spanning 1900 to 2019 were downloaded, due to the limited temporal range of measurements for total

oceanic chlorophyll, this study focused on data from 1954 to 2017. This also reduced the number of factors assessed.

Figure 4

Inaccessibility of Planktonic Data

Note. The extractable data (black) were stored as one-dimensional arrays, whereas the values of inextricable data could not be obtained. All

planktonic data fell under the latter category.

Data Extraction and Cleaning

Using Google Colaboratory, a brief program was written to extract parametric data .nc files and save them

as Comma Separated Value (.csv) files. Within each .csv file, the average, standard error, and sample size for each

year of each parameter was calculated and compiled into a separate spreadsheet file. Supplementary Files 1 and 2 in

the Appendices section (all supplementary files may be found in the Appendices section), provide the exact code

used. The main data cleaning involved the removal of non-numerical data within .nc files when converting them to

.csv. This was achieved by the Python program written.



However, for total oceanic chlorophyll and alkalinity, the data processing was more complex. When

originally creating a time series for the former, it was noted that model strength was inhibited by abnormally high

measurements around the early 2000s. Supplementary File 3 (specifically Supplementary Figure 3), provides a

visualization of this. Upon further investigation of the .csv files, it was noted that this was due to the abnormally

high amount of outliers. In order to maximize model fitness, for chlorophyll data spanning 1998 to 2008, any and all

measurements in excess of 20 μg/L were removed, and new averages, standard deviations, and sample sizes were

determined. The next iteration of the time series had a stronger fit as a result. For alkalinity, many years had errors in

how the data was recorded, in that the decimal place was improperly positioned. This led to values that were orders

of magnitude too high for the dataset, and in turn, skewed summary statistics. As such, any such data was eliminated

from the set, with summary statistics adjusted accordingly. Besides the processes described, all parametric data from

1954-2017 was preserved when performing data analysis.

Statistical Analysis

A variety of statistical tests and computational tools were used for the three major sets of models developed

for this study. The time series for each parameter developed was created primarily using sinusoidal regression. The

strength of each regression model was measured using a Pearson’s Correlation, including both r and R2. To assess

correlation between each factor and total oceanic chlorophyll, linear regression, in conjunction with a Student’s t-test

for relationship significance and Pearson’s correlation for relationship strength, was used. Finally, driving

parameters were identified using PCA, along with supplementary techniques.

Sinusoidal Regression Including Pearson Correlation

Environmental features tend to be periodic in nature. The sine and cosine functions provide an effective

way to model cyclical trends. Therefore, this specific type of a regression model was chosen, with R2 and r

measuring model strength and accuracy. This allowed for the evaluation of the validity of the overall computational

system as well as projection abilities. Equation 1 represents the template function used for all time series models:

(1)𝑓(κ) =  𝐴𝑠𝑖𝑛((2πγ)β + ε ) +  ϕ

Where is the function for the total chlorophyll concentration , is the amplitude, represents the𝑓(κ) κ 𝐴 2πγ

length of the period (using radians, alone being in degrees), is the given environmental factor (the next sectionγ β

enumerates the variable designation of each parameter), is the phase shift, and is the offset.ε ϕ



Additionally, using the offset as a midline for the sinusoid and the amplitude as a sort of ruler, an interval of

all measurements projected by the sinusoid of each parameter was developed. Equation 3 represents the basic

construction of the described sinusoidal interval:

(2)ϕ ± 𝐴 

Linear Regression Including Pearson Correlation and Student’s t-test

For the relationship of every parameter with the indicator, total chlorophyll concentration, a Linear

Regression model was developed. On a functional level, assessing each individual parameter’s relationship with

total chlorophyll acted as a precursor to identifying which of them had a significant influence on chlorophyll when

all parameters were considered in tandem. In essence, performing linear regression acted as a prerequisite for then

performing PCA. The significance of relationships were determined using a Student’s t-test for Linear Regression at

α = 0.05. Both double- and single- tailed p-values were attained. This was done in conjunction with the use of R2

and r to measure model accuracy and strength. Similar to the previous set of models, Equation 3 provides a template

wherein each parameter’s regression model was represented:

(3)𝑓(κ) =  𝑚β +  β
0

Where is the function for the total chlorophyll concentration , is the predicted slope of the line,𝑓(κ) κ 𝑚 β

is the given parameter, and is the y-intercept of the model.β
0

PCA

In order to identify the driving parameters behind total chlorophyll concentrations, PCA was used. PCA is a

dimension reduction technique that compresses multiple independent variables into fewer dimensions so as to

summarize overarching data patterns and allow for ease of data visualization. Before performing PCA, the data must

be standardized so that scale does not impede the accuracy of results. In this study, before PCA was performed, all

data of the indicator (chlorophyll) and every parameter were standardized using minimum-maximum normalization.

Within the setting of PCA, the total variance of the data is measured. This variance is captured by a finite set of

portions of the data known as principal components. In two-dimensional representations, the first two principal

components, that is, the two components that account for the highest amount of variance, denoted PC1 and PC2, are

placed on the horizontal and vertical axes respectively. Since information from the other principal components (PC3,

PC4, … PCn) is omitted, it is important that most variance is captured by PC1 and PC2. This is measured by each

principal component’s eigenvector values, which are derived from various matrix operations performed on the data.



Then, to standardize the amount of variation each principal component captures, the eigenvalues are divided by the

total variance of the dataset. A scree plot is used to depict the cumulative coverage of variance by all principal

components. Along with a PCA plot, a scree plot was used to illustrate these notable properties of the principal

components. In two-dimensional PCA, every parameter assessed captures some amount of either principal

component, and holds either a positive or negative relationship with the directionality of component variances. This

magnitude and directionality is represented by a pair of coordinates that form a vector. The greater the magnitude of

variance represented by a parametric vector, the more influential that parameter is relative to the overall data, and in

turn, driving the dependent variable. For the study, the magnitude of each parameter was calculated as depicted by

Equation 4:

(4)𝑀(β) = (𝐶
𝑃𝐶1

)2 · ν
𝑃𝐶1

 +  (𝐶
𝑃𝐶2

)2 · ν
𝑃𝐶2

 

Where is the function of the magnitude of parameter , is the contribution of the parameter to𝑀(β) β 𝐶
𝑃𝐶1

the variance of PC1, while is the contribution of the parameter to the variance of PC2, and is the proportion𝐶
𝑃𝐶2

ν
𝑃𝐶1

 

of the total variance represented by PC1, and is the proportion of the total variance represented by PC2.ν
𝑃𝐶2

 

The magnitudes of each parameter were calculated using the above equation, and then subsequently ranked

by descending magnitude values. The parameters with the highest calculated magnitude were identified as driving

parameters of chlorophyll concentrations. Additionally, to assess the presence of inter-parameter relationships, a

covariance matrix was used. A covariance matrix is an intermediate operation performed in the complex matrix

calculations involved with PCA wherein all independent variables are arranged in a square array. The cells of this

matrix contain the covariance between the row and column parameters. Values vary between 0 and 1, and can be

either positive or negative based on the directionality of the relationship. A greater magnitude indicates a stronger

relationship between the two parameters. The diagonal cells represent the variance of that individual parameter

following dimension reduction procedures. The results from these three sets of computational models were then put

into biogeochemical, ecological, and climatic context.


