
Computational Modeling of Phytoplankton Dynamics with Climatic and Ecological Ramifications

Phytoplankton encompass a broad range of aquatic, microscopic, photosynthetic species of viruses,

bacteria, fungi, protists, animals, and archaea. They are responsible for about half of all global primary production,

the production of nutritional organic matter from inorganic compounds via photosynthesis and other metabolic

processes (Käse & Geuer, 2018). Phytoplankton are key to biogeochemical cycling, helping circulate nitrogen,

phosphorus, silica, and other micronutrients (Sarker et al., 2023). They also absorb 30% of anthropogenic carbon

emissions (Rohr et al., 2023). Beyond photosynthesis, carbon sequestration is also performed through exportation, a

process where, after death, cellular matter sinks to the ocean floor, forming carbon sinks. Phytoplankton regulate

climate not only through controlling carbon circulation, but also through light reflection. Certain functional groups

produce dimethylsulfoniopropiothetin, a complex, sulfur-containing molecule. This compound decomposes into

dimethylsulfide, which in turn decomposes into compounds that reflect solar radiation (Deppeler & Davidson,

2017). It is in fact believed that biochemical processes such as this one helped cause the first major ice ages on Earth

(Käse & Geuer, 2018). Additionally, phytoplankton lie at the base of marine food chains, serving as prey for various

species of zooplankton and fish (Käse & Geuer, 2018; Loschi et al., 2023). Therefore, phytoplankton are an integral

part of the global climate and environmental systems, making the ability to understand how their operations and

functionalities are to change because of global warming incredibly crucial.

Understanding The Impact of Global-Warming Induced Aquatic Changes on Phytoplankton

With that in mind, the impact global warming has had on oceanic conditions themselves must first be

considered. Climate change has led oceans to becoming warmer, more acidic, anoxic, and stratified. Sea levels are

rising, while salinity and micronutrient concentrations are losing uniformity. Moreover, ocean currents have begun

to slow down (Berwyn, 2018). The thermohaline cycle involves the cycling of warmer, fresher, and less dense

pelagic (surface) water with colder, denser, saltier benthic (deep-sea) water. This allows for the mixing of nutrients,

the distribution of heat, and the regulation of climate. Analysis of past climate patterns reveals that a slower

thermohaline cycle has been associated with more extreme climate patterns (Berwyn, 2018). However, it is

important to note that changes in ocean conditions are not uniform, but rather, vary extensively by region (Winder &

Sommer, 2012). That means environmental conditions, which impact the nature of phytoplankton populations, are

not homogenous, adding a layer of complexity when determining the impacts they are to face.



Similarly, phytoplankton are undergoing some overarching changes. Common trends include shifting

phenology, a change in preferences towards smaller, more buoyant cells, and poleward migration (Ratnarajah et al.,

2023). However, under the surface, population modifications are far more complex. For example, certain groups are

favored under eutrophic conditions, that is, conditions where there are excessive micronutrients, leading to an

unhealthy amount of growth in algal blooms that deplete ecosystem resources, whereas others under fresher or

darker conditions (Winder & Sommer, 2012). There are a voluminous amount of environmental factors (e.g., light,

heat, nutrients, pH, salinity, etc.) that impact phytoplankton dynamics (Winder & Sommer, 2012). Moreover, each

species operates under different sets of ideal conditions. This raises a dilemma. To illustrate this, consider two

phytoplankton species living in the same area. Suppose that one species can tolerate a pH range of 5.9 to 6.5,

whereas another one tolerates a range of 6.7 to 7.3. With ocean acidity changing heterogeneously, if one area of the

ocean has a pH of 6, and another area a pH of 7, then each species would migrate to the area matching their

respective preferences, heavily modifying taxonomic composition, biomass, exportation, and other dynamics.

However, there are other influential environmental factors, making it important to consider how multiple factors

simultaneously impact dynamics. Using the example given, would another factor, such as dissolved oxygen, have

precedent over pH when it comes to these species seeking ideal conditions? Moreover, these migrations would leave

predators bereft of a major source of food. How would that impact the entire ecosystem? What climatic shifts may

result? The circumstances and questions raised by a scenario like this capture the essence of what this study aimed to

address.

