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This list provides a brief overview of the major knowledge gaps for this project, how they were resolved
and where to find the information.
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Literature Search Parameters:
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Source Title

Source citation (APA Format)

Original URL
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Keywords

#Tags

Summary of key points + notes
(include methodology)
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VOCAB: (w/definition)
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Article #1 Notes: Could Al-powered Robot “Companions”

Combat Human Loneliness?

Source Title

Could Al-powered Robot “Companions” Combat Human Loneliness?

Source citation (APA Format)

Vahaba, D. (2023, July 12). Could Al-powered robot “companions” combat
human loneliness? Duke Today.
https://today.duke.edu/2023/07/could-ai-powered-robot-companions-c

ombat-human-loneliness

Original URL

https://today.duke.edu/2023/07/could-ai-powered-robot-companions-combat-hu
man-loneliness

Source type

Magazine

Keywords

Robots, Artificial Intelligence, Generative Al, Loneliness, Social Connection

#Tags

#robotics, #ai, #ml, #chatgpt, #mentalhealth

Summary of key points + notes
(include methodology)

The article suggests that, while having a real friend is the best solution, robots
might be a way for millions of socially isolated people with no other solutions to
alleviate their loneliness. The article then presents an example of a social robot in
the ElliQ and underscores the potential of more advanced robots embedded with
modern Al, such as ChatGPT.

Research Question/Problem/
Need

Can robotic companions mitigate loneliness and social isolation, especially in the
elderly?

Important Figures

Nothing graphical, but statistics include:

The number of Americans with no close friends has quadrupled since 1990,
according to the Survey Center on American Life

Sermo survey of 307 care providers across Europe and the United States showed
that 69% of physicians agreed that social robots could provide companionship,
relieve isolation, and potentially improve patients’ mental health.

VOCAB: (w/definition)

Companion robots: robots intended for creating social connections and
companionship with humans

Generative Al: a form of artificial intelligence capable of producing various forms
of media, including text, images, and more
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Cited references to follow up on

CITATION: “Enhancing Social Connectedness With Companion Robots Employing Al," Elizabeth Broadbent, Mark Billinghurst, Samantha G.
Boardman, P. Murali Doraiswamy. Science Robotics, July 12, 2023. DOI: 10.1126/scirobotics.adi6347

Follow up Questions

How can the effectiveness of companion robots be measured?

What are the broader societal implications of integrating companion robots to
address loneliness?

How can generative Al be made to feel more real or human, to replicate human
interaction? Should it?
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Notes (written with assistance from ChatGPT)

e Companion robots with Al have the potential to address the loneliness epidemic, according to a
report from Auckland, Duke, and Cornell Universities

® The report emphasizes the need for ethical considerations and guidelines for the development
of companion robots in healthcare

® |t suggests that while real human friendships are ideal, companion robots can benefit isolated
individuals until social connectedness and eldercare are prioritized

e Loneliness and social isolation have serious health consequences, including mental ilness,
obesity, dementia, and early death

e The report highlights the potential of Al to enhance companion robots' social interaction
capabilities

e Research indicates that companion robots can reduce stress and loneliness in older adults,
promoting their well-being

e The lack of standardized measures to assess a robot's impact on patients underscores the need
for patient-rated outcome measures

® The "Companion Robot Impact Scale" (Co-Bot-I-7) is being developed to measure the physical
health and loneliness impact of companion robots
Early results suggest that companion robots can reduce stress and promote skin healing
Ethical guidelines are crucial for leveraging robots to create a healthier society, according to the
authors
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Article #2 Notes: How Al Is Transforming Genomics

Source Title

How Al Is Transforming Genomics

Source citation (APA Format)

Vacek, G. (2023, February 24). How Al Is Transforming Genomics. NVIDIA Blog.
https://blogs.nvidia.com/blog/2023/02/24/how-ai-is-transforming-genomi

cs/

Original URL

https://blogs.nvidia.com/blog/2023/02/24/how-ai-is-transforming-genomics/

Source type

News Article

Keywords Whole Genome Sequencing, Accelerated Genome Analysis, Genetic Variant
Discovery
#Tags #ai, #genomics, #healthcareandlifesciences, #socialimpact

Summary of key points + notes
(include methodology)

Advancements in whole genome sequencing have ignited a digital revolution in
Biology, but genome data can get huge, starting at 100 gigabytes of raw data,
which doubles after the use of complex algorithms and applications. Deep learning
and neural networks are being used to interpret image and signal data from the
billions of nucleotide pairs in the genome, and GPU-optimized and accelerated
callers, such as GATK, are used to call variants, differences between the patient’s
sample and the reference genome. NVIDIA is enabling the next wave of genomics
by powering sequencing platforms with Al base calling and variant calling.

Research Question/Problem/
Need

How have Al and GPU-accelerated computing impacted the field of genomics?

Important Figures
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data

VOCAB: (w/definition) Genomics: the branch of molecular biology concerned with the structure, function,
evolution, and mapping of genomes

Deep Learning: a subset of machine learning that uses multiple layers to emulate
the function of the human brain

Base calling: the process by which an order of nucleotides in a template is inferred
during a sequencing reaction

Variant calling: the process by which variations between an individual’s genome
and reference genome are identified

Cited references to follow up on | None

Follow up Questions How are the results from genomic sequencing and analysis with Al and GATK used?

How exactly is Al and accelerated computing used in the process from start to
finish?

When dealing with such expensive computing and large amounts of data, what is
the environmental footprint?
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Bulleted Notes (Written with assistance from ChatGPT)

Advancements in whole genome sequencing are transforming digital biology

Genomics programs are gaining momentum due to the declining cost of next-generation
sequencing

Whole genome sequencing is essential in clinical workflows and drug discovery

Moore's law's end requires new computing approaches for efficient genome data analysis
Sequencing a human genome generates approximately 100 gigabytes of raw data

An estimated 40 exabytes will be needed to store all human genome data by 2025

Deep learning and Al are improving accuracy and efficiency in genome sequencing
Alignment algorithms like BWA-MEM and STAR are used for genomic analysis

Variant calling is crucial for identifying genetic differences in patients and drug research
GPU-optimized tools like GATK and DeepVariant accelerate variant calling

NVIDIA is driving genomics advancements through Al base calling and variant calling
Biotech companies like PacBio and Oxford Nanopore are utilizing NVIDIA technology for
sequencing

Ultima Genomics offers high-throughput whole genome sequencing at a low cost
Singular Genomics' G4 is a powerful benchtop system for genomics research
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Article #3 Notes: Art and Fun Digital Learning for Children
with Special Needs

Source Title

Art and Fun Digital Learning for Children with Special Needs: A Case Study on
Applying Art as a Learning Technology

Source citation (APA Format)

Bayu Tejo Sampurno, M., & Anggun Camelia, |. (2019). Art and fun digital
learning for children with special needs: A case study on applying art as a
learning technology. Proceedings of the Social Sciences, Humanities and
Education Conference (SoSHEC 2019).

https://doi.org/10.2991/soshec-19.2019.38

Original URL

https://www.atlantis-press.com/article/125926106

Source type

Conference Paper

Keywords Art Education, Children with Special Needs, Pedagogical Methods, Cognitive
Development
#Tags #art, #funlearning, #artisticdevelopment

Summary of key points + notes
(include methodology)

This paper aims to introduce an educational model for children based around art
and technology to create a positive and effective learning environment for children
with special needs. The methodology employed in this research is a qualitative
case study approach, involving in-depth observations of Attention Deficit
Hyperactivity Disorder children within the "Peduli Kasih Anak Berkebutuhan
Khusus Surabaya" Foundation in Surabaya, Indonesia over the course of 6 months,
with a focus on art education and its flexibility in enhancing the learning
experiences of these children. The case study demonstrated that the educational
model can provide a sense of comfort to the children, improve their development,
and reduce disorders commonly experienced by them in a school setting.

Research Question/Problem/
Need

How can art be used to improve learning for students with cognitive disabilities?

Important Figures

None

VOCAB: (w/definition)

Pedagogical methods: teaching methods
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Cited references to follow up on

G. R. of the R. of Indonesia, “Number 32 of 2013, concerning
Amendments to Government Regulation Number 19 of 2005

concerning National Education Standards.,” 771, paragraph 1, letter
g. [Online]. Available: http://sindiker.dikti.go.id/dok/PP/PP32-
2013PerubahanPP19-2005SNP.pdf. [Accessed: 16-Nov-2015].

H. Read, Education Through Art. London: Faber and Faber, 1970.

D. Kelly, Uncovering the History of Children’s Drawing and Art.
Westport: Praeger Publishers, 2004.

G. R. of the R. of Indonesia, “UU No.2 of 1989 concerning the
National Education System.” .

H. Thompson and F. Evans, The PDA Paradox: The Highs and
Lows of My Life on a Little-Known Part of the Autism Spectrum.
London: Jessica Kingsley Publishers, 2019.

V. Lowenfeld and L. Brittain, Creative and Mental Growth. New
York: Macmillan Publishing, 1982.

C. Magnusen, Teaching Children With Autism and Related
Spectrum Disorder, Art and Science. Florida: Alfred Publishing,
2006.

Follow up Questions

Could this study be conducted on a larger scale?
What methods specifically would comprise the educational model?
Could they be applied to more demographics?

What are the potential challenges of integrating art into special education?
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Notes (written with assistance from ChatGPT)

Introduction

® The presence of art education in Indonesian schools is a concern for the government and
education experts

® The law emphasizes that art and cultural study materials aim to shape students' character,
fostering art and cultural understanding

® Art education is considered as important as other subjects, providing a balance of logical-rational
and ethical-moral education
Plato and Aristotle supported the idea that art should be the basis of education
Education is a conscious effort to create a learning atmosphere and process where students
actively develop their potential

e Art provides complex learning material for children, including those with special needs, and
encourages education through play

e Artisseen as a fundamental and unifying activity that allows children to express themselves and
develop sensitivity

e Art education helps in internalizing aesthetic experiences, training high sensitivity, and fostering
creativity

e Education for children with special needs in Indonesia often focuses on output and neglects the
outcomes and the importance of play and pleasure in education

o The paper aims to provide fun learning methods for children with special needs through the
flexibility of art
Research on art therapy primarily focuses on using art to address health and psychological issues
Melinda J. Emery's research on "Art Therapy as an Intervention for Autism" explores the role of
art in the development of autistic children and their visual communication

e Carl E. Stafstorm, Janice Haviena, and Anthony J. Krezinski examine the effects of art therapy on
children and adolescents with epilepsy, noting improved cognitive benefits based on parental
feedback

® Chung-Hsin Chiang, Wei-Tsuen Soong, Tzu-Ling Lin, and Sally J. Rogers study nonverbal
communication skills in young children with autism through art therapy

o Annette Marjorie Miller-Jones investigates the impact of music therapy on language acquisition
for children on the autism spectrum, noting progress in speech and social skills.

e Beth Nemesh's research focuses on family-based music therapy, emphasizing collaborative
action between music and family therapy for educational and therapeutic purposes

Methods

® The paper's goal is to introduce enjoyable learning methods for children with special needs using
art's flexibility
Existing art therapy research mainly concentrates on addressing health and psychological issues.
Melinda J. Emery's research on "Art Therapy as an Intervention for Autism" delves into how art
contributes to the development of autistic children, particularly in terms of visual
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communication

Carl E. Stafstorm, Janice Haviena, and Anthony J. Krezinski explore the impact of art therapy on
children and teenagers with epilepsy, highlighting cognitive improvements reported by parents
Chung-Hsin Chiang, Wei-Tsuen Soong, Tzu-Ling Lin, and Sally J. Rogers investigate the
enhancement of nonverbal communication skills in young autistic children through art therapy
Annette Marjorie Miller-Jones focuses on the effect of music therapy on language acquisition in
children on the autism spectrum, observing advancements in speech and social skills

