

Problem Statement:

barrels to the curb.

driveways

Engineering Goal

Engelhardt, 2014)

Background

- Many people struggle to easily transport their trash

- Age-Induced Loss of Muscle Strength (Keller &

- Medical conditions: Arthritis, ALS, CIDP, etc.

- Heavy Trash Barrels! (National Overview, n.d.)

- Long, Hilly, or otherwise difficult to maneuver

- Create an electric-powered trash barrel that helps users

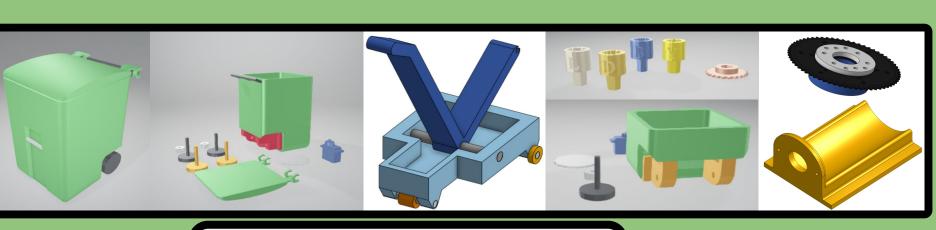
maneuver it while keeping them involved in the process.

- Benefits of exercise & independence (Klietz, 2022)

(Neuromuscular Disorders, n.d.)

HANSING PowerBin

Constructing an Electric Powertrain to Motorize Trash Barrels


Hartej Anand (CMO), Nicholas Giza (CEO), Abhinav K. Sharma (CIO), Sami Wang (CTO)

Documentation

Methodology

- A standard 64 gallon Toter trash can was donated by Casella (Garbage, N.D.)
- Two CIM motors with 22 tooth sprockets were connected to 64 tooth sprockets on the wheels using a chain.
- An Arduino was connected to a potentiometer and two Talon SRX motor controllers to allow for the user to control speed
- Buttons were attached to the arduino system to manage power delivery the motor (on or off)

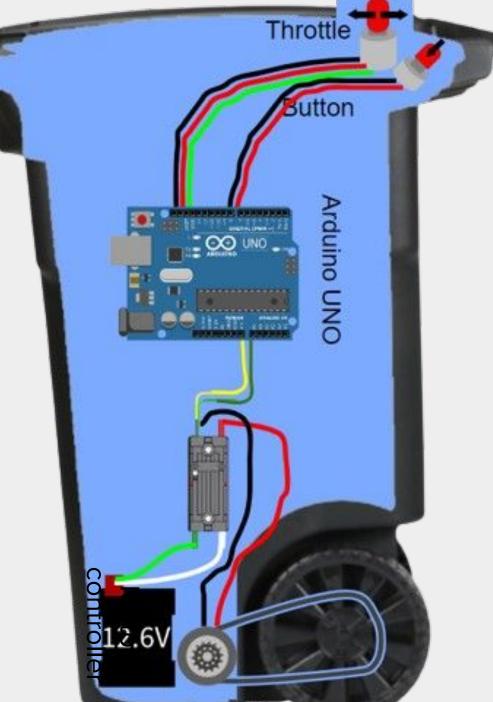
Creating the PowerBin

Conclusion

- The *PowerBin* offers a <u>unique assist</u> to those who struggle to transport their trash to the curb.
- With a combination of <u>non-active throttles</u> and on/off buttons, the *PowerBin* has been optimized for <u>safe</u>, <u>effective</u>, <u>and simple</u> use.

Future Work:

- Add all level 3 and 4 (nice to have) criteria.
- Adapt the design to use fewer 3D printed components and more metal/injection molded components for durability/longevity.

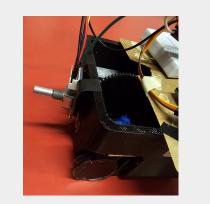

Results

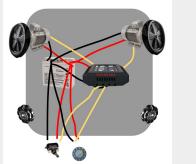
The PowerBin:

Design Study #1 Sprocket Ratio Fitness

Purpose: Verify gear ratio to ensure intended gear operation

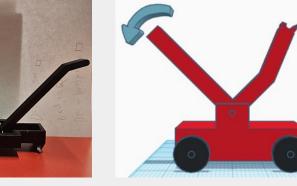
Statistically *insignificant* difference (p = 0.49) indicates proper gear function (123.75 vs. 121.65。)


Requirements

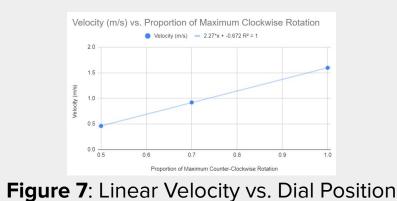

Level 1: (Top Priority)

- Propellable w/o strenuous amount of user force.
- Safe for user operation.
- Electrical components are waterproof
- Electrical components are inside the barrel.
- The user controls the trash barrel's speed.
- The system is to powered by electricity or other renewable energy sources.
- Adaptable to all standard trash/recycling barrel sizes.

Level 2:


- Operable in different weather conditions
- Operable in different terrains
- Apparatus will weigh <= 60 lbs.
- Remain intact when damaged

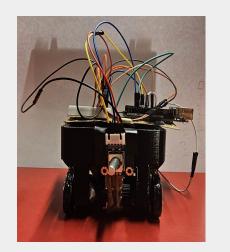
Figures 1, 2: 3D printed trash can with two servo motors controlled by an Arduino UNO. The system features a knob to change the rotational velocity.

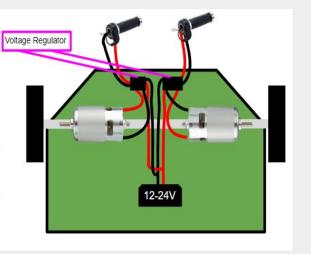


Figures 3, 4: 3D printed barrel and a 3D printed tug cart with lever. The lever latches onto the trash can's bar, and can then drag it.

Design Study #2 Potentiometer-Regulated Velocity

Purpose: Assess the correlation between the Arduino setting and the velocity generated.




Design Study #3 Barrel Velocity

Purpose: To analyze the performance of the final iteration.

The device was able to provide sufficient power assist to the user. It achieved a velocity of 0.668 m/s with relative ease.

Design 1: Button/throttle hybrid control

Figures 5, 6: 3D printed trash can with two servo motors controlled by Arduino. The system features a button which, when engaged, rotates the servo motors.

Garbage Pickup from Casella. (n.d.). Casella. Retrieved March 26, 2024, from https://local.casella.com/Garbage-Pickup Keller, K., & Engelhardt, M. (2014). Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons Journal, 3(4), 346–350. https://doi.org/10.32098/mltj.04.2013.17

National Overview: Facts and Figures on Materials, Wastes and Recycling. (n.d.). United States Environmental Protection Agency Retrieved March 26, 2024, from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

Neuromuscular Disorders. (n.d.). Penn Medicine. Retrieved March 26, 2024, from

https://www.pennmedicine.org/for-patients-and-visitors/find-a-program-or-service/neurology/neuromuscular-disorders