Examples of Parametric Variability

Parameters that influence phytoplankton conditions are present at the molecular, genomic, cytological, and

ecological level. Changes in their values can impact various important biological characteristics, including primary

production and metabolic rates. For instance, biochemical processes like DNA methylation, whereby a methyl

functional group is applied to the fifth carbon in the carbon ring of the nitrogenous base of cytosine, with warming

ocean temperatures, has been found to inhibit amino acid metabolism, as well as respiration and photosynthesis in

phytoplankton, while enhancing fatty acid metabolism (Wan et al., 2023). This means that there is a slower rate of

primary production and carbon sequestration, inhibiting phytoplankton’s role both as the base of marine food chains

and as climate regulators. However, seeing as ocean temperature shall change heterogeneously, the extent to which

this trend occurs shall vary.



Meanwhile, micronutrients also play a major role in influencing metabolic rates. For example, phosphorus

is an integral component of all forms of metabolism, making phosphorus-containing compounds crucial for

phytoplankton. However, as discussed above, varying levels of micronutrients, including these compounds, impact

dynamics in different ways. It has been found that increased phosphorus levels has allowed for all metabolic

processes to occur at faster rates, bolstering the ability of phytoplankton to sequester carbon and provide greater

biomass for its predators. However, excessive phosphorus concentrations can be toxic and lead to eutrophication (Li

et al., 2023). Moreover, toxicity and metabolic rates vary across different species.

Another example of significant environmental variability is water temperature. Different genera of

phytoplankton exhibit different responses to warming ocean temperatures. For example, using a modified Eppley

Curve, an exponential function that models the relationship between growth rates and water temperature, one

analysis found that, while growth rates are expected to increase alongside temperature, the rate at which the growth

rate increases for diatoms was greater than that of dinoflagellates, cyanobacteria, and coccolithophores (Anderson et

al., 2023). Additionally, dissimilar thermal attributes are predicted to result in differential migration patterns among

different functional groups.

In conjunction with the explanation offered in the previous section, these examples illustrate that for any

environmental parameter, there is a great amount of nuance when it comes to the impact that phytoplankton face.

This nuance only expands when multiple variables are considered in tandem. It is extremely difficult to perform an

experiment that involves multiple independent variables, as confounding factors would easily arise. The alternative

would be to perform an experiment using only one variable, which would fail to account for the multifactor

interactions that occur. The results of such a procedure across different instances would also vary, failing to paint a

solid picture of the impact of that one parameter (Chang et al., 2022).

Computational Modeling of Phytoplankton Dynamics: Progress and Current Limitations

As a result, a computational modeling approach is imperative, as it can be used to capture the nuances of

this situation, and provide greater insight into what the observed results signify. In essence, this is what the goal of

this project is: to take the complex relationships in phytoplankton populations, and organize, synthesize, and

contextualize them, delineating ramifications.

Presently, there are many limitations with computational models of phytoplankton dynamics. One major

limitation is the misunderstanding of the role zooplankton play in the modeling process. Different models have made



different assumptions about how zooplankton interact in ecological systems, leading to divergent predictions in

climate and food web scenarios (Rohr et al., 2023). Indeed, it has been found that more robust data collection

methods and raw data on zooplankton is necessary (Ratnarajah et al., 2023). It is a dearth in overall data that limits

the predictive power of these computer models. There is a particular lack of data from the Southern hemisphere

(Deppeler & Davidson, 2017).

That is not to say that accurate models have not been developed. In fact, there have been models developed

for small bodies of water, such as the Tucuruí reservoir in Pará, Brazil (Deus et al., 2013). This computer model was

based off of field data on chlorophyll a, dissolved oxygen, ammonia. Through linear regression analysis including

R2, root mean square error, and the slope of regression lines comparing computer predictions to actual results, it was

determined that the model was in fact accurate. Figure 1 (Deus et al., 2013) depicts the linear regression between the

predicted and field values of these parameters. With extremely high R2 values, the model was deemed fit to perform

other functions within study. This provides a strong example for how the accuracy in computer model predictions

can be assessed, allowing for model results and ramifications to be validated. Indeed, validation relies on some form

of statistical analysis, which varies from model to model.

Figure 1

An Example of Computational Model Validation Techniques: Tucuruí Reservoir as a Case Study

Note. Each parameter contains a larger graph depicting the raw comparison between field data and computer predictions. From lop left to bottom

right, the parameters shown are phosphate, nitrate, ammonia, dissolved oxygen and chlorophyll a. Embedded within are the linear regressions that

compare the computer model predictions against the actual field data. Therein lie the R2 values which serve to evaluate model accuracy. The R2

values for phosphate, nitrate, ammonia, dissolved oxygen, and chlorophyll a were 0.9791, 0.9506, 0.9495, 0.964, and 0.9967, respectively.