Beth Nemesh's research centers on family-based music therapy, emphasizing the collaborative
use of music and family therapy for both educational and therapeutic purposes

Results and Discussion

Art offers multiple perspectives, no complete discipline, and endless possibilities
Art encourages people to see and hear beyond the surface of reality, making it a valuable
component of a humanistic curriculum

® Art education aligns with Aristotle's concept of knowledge formation through sensation and
abstraction

e Children's art education involves engaging in art activities, sensing, and eventually understanding
concepts

e Learning from children with special needs, who express themselves through art, provides unique
perspectives and unlimited imagination

® Artistic experiences are divided into act of production (artistic experience) and aesthetic and
perception experience

e Fun learning for children with special needs requires understanding their individual needs,
creating a comfortable and interactive learning environment

e Children may have different ways of being smart through various forms of expression

e Art, as a source of understanding, plays a valuable role in fun learning

® Art teachers can contribute to cross-disciplinary intelligence development

e Expertise in art education goes beyond artistic skills and involves using art as a therapeutic
medium

e Interdisciplinary approaches in art education facilitate collaboration between various fields and
open up new possibilities

Conclusion

® Art-based education offers comfort and enjoyment for children with special needs

e It positively impacts their development and reduces school-related disorders

e Tailoring methods to individual needs through trial and error promotes enjoyable learning

e This approach helps unlock the potential of children with special needs

e The research benefits special education teachers by highlighting the effectiveness of art-based

teaching
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Article #4 Notes: Application of Artificial Intelligence in

Modern Art Teaching

Source Title

Application of Artificial Intelligence in Modern Art Teaching

Source citation (APA Format)

Kong, F. (2020). Application of artificial intelligence in modern art teaching.
International Journal of Emerging Technologies in Learning (iJET), 15(13),

238. https://doi.org/10.3991/ijet.v15i13.15351

Original URL

https://www.researchgate.net/publication/342849745_ Application_of_Artificial_|I
ntelligence_in_Modern_Art_Teaching

Source type

Journal Article

Keywords Art Teaching, Artificial Intelligence, Higher Education, Analytical Hierarchy Process,
Gray Clustering
#Tags #ai, ttart, #education

Summary of key points + notes
(include methodology)

The rapid development of Al has led to its gradual application in the field of higher
education, an important part of which being art teaching, where Al can be used to
cover shortcomings in the transfer of professional skills and knowledge. While
there were a couple of prior studies on the implementation details of Al in art
teaching, they still need to account for the systematic planning of Al in art
teaching. Through inductive analysis, this paper analyzes the application of Al in
modern art education from the two aspects of strategy analysis and model
construction. It covers six main topics: prior studies on the competitiveness of
higher education, the current application of Al in art teaching, the promotive role
of Al in art teaching, the strategies of Al applications in modern art teaching, an
application performance analysis, and a conclusion. After discussing Al's benefits
and potential applications in Al art teaching, the paper constructed a performance
model for application performance analysis with grey clustering.

Research Question/Problem/
Need

How can Al be applied effectively in art teaching?

Important Figures

None

VOCAB: (w/definition)

Analytical hierarchy process: a method for organizing and analyzing complex
decisions, using math and psychology

Grey clustering: a method developed for classifying observation indices or
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observation objects into definable classes using grey incidence matrices or grey
possibility functions

Cited references to follow up on

Tang, Y., He, S.Y. (2019). Research on the education mode of "artificial intelligence +
higher vocational art major” entrepreneurship and employment. China Journal of
Commerce, 2019(14): 223-225. https://doi.org/10.19699/].cnki.issn2096-
0298.2019.14.223.

Follow up Questions

The paper was written in 2020, focusing on less recent Al technologies, such as
sentiment analysis, semantic analysis, and emotion perception. However, how
could generative Al, including diffusion and large language models, play a role in
art education?

How would a personalized learning model based on the factors mentioned be
trained?

Are there specific examples of where and how these strategies were employed?

Is there any more specific information on how the weight judgment matrix of
performance indicators A was constructed?
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Notes (written with assistance from ChatGPT)

Introduction

Al is increasingly applied in engineering and higher education, enhancing design and teaching
Art education in higher education involves transmitting professional knowledge

Some research on Al in education exists but lacks comprehensive planning for art teaching

This paper analyzes Al's application in modern art education, discussing strategies and outcomes

Current Status of Al Application in Art Teaching

e Traditional electronic equipment like recorders and projectors are commonly used in art
education

e Al aims to present art knowledge in a more intuitive way but faces a shortage of Al hardware
facilities, hindering desired teaching goals
Computer Aided Instruction (CAl) uses computer technologies to enhance art teaching
Traditional CAl has limitations in understanding individual student needs and participation
Stronger technical support through Al and multimedia technology is needed for modern
teaching

e Current Al-based art teaching relies on Internet technology and online platforms, offering
innovative learning options
However, it often lacks the artistic teaching atmosphere, especially for large groups
The disconnect between modern art teaching concepts and intelligent teaching modes is a
challenge
Al technology is not yet fully developed, limiting its potential in art education
Al struggles with tasks like sentiment analysis and subjective aesthetic evaluation
Current Al-based art teaching is basic and doesn't fully utilize Al's capabilities, highlighting the
need to overcome Al and art education integration challenges

The Promotive Role of Al in Art Teaching

e The application of Al in art teaching aims to improve the learning effect of art students by
simulating human thinking processes, enhancing logical thinking, and personalizing education

e Al-based art teaching systems can adapt to students' individual needs, provide personalized
resources and learning paths, and facilitate teacher-student interactions

e Al can enrich the teaching methods of art teachers, allowing them to focus on innovative
teaching activities and one-on-one problem discovery, with Al assisting in various teaching tasks

e Al canimprove the art teaching environment by optimizing visual and auditory presentations,
spatial layout, and environmental factors, creating a better user experience for teachers and
students

® Al can enhance art teaching methods by using advanced digital media and VR, providing
students with a more immersive and multisensory art experience

® Al enables personalized and procedural art teaching evaluation, recording students' interactions
and learning behaviors to provide a comprehensive understanding of their progress and
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encourage self-improvement

Strategies for the Implementation of Al in Modern Art Teaching

The role of Al in college art teaching is growing, necessitating a change in the role of art teachers
to leverage Al's capabilities for personalized and objective education

Al can enhance personalization in art teaching, providing personalized content and intelligent
analysis, balancing scale and customization, and improving the learning experience

Al can help collect and analyze art education data, support management services, and improve
decision-making and resource allocation in art education

The application of Al in art teaching requires the expansion of art education data, knowledge
graph technology, and standard data systems

Al can transform the art teaching environment, creating a digitalized and intelligent teaching
atmosphere, and improving personalized service levels

The integration of online and offline classes and the use of VR can provide immersive learning
experiences and enhanced teaching effectiveness in art education

Application Performance Analysis of Al in Modern Art Teaching

e The evaluation of Al application in modern art teaching should be guided by scientific, objective,
and targeted principles

e Performance indicators, including art teaching mode, art teaching method, art teaching content,
teaching atmosphere, teaching means, teaching effect, and teaching environment, are selected
for analysis

® The Analytic Hierarchy Process (AHP) method is used to assign weights to these performance
indicators
The application performance is divided into different degrees
Gray clustering functions are used to analyze the performance of each indicator
A weighted gray correlation degree is calculated to assess the performance of Al application for a
given object

e The performance degree of an object is determined based on its correlation with the predefined
performance degrees

Conclusion

® The paper analyzed the application of Al in college art teaching

e It discussed both the shortcomings and the positive impact of Al in college art teaching

e The paper proposed strategies for using Al to support art teaching

e To measure the application effect of Al, a performance model was constructed

® The study combines theoretical analysis and calculation models to analyze the application

strategies of Al in modern art teaching, offering innovation in theory and practical engineering
applications
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Article #5 Notes: We're getting a better idea of Al’s true

carbon footprint

Source Title

We're getting a better idea of Al’s true carbon footprint

Source citation (APA Format)

Heikkil, M. (2022, November 15). We're getting a better idea of Al’s true
carbon footprint. MIT Technology Review.
https://www.technologyreview.com/2022/11/14/1063192/were-getting-

a-better-idea-of-ais-true-carbon-footprint/

Original URL

https://www.technologyreview.com/2022/11/14/1063192/were-getting-a-better-i
dea-of-ais-true-carbon-footprint/

Source type

News Article

Keywords

Artificial Intelligence, Large Language Models, Sustainability, LLM Optimization

#Tags

H#ai, H#greenai, #greensoftware, #llm

Summary of key points + notes
(include methodology)

Large language models, a rapidly growing form of artificial intelligence, require
abundant energy to train and can leave a significant environmental impact. The
article explores Al startup Hugging Face's paper and delves into their method of
more precisely calculating the carbon footprint of these models. Hugging Face
demonstrated its approach by measuring the emissions of BLOOM, its own large
language model, throughout its entire lifecycle, factoring in emissions beyond
training, such as those produced by the manufacturing of the computer
equipment used for training and the broader computing infrastructure. While
BLOOM primarily uses nuclear energy, other LLMs trained worldwide use fossil
fuels, which could be even more polluting. The paper also calls attention to the
possible inaccuracies of emission calculations of other popular LLMs, such as GPT-3
and Meta's OPT, calling for a more thorough evaluation of the environmental
impact of LLMs and Al in general. It also sheds light on the scale of the carbon
footprints, which is important for companies and developers to know as they
balance the trade-offs between costs, efficiency, and sustainability. This article
would serve as a solid foundation for developing a methodology for investigating
the emissions of various LLMs throughout their lifetimes to explore strategies of
optimization and mitigation, such as alternative training techniques and diverse
energy sources.

Research Question/Problem/
Need

How can the environmental impact of training large language models be gauged
throughout the entirety of the training lifecycle?
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Important Figures None

VOCAB: (w/definition) LLMs (Large Language Models): A type of artificial intelligence that has been
trained on vast amounts of data to understand and generate text

CodeCarbon: A software tool used for tracking the carbon dioxide emissions
produced by running Al models in real-time

Cited references to follow up on | None

Follow up Questions How can Al developers and researchers effectively reduce the carbon footprint of
large language models during their entire life cycle, considering factors like
training, hardware manufacturing, and ongoing operation?

What methodologies and standards can be established to measure and report
carbon emissions accurately for Al models, ensuring transparency and
comparability across different Al projects and organizations?

In the context of Al research, what strategies and practices can be adopted to
fine-tune existing models for specific tasks without significantly increasing their
energy consumption and environmental impact, and how do these compare to
developing larger models from scratch?

Generated with ChatGPT
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Notes (written with assistance from ChatGPT)

e Hugging Face, an Al startup, aims to provide a more precise calculation of the carbon footprint of
large language models (LLMs) by considering the emissions throughout an LLM's entire life cycle

e This approach involves estimating emissions during training and the ongoing usage of LLMs,
which could provide more realistic data about the environmental impact of Al products

® Hugging Face tested its approach on its own large language model, BLOOM, and found that its
carbon emissions doubled when accounting for the manufacturing of computer equipment,
computing infrastructure, and ongoing energy use

e The results vary depending on where the LLM is trained, with models in regions powered by
nuclear energy being less polluting than those in areas with fossil fuel-reliant energy grids

o Comparatively, models like GPT-3 and Meta's OPT were estimated to emit significantly higher
levels of carbon emissions

e Hugging Face's research sets a new standard for measuring the carbon footprint of Al models
and emphasizes the importance of understanding the environmental impact of large language
models

e The findings encourage companies and developers to make choices that limit the carbon
footprint of Al systems, possibly by focusing on more efficient ways of conducting Al research
and fine-tuning existing models

e The impacts of Al on the environment are not inevitable, and the choices made about Al
algorithms and their usage play a crucial role in addressing carbon emissions
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Article #6 Notes: The Secret Water Footprint of Al

Technology

Source Title

The Secret Water Footprint of Al Technology

Source citation (APA Format)

Syed, N. (2023, April 15). The secret water footprint of Al technology. The
Markup.
https://themarkup.org/hello-world/2023/04/15/the-secret-water-footpr

int-of-ai-technology

Original URL

https://themarkup.org/hello-world/2023/04/15/the-secret-water-footprint-of-ai-t
echnology

Source type

News Article

Keywords Artificial Intelligence, Water Footprint, Environment, Sustainability, Dynamic
Scheduling
#Tags #ai, #sustainability, #greenai, #water

Summary of key points + notes
(include methodology)

This article explores Al models' water footprint or consumption and the
environmental ramifications. A study conducted at the University of Texas at
Arlington discovered that training GPT-3, a vast large language model, in
Microsoft's modern data centers in the United States directly consumed 700,000
liters of freshwater, and other data centers in different geographical locations
might've consumed up to triple that amount. The article also dove into other
concerns of water efficiency, notably the fact that high water efficiency doesn't
necessarily correlate to high carbon efficiency, and they can often conflict, showing
that many factors must be considered when developing truly sustainable Al.
Furthermore, the cooling of data centers can have a significant environmental
impact on their locality. The study showed that the timing and location of large Al
model training significantly impact the water footprint due to the spatial-temporal
diversity of water usage effectiveness, and dynamic scheduling can reduce water
consumption. Transparency regarding the water footprints of Al models was
emphasized as it would facilitate measurement, benchmarking, and improvement,
allowing developers to maximize efficiency with dynamic scheduling and helping
users better know their water footprint. This article is an excellent foundation for
research on measuring the environmental impact of Al as a whole across various
geo-temporal circumstances for developing optimization strategies.
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Research Question/Problem/
Need

What is the water footprint of training Al and how can it be mitigated?

Important Figures

700,000

Number of liters of clean
freshwater to train GPT-3
In Microsoft’s U.S. data
centers, not including
electricity generation

The immense amount of water needed to train GPT-3, a popular language model

VOCAB: (w/definition)

Water footprint: An environmental indicator that measures the volume of fresh
water needed to produce something

Data center: A data center is a physical location that stores computing machines
and their related hardware equipment

Spatial-temporal diversity: The variation or differences in both space (spatial) and
time (temporal) aspects within the context of training Al models

Cited references to follow up on

None

Follow up Questions

How can transparency regarding the water footprint of Al models lead to more
sustainable practices, and what steps can Al developers take to reduce water
consumption while maintaining performance?

What are the potential challenges and trade-offs between reducing the carbon
footprint and conserving water in the development and operation of Al
technologies?

Given the spatial-temporal variations in water efficiency, what computational
techniques or algorithms can be employed to dynamically schedule Al workloads

and tasks to minimize the water footprint while maintaining performance metrics?

Generated with ChatGPT
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Notes (written with assistance from ChatGPT)

e Research by the University of California, Riverside focuses on the water footprint of Al
technology, which has received less attention compared to its carbon footprint

e Large-scale Al models, like GPT-3, are found to be significant water consumers, with Microsoft's
GPT-3 training using 700,000 liters of clean freshwater in US data centers, not including
electricity generation

e For Al inference, a ChatGPT conversation consumes approximately 500 ml of water for a short
interaction, varying with usage time and location

e The unique spatial-temporal diversities of Al models' runtime water efficiency indicate potential
reductions in water consumption by scheduling Al workloads at specific times and locations
This study highlights the importance of incorporating water considerations into Al development
Water-conscious users may opt for water-efficient Al model usage times and data centers
Transparency is proposed as a next step to measure, benchmark, and improve Al models' water
footprint, helping developers schedule training and inference efficiently and inform users of their
water consumption

e Transparency can lead to better water management and efficient use of Al models, similar to
Apple's clean energy scheduling for charging devices
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Article #7 Notes: Energy and Policy Considerations for
Deep Learning in NLP

Source Title

Energy and Policy Considerations for Deep Learning in NLP

Source citation (APA Format)

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy
considerations for deep learning in NLP (arXiv:1906.02243). arXiv.

https://arxiv.org/abs/1906.02243

Original URL

https://arxiv.org/abs/1906.02243

Source type

Journal Article

Keywords Machine Learning, Deep Learning, NLP, Sustainability, Green Al, Cost Analysis,
Hyperparameter Optimization
#Tags #ai, #neuralnetworks, #greensoftware, #nlpalgorithms

Summary of key points + notes
(include methodology)

While advances in techniques and hardware for training deep neural networks
have led to significant improvements in accuracy across NLP tasks, training a
state-of-the-art model on abundant amounts of data can have a significant
financial and environmental cost. This paper aims to quantify and approximate the
said costs based on data from recently trained NLP neural network models. To
characterize the dollar cost and carbon emissions, the researchers estimated the
kilowatts of energy required to train various popular NLP models, including the
Transformer, ELMo, BERT, and GPT-2, and converted them to approximate carbon
emissions and electricity costs. Additionally, they also estimated the resources
required to transfer an existing model to a new task or develop new models by
performing a case study on the computational resources required to tune LISA, a
state-of-the-art NLP model. They stress the importance of researchers disclosing
training durations and how models respond to hyperparameter adjustments. This
disclosure aids in making model comparisons and gauging their compatibility with
available resources. Additionally, the article advocates for providing academic
researchers with fair access to computing resources while also urging the
advancement of NLP research through the creation of more energy-efficient
algorithms and hardware.

Research Question/Problem/
Need

What are the environmental and financial costs of training NLP models and how
can they be mitigated?
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Important Figures

Consumption COqe (Ihs)
Adr travel, 1 passenger, NY ++5F 1984
Human life, avg, 1 vear 11,023
American life, avg, | year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPL)

NLP pipeline (parsing, SRL) 30
wi tuning & experimentation 78,468
Transformer (big) 192
wi neural architecture search 626,155

Table 1: Estimated COy emissions from raining com-
mon NLP models, compared to familiar consumption. !

The estimated carbon emissions of common NLP model training compared to other

tasks such as a flight or car usage over a lifetime

Consumer Renew. Gas Coal Nuc.
“China 2% 3% 65% 4%
Germany 0% TH  38%  13%
United States 17% 35% 27T% 19%
Amazon-AWS 17% 24% 30%  26%
Google 6% 14%  15%  10%
Microsoft 325 23% 3% 10%

Percent distribution of energy sources among cloud compute providers

Model Hardware  Power (W) Hours kWh-PUE COse  Cloud compute cost
“Transformerya.,. P100XE 1415.78 12 27 26 S541-%140

Transformerg;, ~ P100x8 1515.43 84 201 192 $2R9-%0981

ELMo P100x3 517.66 336 275 262 $433-51472

BERT,... V100x64 12,041.51 79 1507 1438  $3751-%12.571

BERT,,.. TPUv2x16 — 96 — —  $2074-%60912

NAS P100x& 151543 274,120 656,347 626,155  £042973-%3.201,722

NAS TPUv2x1 — 32623 — —  $44.055-5146,848

GPT-2 TPUv3x32 — 168 — — 512902543 008

Estimated cost of training models in terms of CO2 emissions (Ibs) and cloud

compute cost (USD)

Estimated cost (USD)
Models Hours Cloud compute  Electricity
1 120 $52-5175 %5
24 2880 F1238-%4205 5118
4789 230042 5103k-$350k 50870

Estimated cost in terms of cloud compute and electricity for training: (1) a single

model (2) a single tune and (3) all models trained during R&D

VOCAB: (w/definition)

NLP (Natural Language Processing): A machine learning technology that gives
computers the ability the comprehend, interpret, and manipulate linguistic data
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Neural architecture search: The automated process of finding the optimal neural
network architecture for a specific machine learning task

Hyperparameters: Parameters whose values control the learning process and
determine the values of model

Power Usage Effectiveness: A metric used to determine the energy efficiency of a
data center

BLEU Score: A metric for automatically evaluating machine-translated text. The
BLEU score is a number between zero and one that measures the similarity of the
machine-translated text to a set of high-quality reference translations.

Gigaflops: A measure of computing performance, specifically one billion
floating-point operations per second. It is used to quantify the computational
power required for training and running neural network models.

Cited references to follow up on

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong.
2016. Evaluating the energy efficiency of deep con-
volutional neural networks on cpus and gpus. 2016
IEEE International Conferences on Big Data and
Cloud Computing (BDCloud), Social Computing
and Networking (SocialCom), Sustainable Comput-
ing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), pages 477-484.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281-305.

Follow up Questions

What is meant by “training off-the-shelf” models for one day?

What are the potential advancements in hardware and software technologies that
could lead to more sustainable and accessible NLP research?

How can hyperparameter tuning, alternative architectures, and hardware
optimization mitigate the environmental costs of NLP training?

What does the availability of renewable energy sources for data centers look like
across different geographic locations?

How can this methodology be adjusted to account for the entirety of the training
lifecycle?

What are carbon emissions like for other types of Al models?

Introduction




Priyadarshan 29

e Developments in the capabilities of natural language processing models have been significant,
but have also increased model sizes and computational requirements
e Research and experimentation with hyperparameters exacerbates the environmental and
financial costs of training
e As highlighted in the graph, training newer models, such as the Transformer, takes much more
energy than previous NLP models
o Additionally, the experimentation aspects and neural architecture search, played an
extreme role on the total carbon footprint
o Training the Transformer with neural architecture search emitted 5 times as much
carbon as the use of a car in a whole lifetime
e Many NLP models now require specialized hardware to train, and there’s a significant
environmental cost associated with leaving it running for hours or weeks at a time
e® Generally, the energy used to train is non-renewable because not all locations have renewable
energy, and even if they did, most of it is not being allocated to model training
e The researchers aim to estimate the kilowatts of energy needed to train NLP models and the
resources required to tune existing models
e The conclusions outlined are that:
o Time to retrain and sensitivity to hyperparameters should be reported for NLP machine
learning models
Academic researchers need equitable access to computational resources
Researchers should prioritize developing efficient models and hardware
Methods
e To measure the energy required for training, they trained off-the-shelf models using the default
settings and sample GPU and CPU power consumption during training
® They estimated the total time needed to train to completion using training times and hardware
from the original papers
e They calculated the total power required using the CPU, DRAM, and GPU power consumption as

well as the PUE

From there, they converted the power to estimated carbon emissions

2.1 Models
o The models analyzed include the Transformer, ELMo, BERT, and GPT-2
o Details on the specifics of each model were covered

Related Work

The author mentioned related work for models in computer vision, such as convolutional neural
networks for classification
o This work measures average power draw required during inference on GPUs as a
function of the batch size
o It doesn’t analyze recurrent or self-attention models, however
During the time of writing, there wasn’t an analysis of the computation for R&D and
hyperparamter tuning in NLP
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Experimental Results

Model Hardware  Power (W) Hours kWh-PUE COze  Cloud compute cost
“Transformerg,.. PIDOXS 1415.78 12 27 26 $41-5140
Transformerg;,  P100x8 1515.43 84 201 192 $2R0_5081
ELMo P100x3 517.66 336 275 262 $433-31472
BERT,,.. V10064 12,041.51 T 1507 1438 $3751-%12.5T1
BERT,,., TPUv2x16 — 96 - — $2074-%6912
NAS P100x8 151543 274,120 656,347 626,155  $042973-83,201,722
NAS TPUv2x1 — 32623 — — 5440555146848
GPT-2 TPUv3x32 — 168 — — 512902343008
e TPUs were more cost efficient than GPUs on workloads that make sense for the
hardware
e NAS cost $150,000 in on-demand compute time non-trivial carbon emissions for
marginal improvement in its BLEU score
e 4.2 Cost of development: Case study
o For evaluating R&D costs, the researchers looked into the logs of training
required to develop LISA, a multi-task NLP model
o LISA served as a representative NLP pipeline
o The results indicated that while training a new model isn’t too expensive
financially or environmentally, tuning and developing one for a new dataset can
become extremely expensive
Conclusions

e Authors should report training time and sensitivity to hyperparameters

o

It would be beneficial to compare different model architectures and perform
cost-benefit analysis
Authors of models that are going to be fine-tuned for new tasks later on should report
training time and the computational resources required
For this to happen, they need
m A standard, hardware-independent measurement of training time, such as
gigaflops required to convergence
m A standard measurement of model sensitivity to data and hyperparameters,
such as variance with respect to hyperparameters searched

e Academic researchers need equitable access to computation resources

O
O

The costs associated with computational requirements are not accessible to everyone
The models trained in this paper required industry access to large-scale compute, but
limiting NLP research to industry labs hurts it

The cost of building in-house resources causes people to rely on cloud compute services,
such as AWS, Azure, and GCP

It is often more cost effective for researchers to pool resources and build shared
compute centers

A government-funded academic compute cloud would provide equitable access to all
researchers

e Researchers should prioritize computationally efficient hardware and algorithms

o

Promote research for more energy-efficient algorithms and hardware in NLP.