However, different models have been synthesized for different purposes. For example, some models have

focused on the identification of driving parameters in phytoplankton dynamics. Using Principal Component

Analysis (PCA), whereby the impact of parameters is measured using vectors, one study of coastal Bangladesh

found that salinity, followed by micronutrient concentrations, turbidity, and water temperature played the most

significant roles in regulating abundance and spatial variability in phytoplankton (Sarker et al., 2023). Other models

have focused on inter-parameter relationships. One study of several lakes in Wuhan, China used a hierarchical linear

model. After sorting the parameters into different levels and identifying statistically significant relationships, the one

major inter-parameter relationship identified was a negative one between grasslands and water temperature (Tian et

al., 2023). From an ecological lens, neural networks have been developed to model the changing flow caused by

changing phytoplankton conditions. At a broad level, these networks take in various rates related to energy and

matter transfer as parameters, the values of which can be modified to simulate different scenarios. Boit et al. 2012

suggests the gradual implementation of these factors through a series of successive neural networks. When applying

this approach to Lake Constance, the fit of the model to predict observed dynamics was maximized, providing a

format through which food webs of other systems can be created (Boit et al., 2012). Other studies, such as one of the

Venice Lagoon, have been able to identify keystone species (Loschi et al., 2023). From a climatic lens, a focus has

been placed on the accuracy of climate models in predicting bloom phenology, as well as other characteristics. The

Coupled Model Intercomparison Project (CMIP), with its large scope, has been a particular area of focus. For

example, one study found that bloom phenology in the Southern ocean is not accurately predicted as the sea ice

concentration levels used in the model were not reflective of on-site levels (Hague & Vichi, 2018). Overall, there

exists ample literature describing a myriad of empirical relationships and computational models of the various

aspects of the changing characteristics of phytoplankton as well as those ramifications. What is lacking, however, is

a unified apparatus to unite these models.

Given the background information and limitations presented, this paper seeked to create a series of

computational models bound together as one entire system whereby parametric information on phytoplankton

populations could be introduced and results for their populations, and in turn, the environment and climate could be

produced. Figure 2 visualizes this overarching computational framework. This study applied this basic framework to

data from the National Oceanic and Atmospheric Administration (NOAA)’s comprehensive 2018 World Ocean

Database (WOD18). Specifically, the most spatiotemporally cosmopolitan dataset, the Ocean Station Dataset (OSD),



was analyzed. These data include millions of casts, spanning multiple centuries and covering virtually the entire

ocean (Boyer et al., 2018). Given this impressive scope, this allows the study to take a holistic approach to analysis,

partially helping to address the lack of data in computational models. Within the OSD, total oceanic chlorophyll was

used as an indicator for primary production. Factors tested include oxygen, micronutrients, pH, salinity, temperature,

pressure, and alkalinity. To assess potential forecasting capabilities and overall model strength, a time series of all

parameters (including the stated indicator), was created mainly using sinusoidal regression. Subsequently, the

relationship of each factor with the indicator was observed using linear regression. Lastly, driving parameters were

identified using Principal Component Analysis (PCA).

Figure 2

Proposed Overarching Computational Framework for Modeling of Changing Phytoplankton Dynamics

Note. This model takes the form of a systems diagram wherein an input is provided for the system stock, operations are performed, and an output

is provided. This study proposes that parametric data act as the input, that computational and statistical methods act as the operations within the

stock, and that the insights provided on phytoplankton, that is, the study goal, to act as the output. All potential tools proposed above, while useful

for achieving their respective ends, however, not all techniques were utilized within this paper.

This apparatus could serve as a viable streamlined process for experts studying phytoplankton populations

and their role in the environment and climate. Moreover, it has the potential to serve as a tool for policy makers with

regards to water body management. For example, Tian et al. 2023 used results from a multi-agent based model to



recommend a controlled increase in micronutrient concentrations and fish that feed exclusively on zooplankton

(Tian et al., 2023). As a whole, this study has provided a potentially potent framework whereby the causes and

impacts of phytoplankton conditions can be effectively observed.