Priyadarshan 31

Encourage NLP software developers to prioritize efficient models
Advocate the use of efficient hyperparameter tuning techniques like random or Bayesian

search
Integrate these techniques into familiar NLP workflows for reduced energy consumption
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Article #8 Notes: Training Compute-Optimal Large
Language Models

Source Title

Training Compute-Optimal Large Language Models

Source citation (APA Format)

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,
Casas, D. de L., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland,
E., Millican, K., Driessche, G. van den, Damoc, B., Guy, A., Osindero, S.,
Simonyan, K., Elsen, E., ... Sifre, L. (2022). Training compute-optimal
large language models (arXiv:2203.15556). arXiv.

https://arxiv.org/abs/2203.15556

Original URL

https://arxiv.org/abs/2203.15556

Source type

Journal Article

Keywords Artificial Intelligence, Generative Al, Large Language Models, Transformers, Model
Scaling, DeepMind, Chinchilla, Gopher
#Tags #ai, #languagemodels, #generativeai, #deepmind

Summary of key points + notes
(include methodology)

Large language models have grown significantly in size, but often remain
undertrained due to improper scaling. This paper explored how optimal model
performance can be achieved under a given compute budget and the
corresponding allocation of parameters and tokens. It explored how model
performance can be scaled efficiently in lieu of solely increasing model size while
keeping the dataset constant. A significant benefit of training compute-optimal
models is reduced compute costs for fine-tuning and inference. The researchers
trained over 400 language models with varying sizes and tokens and identified the
importance of scaling the number of tokens with parameters. From there, they
tested their hypothesis by training and benchmarking Chinchilla, a
compute-optimal LLM, with the same compute budget as Gopher, a 280-billion
parameter model trained by Deepmind, with a quarter of the parameters and
significantly more tokens. The article starts by and continues citing the results of
research by Jared Kaplan and others that showed a power law relationship
between language models and model size, dataset size, compute amounts for
training, and other architectural details. From there, it explores three different
approaches to analyzing the relationship between model size and the number of
tokens under a given compute budget. It tries to fit an empirical estimator using
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training curves from various models to determine optimal scaling for maximizing
performance and minimizing loss. Using this empirical estimator, they trained and
extensively evaluated Chinchilla.

Research Question/Problem/
Need

Given a fixed FLOPs budget, how should one trade-off model size and the number
of training tokens?

Important Figures

1T
—— Approach 1
100B op
—— Approach 2
" —— Approach 3
S 108 === Kaplan et al (2020)
]
E Y& Chinchilla (70B)
E 1 os ¥ Gopher (280B)
% GPT-3(175B)
¥ Megatron-Turing NLG (5308)
100M
10M = - e
Oy 10" 1071 1072 10%
FLOPs

Overlaid projections from the approaches presented in the paper and Kaplan’s
research that demonstrate how other LLMs are much larger than they need to be

Model Size (# Parameters) Training Tokens

137 Billion 168 Billion

LaMDA (Thoppilan et al., 2022)

GPT-3 (Brown et al., 2020)

Jurassic (Lieber et al., 2021)

Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

175 Billion
178 Billion
280 Billion
530 Billion

300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion

A table illustrating the size and number of tokens of various other LLMs and
Chinchilla, highlighting the disparity in training tokens and how other models don’t
have enough

Training loss
MWW s mo e

Paramet
%
okens

The left graph illustrates all the different runs of training models ranging from 70M
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to 10B parameters. The learning curves, especially the points with minimum loss
per FLOP, were used to find linear fits for approximating the optimal size (center)
and number of tokens (right) for a given FLOP budget.
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The graph on the left shows the relationship between different numbers of tokens
and model size with a constant amount of final FLOPs. There are clear valleys in

loss, showing that there is an optimal model to train. The optimal model sizes and
number of tokens are projected using these valleys in the graphs in the center and

right.
IsoLoss contours
100B
40B
1
1
1
10B 1
@ 1
N “ ) +
g ) | » 1
S 1B P iF !'c i
= P" 7 NG
4" !Fi‘\ NN
55 \R
2 h* @ ' —— Efficient frontier =
100M & e Empirical data =
IsoFLOPs slice =
108 10® 10%° 102t 1022 102 Gopher

budget
Training FLOPs

5.00

2.00

IsoFLOPs slices

°
|
y
4
‘/ 3
@ LT W
7’ v
Y
o Vi
0 00000 0 Oép Al iy
« %%c000® =TI (1T
X PRIl P
8y Vogogeat® 117 T
\*‘\‘: r} 7 T
Jsse e Lt
NGRS 8 ea-" -
\‘."\-‘.':_ 2-8-g'o _/’
el
S e
O
~
100M 1B 10B 40B
Model size

Train. FLOPs
6e+18
le+19

—=- 3e+19

-=- 6e+19

- le+20

- 3e+20

- 6e+20

- le+21

- 3e+21

- Gopher

A fit of the parametric modeling of the loss, display contour (left), and isoFLOP

slices (right).




Priyadarshan 35

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Estimated optimal training FLOPs and training tokens for various model sizes.

Random 25.0%
Average human rater 34.5%
GPT-3 5-shot 43.9%
Gopher 5-shot 60.0%
Chinchilla 5-shot 67.6%
Average human expert performance 89.8%
June 2022 Forecast 57.1%
June 2023 Forecast 63.4%

Massive Multitask Language Understanding (MMLU). The average 5-shot
accuracy over 57 tasks with model and human accuracy comparisons taken from
Hendrycks et al. (2020).
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MMLU results compared to Gopher.

VOCAB: (w/definition)

Power law relationship: A functional relationship between two quantities, where a
relative change in one quantity results in a relative change in the other quantity
proportional to a power of the change, independent of the initial size of those
quantities

FLOPs: Floating Operations Per Second; a measure of computing performance

Loss: A mathematical function that quantifies the difference between predicted
and actual values in a machine learning model

Parameters: Numerical values that define the behavior of LLMs and neural
networks and contain the weights and biases

Tokens: Basic units of text that LLMs use to represent characters, words, subwords,
or other segments of text or code using numbers

Learning rate: A hyperparameter used to govern the pace at which an algorithm
updates or learns the values of a parameter estimate

Batch size: The number of samples processed before the model is updated

Cited references to follow up on

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, 1. Sutskever, and D. Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb49674
18bfb8ac142f64a-Paper.pdf.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
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Follow up Questions

How would training compute-optimal models affect carbon emissions?

Is there a quantifiable improvement in sustainability during finetuning and
inference?

Would the increase in tokens needed be an issue? (data leakage and just gathering
such immense amounts of data)

How does one scale a dataset?

How would the data be quality tested?

Does training with a larger dataset cause more carbon emissions during training?
Was there a reason Chinchilla did worse in certain tasks than Gopher?

Is a linear fit most appropriate for modeling optimal model sizes and the number
of tokens?
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Notes (written with assistance from ChatGPT)
Introduction

e Introduction of Large Language Models (LLMs) with over 500 billion parameters and impressive
performance
Acknowledgment of substantial compute and energy costs for training large language models
Emphasis on the need to accurately estimate model hyperparameters for a given compute
budget
Reference to the power law relationship between model parameters and performance
Suggestion that large models should be trained for more training tokens than previously
recommended
The common practice of training large models for approximately 300 billion tokens
The central research question: How should one balance model size and the number of training
tokens within a fixed computational budget

® The optimization goal of minimizing pre-training loss under the constraint of a fixed FLOPs
budget

e Empirical estimation of optimal allocation functions based on over 400 models with varying
parameters and training horizons

e Prediction that a more compute-optimal model, Chinchilla, should be smaller and trained on
more tokens, leading to improved performance and reduced inference cost

e Areference to the energy cost of large language models and their benefits beyond immediate
performance improvements

e Table 1 showing details of current large dense transformer models and their training tokens,
introducing Chinchilla as a smaller model trained for an extended period

Related Work

o Acknowledgment of challenges in LLMs, including computational requirements and the need for
high-quality training data
Importance of understanding scaling behavior and transfer properties in LLM development
Reference to Kaplan et al. (2020) showing a predictable relationship between model size and loss
Differences between the current analysis and Kaplan et al. (2020), including variable
hyperparameters and model sizes up to 16B parameters

e Mention of Clark et al. (2022) investigating scaling properties of Mixture of Expert language
models

e Consideration of hyperparameters beyond model size and training tokens, including learning
rate, batch size, and depth-to-width ratio

e Introduction of alternative model architectures such as conditional computation MoE models
and models with explicit retrieval mechanisms

Estimating the optimal parameter/training tokens allocations

e Three approaches to address the research question: How to balance model size and training
tokens within a fixed FLOPs budget
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Training a range of models with varying sizes and training tokens.

Assuming a power-law relationship between compute and model size

Similar predictions from all three methods, indicating that parameter count and training tokens
should increase proportionally with more compute

3.1. Approach 1: Fix model sizes and vary number of training tokens

The first approach involves varying the number of training steps for a fixed set of models ranging
from 70M to over 10B parameters

This approach helps estimate the minimum loss achieved for a given number of training FLOPs

It includes details on training steps and interpolation of training loss curves

The results are used to create mappings from FLOP count to optimal model size and number of
training tokens for any given amount of compute

Power laws are fitted to estimate these mappings, resulting in values of @ = 0.50 and b = 0.50, as
summarized in Table 2

A head-to-head comparison at 1021 FLOPs demonstrates the advantage of the predicted model
size over the approach of Kaplan et al. (2020)

3.2. Approach 2: IsoFLOP profiles

In the second approach, the model size is varied for a fixed set of 9 different training FLOP
counts, ranging from 6 x 10718 to 3 x 10721 FLOPs

The focus is on determining the final training loss for each combination of model size and FLOP
budget

Parabolas are fitted to the IsoFLOPs curves to identify the model size at which the minimum loss
occurs for each FLOP budget

Power laws are then fitted to establish the relationship between FLOPs, loss-optimal model size,
and the number of training tokens

The resulting exponents a and b are summarized in Table 2

3.3. Approach 3: Fitting a parametric loss function

A parametric function is introduced to model the final losses from experiments in Approach 1
and 2, aiming to capture the relationship between model parameter count and the number of
seen tokens.

The parametric function comprises three terms: the loss for an ideal generative process, the
performance of a perfectly trained transformer, and the effect of not training to convergence
Parameters of the function (A, B, E, «, ) are estimated by minimizing the Huber loss between
predicted and observed log loss using the L-BFGS algorithm
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The choice of Huber loss ensures robustness against outliers in the data

Efficient computational frontiers are constructed by minimizing the parametric loss while
constraining FLOPs to scale with model size and data

Figure 4 displays contour plots and isoFLOP slices that illustrate the fitted parametric loss
function. It also includes the efficient computational frontier represented by a blue line in log-log
space

From this analysis, specific values for parameters a and b in the power-law form of the efficient
computational frontier are derived, with a = 0.46 and b = 0.54, as summarized in Table 2

3.4. Optimal model scaling

e The three approaches used in the study, despite employing different fitting methodologies and
models, consistently suggest that as the computational budget increases, model size and the
amount of training data should be scaled in roughly equal proportions

® Approach 1 and Approach 2 produce very similar predictions for optimal model sizes, while
Approach 3 predicts even smaller models to be optimal at larger compute budgets

e |t's noted that points with lower training FLOPs have larger residuals, which can be attributed to
the empirically observed negative curvature in the optimal scaling frontier

e Table 3 presents estimated numbers of FLOPs and tokens required to train compute-optimal
models of various sizes, highlighting that many current large language models are considerably
over-sized given their compute budgets

e For example, a 175 billion parameter model should be trained with approximately 4.41 x 10724
FLOPs and over 4.2 trillion tokens, and a 280 billion parameter model is optimal with
approximately 10725 FLOPs and 6.8 trillion tokens

e The analysis underscores the importance of dataset collection in addition to engineering
improvements to achieve optimal model performance

e Further analyses on additional datasets (C4 and GitHub code) confirm the conclusion that model
size and the number of training tokens should be scaled proportionally

Chinchilla

e Based on the analysis, the optimal model size for the Gopher compute budget falls between 40
and 70 billion parameters

e To test this hypothesis, the study trained a model with 70 billion parameters, referred to as
Chinchilla, on 1.4 trillion tokens for efficiency reasons

e Chinchilla is compared to Gopher and other large language models, showing that Chinchilla's

smaller size leads to reduced memory footprint and inference cost while maintaining similar
performance
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Model and training details

e Chinchilla is trained with a specific set of hyperparameters (detailed in Table 4) and shares the
same model architecture and training setup as Gopher with some exceptions

e Chinchilla is trained on the MassiveText dataset but with a slightly different subset distribution to
accommodate the increased number of training tokens

e The AdamW optimizer is used for Chinchilla instead of Adam, resulting in improved language
modeling loss and downstream task performance

e Chinchilla employs a modified SentencePiece tokenizer without NFKC normalization, which helps
improve the representation of certain content like mathematics and chemistry

o While the forward and backward passes are computed in bfloat16, Chinchilla stores a float32
copy of weights in the distributed optimizer state
All models, including Chinchilla, are trained on TPUv3/TPUv4 using JAX and Haiku.
Chinchilla's evaluation includes a range of language modeling and downstream tasks (see Table
5) for comparison with previous work

Results

e Performance on The Pile: Chinchilla consistently outperforms Gopher across various evaluation
sets in The Pile dataset, as indicated by bits-per-byte (bpb) improvements

e Language Modeling Benchmarks: Chinchilla achieves a lower perplexity (7.16) on Wikitext103
compared to Gopher (7.75), although it should be noted that Chinchilla is trained on significantly
more data, raising concerns of train/test set leakage

e Massive Multitask Language Understanding (MMLU): Chinchilla significantly outperforms
Gopher on the MMLU benchmark, with an average 5-shot accuracy of 67.6%, representing a
7.6% improvement over Gopher. Chinchilla also surpasses an expert forecast for June 2023
accuracy

o Task-Specific Performance: Chinchilla generally improves performance on a wide range of tasks
compared to Gopher. However, it falls short on a few tasks such as college_mathematics,
econometrics, moral_scenarios, and formal_logic

e Word Prediction and Reading Comprehension: Chinchilla achieves higher accuracy on the
LAMBADA word prediction dataset (77.4%) compared to Gopher (74.5%). It also significantly
improves performance on RACE-h and RACE-m reading comprehension tasks

e BIG-bench Tasks: Chinchilla outperforms Gopher on the majority of BIG-bench tasks, resulting in
an average performance improvement of 10.7%

e Common Sense Benchmarks: Chinchilla excels on common sense benchmarks, outperforming
both Gopher and GPT-3 on most tasks

e Closed-Book Question Answering: Chinchilla achieves new closed-book state-of-the-art (SOTA)
accuracies on the Natural Questions dataset, surpassing Gopher's performance by a substantial
margin. It also outperforms GPT-3 on TriviaQA
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e Risks and Ethical Concerns: Chinchilla, like Gopher, carries risks such as biases, generation of
potentially offensive content, and privacy concerns. These concerns remain challenging to
address comprehensively

e Limitations: Chinchilla underperforms on certain tasks, and there are concerns about data
leakage due to its larger training dataset. Additionally, the study emphasizes the importance of
mitigating ethical risks associated with large language models

Discussion & Conclusion

e Thetrend in large language model training involves increasing model size without a proportional
increase in training tokens

e This trend may lead to underperformance compared to what could be achieved with the same
compute budget

e Three predictive approaches are proposed based on over 400 training runs, all indicating that
Gopher is oversized, and smaller models trained on more data would perform better

e Chinchilla, a 70B parameter model, was created and outperformed Gopher and larger models in
various evaluation tasks

e Limitations include the absence of intermediate-scale training runs, assumptions about the
relationship between compute budget, model size, and training tokens, and training runs with
less than one epoch of data
There is a need for an increased focus on scaling datasets with a strong emphasis on quality
Ethical and privacy concerns arise when training on trillions of tokens, necessitating dataset
introspection and research into the interaction between model performance and toxicity

o The trade-off between model size and data amount is likely applicable to other modalities
beyond language models

e The proposed methods for choosing optimal model size and training steps are considered
applicable and reproducible in various settings
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The article presents research that advances large language models through
efficient pre-training and scaling. It covers the training of Cerebras-GPT, a family of
open source compute-optimal language models scaled from 111M to 13B
parameters, trained on the Eleuther Pile dataset following scaling laws from
DeepMind’s Chinchilla. It also explores how Maximal Update Parameterization (uP)
can improve model scaling as well as Andromeda, the specialized supercomputer
used by Cerebras to train the model. The paper sheds light on the predictable
power-law scaling of these models and provides detailed instructions for
reproducing the results. The architecture of the Cerebras Wafer-Scale Cluster,
designed for large-scale parallel deep learning training, is described, with a
particular focus on the Cerebras Stack and the Weight Streaming mode, which
eliminates the need for complex data and model parallelism, enhancing
performance at small per-system batch sizes. After training the model, it
showcased Cerebras-GPT’s exceptional efficiency in both pre-training and
downstream tasks in comparison to other models. Finally, the researchers also
acknowledge the limitations of the model and identified research directions, such
as investigating position embeddings like RoPE and ALiBi, activation functions such
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as SwiGLU, and training paradigms like denoising pre-training objectives,
instruction fine-tuning, and dataset cleaning.

Research Question/Problem/
Need

How can scaling techniques be applied to train a compute-optimal large language
model?

Important Figures
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Pile test set loss given pre-training FLOPs s for Cerebras-GPT, GPT-J, GPT-NeoX, and
Pythia. Cerebras-GPT requires less training FLOPs (significantly less towards the left
of the graph) to achieve similar losses to the other models).

Table 1: Cerebras-GPT model architecture and training algorithm details

Model Dimensions Total Batch Size Learning LR Decay
Parameters | diodel  Mlayers  Ghead din tokens (tokens) Rate (LR) Type
111M 768 10 64 3072 2.2B 246K 6.0E-04 Linear
256M 1088 14 64 4352 5.1B 541K 6.0E-04 Linear
590M 1536 18 128 6144 11.8B 541K 2.0E-04 Linear
1.3B 2048 24 128 8192 | 26.3B 1.08M 2.0E-04 Cosine
2.7B 2560 32 80 10240 | 53.0B 1.08M 2.0E-04 Cosine
6.7B 4096 32 128 16384 | 133.2B 2.13M 1.2E-04 Linear
13B 5120 40 128 20480 | 257.1B  1.47TM—2.21M 1.2E-04 Cosine
111M + pP 768 10 64 3072 2.2B 246K 6.0E-03 Linear
256M + pP 1088 14 64 4352 5.1B 541K 6.0E-03 Linear
590M + pP 1536 18 128 6144 11.8B 541K 6.0E-03 Linear
1.3B + pP 2048 24 128 8192 | 26.3B 1.08M 6.0E-03 Linear
2.7B + pP 2560 32 80 10240 | 53.0B 1.08M 6.0E-03 Linear

Cerebras-GPT model architecture and training algorithm details
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Again, as highlighted by the graph on the left, Cerebras-GPT requires significantly
less training FLOPs to achieve similar loss on the Pile dataset as other models.
Additionally, Figure 3 shows that for optimal pre-training on the Pile, using
approximately 20 tokens per parameter is consistent with Chinchilla results on the
MassiveText dataset, as it indicates a predictable percentage loss increase
compared to the Cerebras-GPT frontier.
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Figure 4 illustrates that Cerebras-GPT models establish the compute-optimal
frontier for downstream tasks, with the 13B model exhibiting the best average
results for models of comparable size, and it also demonstrates that downstream
accuracy is predictable by model size for models trained with fixed
tokens-per-parameter, implying competitiveness with GPT-NeoX 20B if scaled
accordingly.
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Table 2: Zero-shot downstream task results for large publicly-available models. Full results in Table

Pre-training () Downstream task accuracy (1)
y Down-
Training  Pile test | Hella- Wino-  Lam- . . Open-

Model FL()P:j xent Swag PIQA Grande bada ARC-e ARC-c B(])quA ht:::m

orPT 2.7B 6.1e21 - 0.458 0.738 0.610 0.637 0.609 0.268 0.250 0.510
Pythia 2.8B G.1e21 1.720 0.451 0.737 0.612 0.654 0.629 0.288 0.220 0.513
Cerebras-GPT  2.7B | 1.1e21 1.834 0.386 0.701 0.559 0.567 0.57 0.246 0.206 0.462
GPT-J1 6.18 1.7e22 1.613 0.518 0.752 0.640 0.683 0.670 0.340 0.288 0.556
OPT 6.7B 1.4e22 - 0.505 0.763 0.654 0.677 0.656 0.307 0.276 0.548
Pythia 6.98 1.626 0.482  0.746  0.611 0.679 0.669 0.323  0.270 0.540
Cerebras-GPT  6.7B 1.704 0.447 0.739 0.602 0.636 0.643 0.282 0.238 0.512
orPT 13B - 0.524 0.759 0.651 0.687 0.671 0.329 0.270 0.556
Pythia 12B 1.582 0.505 0.761 0.645 0.705 0.700 0.336 0.284 0.562

Cerebras-GPT  13B
GPT-NeoX 20B

1.572 0.513  0.766 0.646 0.696 0.714 0.367 0.286 0.570
1.519 0.535 0.779 0.661 0.720 0.723 0.380 0.290 0.584

Poths 238 1724 | 0466 0743 0612 0672 0662 0200 0.232  0.526
P‘.‘l X “l“‘ . 6.98 1644 | 0488 0.756  0.636  0.695 0667 0320 0252 0.545
fe-cedup 12B 1.601 0516 0761 0.639 0712 0.697 0341 0280  0.564

Table 2 presents detailed comparisons of large models, highlighting the best
performers for various tasks and model sizes, including Pythia models trained on a
deduplicated Pile. Despite challenges in pre-training, Pythia models generally show
improved downstream task accuracy (1.8% on average), suggesting the potential
benefits of deduplication.
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Figure 5 demonstrates that uP models exhibit more predictable scaling with an
average improvement of 0.43% in Pile test loss compared to Cerebras-GPT SP
models, along with substantially lower variance (0.04% vs. 0.66%), highlighting the
model’s robustness and reliability
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Table 3: Pile pre-training test loss and zero-shot downstream task results for pP and SP models.

Pre-train Downstream task accuracy (1)
. - Down-
Model Pile test | Hella- 0y Wino- o ada ARC-e ARC-c OP™  ream
xent () Swag Grande BookQA
Average
Cerebras-GPT 111M 2.608 0.268 0.594 0.488 0.194 0.380 0.166 0.118 0.315
Cerebras-GPT + pP  111M 2,588 0.268 0.598 0.519 0.204 0.390 0.176 0.124 0.325
Cerebras-GPT 256M 2.349 0.274 0.613 0.511 0.293 0.410 0.170 0.158 0.347
Cerebras-GPT + pP  256M 2.359 0.274 0.617 0.505 0.287 0.427 0.194 0.156 0.351
Cerebras-GPT 590M 2,181 0.291 0.627 0.498 0.366 0.464 0.190 0.158 0.370
Cerebras-GPT + pP 590M 2.155 0.295 0.644 0.517 0.362 0.470 0.194 0.172 0.379
Cerebras-GPT 1.3B 1.997 0.325 0.664 0.521 0.462 0.508 0.224 0.166 0.410
Cerebras-GPT + pP 1.3B 1.984 0.334 0.682 0.512 0.471 0.515 0.223 0.196 0.419
Cerebras-GPT 2.7B 1.834 0.386 0.701 0.559 0.567 0.571 0.246 0.206 0.462
Cerebras-GPT + pP 2.7B 1.846 0.388 0.697 0.557 0.558 0.569 0.241 0.218 0.461

Table 3 demonstrates that uP models consistently enhance downstream
performance, with an average 1.7% relative improvement in tasks compared to SP
models, except for a specific 2.7B parameter model, where SP models unexpectedly
performed well, while the 2.7B + uP model remained competitive
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Figure 6 highlights that most Cerebras-GPT models outperform Pythia models in
terms of Pile test loss per compute FLOP until a threshold of about 200B inference
tokens, suggesting a trade-off where models trained with token counts between
Cerebras-GPT and Pythia frontiers may offer better loss for the same compute
budget
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Logical architecture of the Cerebras Wafer-Scale Cluster
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Table 4: Andromeda weak scaling tests show linear performance scaling up to 16 CS-2s

Sequence Per (CS-2 Performance relative to 1 CS-2
Model Length  DBatch Size | 2 05-28 4 (C5-25 8 (CS5-28 16 CS-2s
GPT-3 XL 1.3B 2,048 121 1.99x 3.94x T.87x 15.50x
GPT-3 XL 1.3B8 10,000 33 1.99x 3.97x T7.95x 15.87x
GPT-3 2.7 2,048 121 1.98x 3.91x 7.86x 15.62x
GPT-3 6.78 2,048 85 1.99x 3.80x T7.91x 15.45x
GPT-3 20B 2,048 a0 1.92x 3.75x T.93x 15.32x
GPT-J 6B 2,048 65 1.97x 3.65x T.69x 14.52x
GPT-NeoX 20B 2,048 a0 1.98x 3.92x 3.05x 15.45x

Table 4 demonstrates that Andromeda achieves remarkable linear scaling, within
9%, for all model sizes and CS-2 system counts when applying a weak scaling
approach, where batch size increases proportionally with the number of systems,
as training steps progress, indicating impressive performance and scalability

Table 5: Strong scaling performance for batch sizes used to train larger models. To get to the user’s full
batch size, CSoft uses data parallelism across systems and gradient accumulation.

Performance relative to 1 CS-2 (per CS-2 batch)
Model | Batch Size 1 CSs-2 2 CS-2s 1 CS-2s 8 CS-2s
1L.3B 528 LOx (132) 1.99x (132) 3.97x (132) 7.10x (66)
2.7B H28 1.0x (88) 1.99x (88) 3.77x (66)  7.43x (66)
6.78 1,040 1.0x (65) 1.99x (65) 3.97x (65)  7.90x (65)
13B 1,040 1.0x (65) 1.99x (65) 3.95x (65)  7.84x (65)

Table 5 highlights that Andromeda maintains high utilization even during strong
scaling of batch sizes, where fixed batch sizes are distributed across different
numbers of Andromeda systems. The results indicate consistent performance
scalability for batch sizes commonly used with these models, demonstrating the
system's efficient utilization and adaptability to varying batch sizes

Table 6: Andromeda FLOP/s utilization relative to 1 CS-2 training the 111M parameter model. Here,

larger values mean higher utilization.

Number Per CS-2 Relative
Model | Batch Size of CS-2s  Batch Size  Utilization
111M 120 1 120 1.00
256M 264 1 264 1.00
590M 264 1 264 0.92
1.3B 528 4 132 0.96
2.78B 528 4 132 0.96
6.7 1040 16 65 1.05
138 1080 12 45 1.02

Table 6 shows consistent FLOP/s utilization across various model sizes, with
performance deviating by less than 8%, highlighting Andromeda's robust scalability
and consistent performance across different setups

VOCAB: (w/definition)

Autoregressive Transformer Decoder Model: A neural architecture commonly used
for sequential data generation tasks, such as language generation and machine
translation, where it predicts tokens one at a time based on previously generated
tokens, making it well-suited for tasks involving ordered data.

Deduplication: A method of elimination duplicate copies of repeating data
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Standard Parameterization: A commonly used initialization approach where model
weights are initialized with specific standard deviations, promoting stability and
predictable behavior during training and inference. It serves as a foundational
configuration for large models before further optimization or fine-tuning.

Maximal Update Parameterization: An initialization and hyperparameter tuning
approach for large language models that enhances training stability, control over
initialization, layer-wise learning rates, and activation magnitudes, ultimately
improving the transferability of training hyperparameters from smaller to larger
scale models. It addresses challenges faced by Standard Parameterization (SP)
when scaling large models, resulting in more stable and predictable training
behavior.

Pre-training: The initial phase of model training in which a neural network is
exposed to a massive amount of text data to learn general language understanding
and context. During this phase, the model learns to predict the next word or token
in a sentence, capturing linguistic patterns, semantics, and world knowledge,
which it can later apply to specific natural language processing tasks through
fine-tuning.

Scaling: The process of increasing the size, capacity, or complexity of a neural
network, typically by adding more data, parameters, layers, or computational
resources

Downstream Results: The model's performance and effectiveness when applied to
specific natural language processing tasks, such as text classification, language
translation, sentiment analysis, or question answering, after the initial pre-training
phase. These results assess how well the model can leverage its learned language
understanding to solve real-world language-related challenges.

Cited references to follow up on

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM: Scaling Language
Modeling with Pathways, 2022. URL https://arxiv.org/abs/2204.02311]

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Sealing Vision Transformers to
22 Billion Parameters, 2023. URL https://arxiv.org/abs/2302.05442

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling, 2020. URL https://arxiv.org/abs/2101.00027.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, E ukasz Kaiser,
and [llia Polosukhin. Attention Is All You Need. In Advances in Newral Information Processing Systems,
2017.

Follow up Questions

Is the Andromeda supercomputer and the Wafer-Scale cluster more energy
efficient than other training hardware?

What were the carbon emissions throughout the training lifecycle of
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Cerebras-GPT?
How was the Pile Dataset scaled?
Are there environmental benefits to Maximal Update Parameterization (uP)?

How specifically can organizations and government better analyze training costs
and carbon emissions as mentioned in the paper?
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Introduction
e Recent research shows advances that can vastly improve LLM quality and efficiency
o Scaling laws
o Training on more data
o Maximal Update Parameterization
® The research community has trained and released many open-source models with
state-of-the-art efficiency for their size, but they aren’t compute-efficient
® Cerebras-GPT is an effort to combine efficient scaling techniques to produce compute-optimal
pre-trained models and the corresponding scaling laws
e Overall, the contributions of this work includes the following
o Trained Cerebras-GPT compute-optimal models scaled from 111M to 13B parameters to
collect compute-efficient scaling laws
o Showed that these models provide state-of-the-art pre-training efficiency on both
pre-training and downstream objectives compared to other open models
Provided detailed instructions how to reproduce results, including the use of uP
Documented the experience training on the Andromeda Al Cluster, comprising 16
Cerebras CS-2 systems

Methodology

Model Architecture
® Cerebras-GPT models have a GPT-3-like architecture, an autoregressive transformer decoder
model
e Unlike GPT-3, Cerebras-GPT uses dense attention in all decoder blocks

Pre-training Corpus
® Models are pre-trained on the Pile dataset, which consist of data from 22 sources
® The corpora is tokenized with byte-pair encoding and the GPT-2 vocabulary
o Deduplication wasn’t performed but it could further improve results

Model Training
e Model configurations
o AdamW optimizer with (betal, beta2) = (0.9, 0.95)
Epsilon 1e-8 for small models and 1e-9 for 6.7B and 13B parameter models
Weight decay of 0.1
Gradient norm clipping of 1.0
Learning rates and batch sizes consistent with prior works

o O O O

o Linear learning rate over cosine decay more often because it tends to perform better
® Cerebras-GPT was scaled following the DeepMind Chinchilla scaling methodology
e This paper is the first to estimate the compute-efficient tokens per parameter for the Pile dataset
e The models were trained with both FP16 mixed precision and bfloat16 precision

o Bfloatl6 more stable generally due to extra exponent range
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Standard (SP) and Maximal Update Parameterization (uP)
® The main Cerebras-GPT models are configured with the common standard parameterization (SP)
approach
o Weights initialized from normal distributions with constant standard deviation or
standard deviation based on the shape of each layer
o Embedding and hidden layer weights are initialized with a truncated normal distribution
with standard deviation 0 = 0.02

o Standard deviation of 0 = 0.02/,/2 - nlaym for the last layer, following the GPT-2
initialization
e SP models tend to become unstable as they scale

Maximal Update Parameterization

® They trained a set of Cerebras-GPT models with Maximal Update Parameterization (UP) to
address the issues of SP

® P increases training stability by controlling initialization, layer-wise learning rates, and
activation magnitudes and improves the transferability of training hyperparameters from smaller
to larger scale models (UTransfer)

o A smaller set of Cerebras-GPT models was trained using uP, and the tuned hyperparameters
were transferred along the uP scaling law to a 2.7B parameter model

Results
o Cerebras-GPT models are shown to define the state-of-the-art compute-optimal Pareto frontier
on both pre-training and downstream objectives

Pre-training Results
o They scaled and pre-trained Cerebras-GPT models from 111M-13B parameters on the Pile
dataset
e Refer to Figure 2 and Figure 3 annotations

Downstream Results
® Cerebras-GPT and other publicly-available models were evaluated on a suite of seven common
sense reasoning tasks using the EleutherAl evaluation harness
® Cerebras-GPT models form the compute-optimal Pareto frontier for downstream tasks as well
e Refer to Figure 4 annotations

Maximal Update Parameterization (uP) and pTransfer
® Scaling Cerebras-GPT models with SP resulted in challenges predicting appropriate
hyperparameters and substantial variance around their common scaling law
® P models had an average of 0.43% improved Pile test loss and 1.7% higher average downstream
task accuracy compared to SP models; uP performance also scaled more predictably
e Refer to Figure 5 and Table 3 annotations
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Trading Off Training and Inference FLOPs

e The analysis has primarily focused on compute-optimal pre-training, where compute cost is tied
to model size squared, but there is growing interest in considering model inference costs,
indicating that smaller models trained on more tokens can offer substantial loss improvements
and inference cost advantages proportional to their size

e They propose a technique to identify training and inference compute-optimal frontiers that
practitioners could use to estimate how models should be pre-trained considering deployment
costs

F= fprc-t.rn.in total T Minfer tokens ° finfcrfftokcu
.2 . .
o O(}') ) + TNinfer tokens ° O(p)

F is total compute cost, f represents FLOPs costs for full pre-training and per-token infer, Ny, wokens iS the
number of expected inference tokens, and p is the parameter count

e Organizations and governments can better assess the total costs when budgeting large-scale
training runs
e Simple analysis can be applied to monetary, energy, or carbon footprint costs as well

Cerebras Stack
e All studies were run on the Cerebras Wafer-Scale Cluster named “Andromeda”, which contains
16 Cerebras CS-2 systems

Andromeda Al Supercomputer

® Andromedia is a Cerebras Wafer-Scale Cluster with 16 CS-2 systems, each containing a WSE-2
processor with 40 GB of SRAM and 7.5 PetaFLOP/s peak throughput

e Andromeda’s architecture is designed for large-scale parallel deep learning training, with a total
peak throughput of 120 PFLOP/s

® Weights and command servers manage computation by broadcasting weights and control
instructions and collecting and reducing gradients

e Activation workers handle input data and activations, reading data from disk, creating
subbatches for training, and managing activation checkpointing when required

CSoft Platform and Weight Streaming Mode

® Andromeda uses the CSoft to run deep learning applications, with models written and trained in
both TensorFlow and PyTorch

® CSoft handles model compilation, orchestration, and optimizations like subbatch sizing, gradient
accumulation, activation recomputation, and data layouts for high performance

® The Weight Streaming mode, shown in Figure 7, enables training models limited only by the
memory capacity of weight servers, allowing testing beyond the GPT-3 175B parameter model
without additional changes
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e Unlike existing accelerator execution modes, Weight Streaming eliminates the need for complex
data and model parallelism, offering solid performance at small per-system batch sizes by
moving weights to the wafer and gradients from the wafer

Performance Scalability

e Andromeda provides near-linear performance scaling up to the full 16 CS-2s
e Refer to annotations

Limitations

e This work focuses on training foundational models without exploring recent architectural
features, downstream task tuning procedures, or dataset cleaning methods used in
contemporary works

e Future research directions include investigating position embeddings like RoPE and ALiBi,
activation functions such as SwiGLU, and training paradigms like denoising pre-training
objectives and instruction fine-tuning

e Dataset cleaning is identified as a potential area for improvement, as demonstrated by Pythia
models showing enhanced downstream task accuracy when trained on deduplicated data

® Cerebras-GPT models have not undergone extensive testing in downstream tasks or real-world
applications, and further safety-related testing, mitigations, and output curation are necessary
before deployment
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Article #10 Notes: Deduplicating Training Data Makes

Language Models Better

Source Title

Deduplicating Training Data Makes Language Models Better

Source citation (APA Format)

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., &
Carlini, N. (2021). Deduplicating training data makes language models

better (arXiv:2107.06499). arXiv. http://arxiv.org/abs/2107.06499

Original URL

https://arxiv.org/abs/2107.06499

Source type

Journal Article

Keywords Artificial Intelligence, Large Language Models (LLMs), Datasets, Big Data,
Deduplication
#Tags #ai, #llm, #nlp, #nlg, #datasets, #bigdata

Summary of key points + notes
(include methodology)

Recently, large language models have been growing larger and larger in size. As
such, the corporas of text needed to train these models has grown significantly as
well. However, large datasets, especially those that span numerous terabytes in
size, are hard to create manually and quality test to ensure no biases and
high-quality data. This paper explored the specific effect of deduplication, or
removing repetitive and redundant training examples from a dataset. The
researchers observed various benefits, from reducing memorized data to more
efficient model training and sizes, and no downsides to deduplication. The paper
proceeds to outline how data was deduplicated with two primary methods and
examined the extent of duplicate content in the dataset and the effect of
deduplicated data on models. The first method of deduplicated detailed was using
a suffix array to remove duplicate substrings if they appear verbatim in more than
one example, and the second method detailed using n-gram similarity between all
pairs of examples and removing those that had high overlap. After carrying out
deduplication, various resultant metrics were provided.

Research Question/Problem/
Need

How does deduplicating training data affect language models?
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Important Figures

Dataset

Example

Near-Duplicate Example

Wiki-40B

\n_START_ARTICLE \nHum Award for Most  Impact-
ful Character \n_START_SECTION_ \nWinners and nomi-
nees\n_ START_PARAGRAPH_\nln the list below, winners are
listed first in the colored row, followed by the other nominees.

\n_START_ARTICLE ‘\nHum Award for Best Actor in a
Negative Role ‘n_START_SECTION \nWinners and nomi-
nees\n_ START_PARAGRAPH \nIn the list below, winners are
listed first in the colored row, followed by the other nominees. |...]

LMIB

I left for California in 1979 and tracked Cleveland ’s changes on
trips back to visit my sisters .

1 left for California in 1979 , and tracked Cleveland ’s changes on
trips back to visit my sisters .

C4

Affordable and convenient holiday flights take off from your

departure country, "Canada”. From May 2019 to October 2019,

Condor flights to your dream destination will be roughly 6 a
week! Book your Halifax (YHZ) - Basel (BSL) flight now, and
look forward to your "Switzerland" destination!

Affordable and convenient holiday flights take off from your depar-
ture country, "USA". From April 2019 to October 2019, Condor
flights to your dream destination will be roughly 7 a week! Book
your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look
forward to your "Croatia" destination!

Examples of near-duplicates identified by NearDup, the approximate matching
algorithm, from each dataset
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The distribution of near-duplicate cluster sizes from running NearDup on C4

% valid with
dup In train

% train examples with
dup in train  dup in valid

C4
RealNews
LMI1B
Wiki40B

4.60%
14.35%
4.92%
0.72%

3.04% 1.59%
13.63% 1.25%
4.86% 0.07%
0.39% 0.26%

The fraction of examples identified by NearDup as duplicates
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% train tokens with % valid with

dup intrain  dupinvalid dup in train

C4 7.18% 0.75 % 1.38 %
RealNews 19.4 % 2.61 % 3.37 %
LMIB 0.76% 0.016% 0.019%
Wiki40B 2.76% 0.52 % 0.67 %

The fraction of examples identified by ExactSubstr as part of an exact duplicate
50-token substring

] .
~ C4 Original Training data
o ]
wn — B Original
S C4 Duplicates
© P — NearDup
E , ] Bmm ExactSubstr
= C4 Unique ]
© . O
= LMI1B
o ]
&l ]
Wiki40B
]

5 10 15 20 25 30 35
Perplexity

=

Impact of deduplicating the training set on validation perplexity of trained models

Model 1 Epoch 2 Epochs
XL-ORIGINAL 1.926% 1.571%
XL-NEARDUP 0.189% 0.264%
XL-EXACTSUBSTR | 0.138% 0.168%

When generating 100k sequences with no prompting, over 1% of the tokens
emitted from a model trained on the original dataset are part of a 50-token long
sequence copied directly from the training dataset. This drops to 0.1% for the
deduplicated datasets.
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- 0 0001
train dup
@ I
[
S train uni :
o train unique
n 1
e
o | .
£ valid in train Training data
E o mmm QOriginal
. , | NearDup
valid unique 1 BN ExactSubstr
0.0 0.1 0.2 0.3 0.4

Fraction of LM continuations
matching true continuation

The proportion of generations which have edit similarity above 0.8 with the
groundtruth continuation when using the LM to generate continuations for
32-token prompts identified by NEARDUP as either duplicated or unique.

Model Dataset | Orig  Dups Unique

Transformer-XLL LMI1B 21.77 10.11 23.58
GROVER-Base RealNews 1544 13.77 15.73
GROVER-XL RealNews 0.15 7.68 945

For each model, the perplexity of the official validation set (Orig), valid set
examples which were identified by NEARDUP as matches of train set examples
(Dups), and valid set examples identified by NEARDUP as unique (Unique).

VOCAB: (w/definition)

Exact substring matching: Exact substring matching is a process of identifying and
eliminating duplicated substrings within a dataset by comparing sequences to find
shared substrings of a minimum specified length, such as 50 BPE tokens in this
case, and then removing one occurrence of the shared substring. This technique is
used to reduce redundancy in text data.

Approximate full document matching: Approximate full document matching,
known as NEARDUP, involves using the MinHash algorithm to identify documents
that are nearly identical by comparing their n-gram sets and approximating the
Jaccard Index. If the Jaccard Index is high enough, the documents are considered
potential matches, and further similarity metrics, like edit similarity, can be
employed to filter and identify duplicates, making it suitable for handling
documents with slight variations.

Suffix array: A suffix array is a lexicographically-ordered list of all suffixes contained
in a given sequence of text, facilitating efficient computation of substring queries
and the identification of duplicated examples in linear time
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MinHash: MinHash is an approximate matching algorithm that represents
documents using sets of n-grams and utilizes hash functions to estimate the
Jaccard Index, enabling the identification of potential matches between
documents. It creates document signatures by sorting n-grams with a hash
function, keeping the smallest hashed n-grams, and is commonly used in
large-scale deduplication tasks, including the identification of duplicate
documents.

N-gram: An n-gram is a collection of n successive items in a text document that
may include words, numbers, symbols, and punctuation

N-gram similarity: N-gram similarity refers to the measurement of the similarity
between two documents by comparing their sets of n-grams (contiguous
sequences of n items, often words or characters) to estimate the Jaccard Index,
which quantifies the overlap of n-grams between the documents, indicating their
approximate similarity

Jaccard Index: The Jaccard Index is a similarity measure used to assess the overlap
or similarity between two sets by dividing the size of their intersection by the size
of their union, producing a value between 0 and 1, where 1 indicates complete
overlap or similarity and 0 indicates no common elements

Train-test leakage: Train-test leakage, also known as data leakage, occurs when
information from the test dataset is inadvertently used during the training of a
machine learning model. This can lead to artificially inflated performance metrics
during training but results in poor real-world performance since the model has
gained knowledge it shouldn't have.

Model perplexity: Model perplexity is a measurement of how well the model
predicts a sequence of words. A lower perplexity score indicates that the model is
better at predicting the next word in a sequence, suggesting a better
understanding of the language.

Cited references to follow up on

Devansh Arpit, Stanistaw Jastrzgbski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. 2017. A closer look at mem-
orization in deep networks. In International Confer-
ence on Machine Learning, pages 233-242. PMLR.

Emily M. Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587-604.
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Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramer.
2022. What does it mean for a language model to
preserve privacy? arXiv preprint.

Follow up Questions What is the specific impact of deduplicated datasets on training compute
efficiency?

What are some other methods of ensuring data quality?
What privacy concerns are associated with data memorization?

How do train-test overlap issues, as discussed in the article, affect the
performance and model selection in LLMs?

How do different language model architectures and dataset sources influence the
impact of deduplication on training efficiency and model performance?

Can deduplication methods be combined?
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Notes (written with assistance from ChatGPT)
Introduction

® Recent progress in natural language processing is driven by large-scale text corpora used to train
language models
e These datasets have grown significantly in size over the past few years, from gigabytes to
terabytes
e Large datasets are challenging to curate manually, leading to potential quality issues and biases
in trained models
Duplicated training examples are a common source of bias in NLP datasets.
The paper proposes two techniques for detecting and removing duplicated training data: exact
substring matching and approximate full document matching
e Thorough deduplication of training data offers several advantages:
o Reduces the rate of emitting memorized training data by a factor of 10x
o Addresses train-test overlap issues, preventing overestimation of model accuracy and
biasing model selection
Makes training more efficient and cost-effective, with datasets being up to 19% smaller
Does not negatively impact perplexity and can even reduce it by up to 10%.
Data deduplication has no observed disadvantages
The paper outlines the framework for text deduplication and examines the extent of duplicate
content in common NLP datasets
e It also explores the impact of deduplication on test perplexity, the frequency of emitting
memorized content, and the skewing of perplexity in existing models due to train-test overlap

Related Work

e The section discusses the use of large language model datasets and focuses on
Transformer-based decoder-only language models used for open-ended text generation

e These models are typically trained on internet text, with examples like GPT-2 being trained on
WebText and CommonCrawl|

e Various models are mentioned, including GPT-3, GROVER, and T5, each trained on different
variations of web data

e Some models are trained on curated internet sources, like Guo et al.'s model trained on
processed Wikipedia text

o Non-English models use different datasets, like PANGU-a, which is trained on a non-public
corpus of Chinese-language documents
The section also highlights that some datasets are not publicly available
It mentions deduplicating publicly available datasets, such as Wiki-40B, C4, RealNews, and the
One Billion Word Language Model Benchmark

® The section raises concerns about contamination of downstream tasks when models are trained
on internet datasets that overlap with evaluation datasets
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e It discusses approaches to address contamination, such as removing overlapping documents
from training sets

e The focus of the research mentioned is on the impact of duplicate text in language model
training and validation sets on model perplexity and the presence of memorized content

e The section mentions the privacy risks associated with data memorization and highlights that
some models emit over 1% of memorized training data

e Finally, it briefly mentions previous studies on duplicate text in other domains, such as code
datasets and their impact on code understanding tasks

Language Modeling Datasets

e The section discusses the analysis of duplicate text in four datasets commonly used for training
natural language generation systems, creating pre-trained models, and benchmarking language
models

e The focus is on English datasets, but it's mentioned that similar issues could exist in non-English
datasets

e The datasets analyzed include:

o Wikipedia (Wiki-40B): This dataset consists of multi-lingual cleaned Wikipedia text, but
the analysis focuses on the English portion. It contains 2.9 million Wikipedia pages with
an average length of 768 BPE tokens.

o One-Billion Word benchmark (LM1B): LM1B contains 30 million sentences of news
commentary, with an average example length of 32 BPE tokens.

o Colossal Cleaned Common Crawl (C4): C4 comprises 360 million web documents, with an
average length of 486 BPE tokens. It was pre-processed to remove duplicates through a
sophisticated deduplication process.

o RealNews: RealNews is a subset of the Common Crawl containing articles from news
domains. It includes 31 million documents with an average length of 793 BPE token:s.
Deduplication in RealNews involved hashing the first 100 characters of each document
and excluding documents with hash collisions, similar to C4.

e The section highlights the deduplication methods used for each dataset and the removal of
duplicates based on various criteria like hash collisions and duplicate URLs

Methods for Identifying Duplicates

e Two complementary methods for deduplicating text data are introduced:
o Exact Substring Duplication:
m This method focuses on removing duplicate substrings from the dataset if they
appear verbatim in more than one example
® A minimum matching substring length of 50 tokens is chosen based on statistical
analysis
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m To efficiently identify duplicated training examples, a Suffix Array is constructed

from the dataset, allowing for linear time substring queries
o Approximate Matching with MinHash:

m This method aims to remove entire duplicate examples from the dataset based
on approximate matching

m  MinHash, an algorithm for estimating n-gram similarity, is used. Each document
is represented by its set of n-grams, and hash functions are applied to
approximate the Jaccard Index
A signature of size 9,000 and 5-grams are used in the implementation
Documents are considered potential matches if their Jaccard Index is sufficiently
high, and further filtering is applied based on edit similarity

m Clusters of similar documents are identified using a graph-based approach

e The section explains the principles and computational details of both deduplication methods

Deduplication Results

The section presents the results of deduplication efforts on four datasets using two techniques
Duplicate text across data splits was prioritized to be kept in the test or validation set and
removed from the train set

e Results of deduplication:

o Using NEARDUP, web-scrape datasets contain between 3.04% (C4) and 13.63%
(RealNews) near duplicates. Wiki-40B has only 0.39% near duplicates in the train set

o In C4, most near-duplicate clusters consist of single pairs, but some clusters have over
5,000 examples, with one cluster containing 250,933 examples

o On average, EXACTSUBSTR removes more total content compared to NEARDUP, except
for LM1B, where EXACTSUBSTR removes 8x less data due to shorter document lengths

o NEARDUP and EXACTSUBSTR remove similar content; 77% of training examples removed
by NEARDUP in C4 have at least one verbatim length-50 match found by EXACTSUBSTR

® Properties of duplicated text:

o In C4 and Wiki-40B, much of the near-duplicated text appears to be
computer-generated, with differences mainly in names, places, businesses, products,
dates, etc

o RealNews and LM1B, derived from news sites, have near-duplicates due to the same
news articles appearing on multiple sites with slight formatting differences

e Train/Test Set Leakage:

o Both deduplication methods identify overlap between train and validation sets

o For example, 4.6% of the C4 validation set and 14.4% of the RealNews validation set
have approximate duplicates in their respective training sets

o This duplication poses problems for evaluation metrics, potentially inflating scores for
models better at memorizing their training data

o The effect of this leakage on publicly released models is evaluated in Section 6.3



Priyadarshan 64

Impact on Trained Models

e 1.5B parameter "XL" models, similar to GPT-2, were trained on C4-ORIGINAL, C4-NEARDUP, and
C4-EXACTSUBSTR
e Three different random seeds of the 110M parameter "base" model were also trained on each of
the three datasets, resulting in nine base-sized models
e All models used a Byte Pair Encoding (BPE) vocabulary trained on C4-NEARDUP with a 50K token
budget
Maximum sequence length during training was 512 tokens
Model Perplexity:
o Models' perplexity was computed on validation sets of LM1B, Wiki-40B, and subsets of
the C4 validation set
o Models trained on deduplicated data had significantly higher perplexity on validation set
examples with duplicates in the training set compared to models trained on the original
Cc4
o EXACTSUBSTR-deduplicated models showed higher perplexity than
NEARDUP-deduplicated models
o Similar trends were observed for XL-sized models
® Generated Text:
o Memorization tendencies were evaluated in text generation experiments with and
without prompts
o Without prompts, over 1% of generated tokens from XL-ORIGINAL belonged to
memorized sub-sequences, while XL-EXACTSUBSTR and XL-NEARDUP had significantly
less memorization
o When prompts were used, models still tended to copy ground-truth text more often
when the prompt came from a duplicate example, even for deduplicated models
e Impact on Existing Models:
o Train-test leakage affected existing models, including Transformer-XL trained on LM1B
and GROVER trained on RealNews
o The presence of near-duplicates of the evaluation set in the train set significantly
impacted model perplexity, with perplexity halving for some examples
o Existing models also suffered from the issue of generating text from their train sets, with
a significant portion of tokens in their outputs being part of verbatim matches in their
training data

Discussion

e This paper focuses on analyzing data duplication in language model training datasets
e [t quantifies the extent of data duplication, explores the impact of deduplication on model
perplexity, and examines the reduction of memorized content
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e Privacy implications of memorized training data are noted, emphasizing the need for careful
consideration in dataset creation
e Different types of memorized text and potential negative consequences of deduplication are

discussed

e The role of memorization in language models varies based on data nature and application,
encouraging researchers to consider these factors

e The paper suggests future research directions, including methods to memorize or forget specific
sequences based on application requirements

Conclusion

Future language model research is encouraged to perform dataset deduplication
Researchers can use the deduplicated datasets and tools provided in this study or develop new
deduplication methods

e The specific deduplication technique used matters less than the act of performing stringent
deduplication

e Deduplication generally does not harm model perplexity and can even improve it, despite
smaller training datasets

® Avoiding duplicates between training and testing sets is crucial to prevent models from
memorizing training data

e Deduplication contributes to reducing privacy concerns related to language models memorizing
their training data
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Article #11 Notes: Beyond Scale: the Diversity Coefficient

as a Data Quality Metric Demonstrates LLMs are

Pre-trained on Formally Diverse Data

Source Title

Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates
LLMs are Pre-trained on Formally Diverse Data

Source citation (APA Format)

Lee, A, Miranda, B., Sundar, S., & Koyejo, S. (2023). Beyond scale: The
diversity coefficient as a data quality metric demonstrates LLMs are
pre-trained on formally diverse data (arXiv:2306.13840). arXiv.

http://arxiv.org/abs/2306.13840

Original URL

http://arxiv.org/abs/2306.13840

Source type

Journal Article

Keywords Diversity Coefficient, Data Quality Metric, Large Language Models, Pre-training
Data, Publicly Available Datasets
#Tags #lIm, #nlp, #datasets, #bigdata, #dataquality

Summary of key points + notes
(include methodology)

This article discusses the quality of pre-training data for Large Language Models
(LLMs) and how it is an important factor for training powerful LLMs. The authors
propose to ground the discussion of data quality through the diversity coefficient,
a data coverage metric that moves beyond scale alone. They extend the diversity
coefficient to formally quantify data diversity of publicly available datasets and
discover that LLMs are pre-trained on formally diverse data. The authors conclude
that the diversity coefficient is reliable and can be used to build useful diverse
datasets for LLMs. The methodology involves measuring the diversity coefficient of
publicly available pre-training datasets to demonstrate that their formal diversity is
high when compared to theoretical lower and upper bounds. The authors also
conduct interpretability experiments to build confidence in the diversity coefficient
and find that the coefficient aligns with intuitive properties of diversity, e.g., it
increases as the number of latent concepts increases

Research Question/Problem/
Need

How can the quality of pre-training data for LLMs be measured?
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Important Figures

DATASET
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Diversity coefficients of LLM pre-training datasets

with 95% confidence intervals are 2.7-4.76 times higher than
the conceptual lower bound and more than half that of the
upper bound.
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than the conceptual lower bound and more than half that of
the upper bound
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Distribution of pairwise batch distances reflect conceptual and semantic dataset
properties, therefore increasing trust in the diversity coefficient
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nz6{ L mean with emor band -
e WikiText-103

0.25 1

Diversity Coefficient

200 400 600 200 1000
Batch Size pt. it pt, no ft rand, fit rand, no ft

Diversity coefficients of C4 computed using different task batch sizes show positive
and diminishing returns with increasing batch size (left). Diversity coefficients of C4
and WikiText-103 computed using different GPT-2 probe network configurations
show that random networks underestimate diversity vs. pretrained networks, and
non-finetuned networks overestimate diversity vs. finetuned networks (right).

VOCAB: (w/definition)

Diversity coefficient: A formal metric used to quantify the quality of pre-training
data in the context of large language models (LLMs). It measures the diversity of




Priyadarshan 70

datasets by calculating the expected cosine distance between pairs of Task2Vec
embeddings of batches. A higher diversity coefficient indicates a more diverse and
informative dataset.

Generative IN-Context Learning dataset: Generative IN-Context Learning (GINC)
datasets are mixtures of Hidden Markov Models (HMMs) with varying numbers of
latent concepts. These datasets are employed to analyze and validate the diversity
coefficient, particularly in understanding its behavior with respect to the number
of latent concepts and vocabulary size.

Task2Vec: An embedding method used for sequence data, specifically designed to
compute the diversity coefficient. It involves computing embeddings using the
Fisher Information Matrix (FIM) derived from fine-tuning the final layer of a neural
network. The resulting embeddings serve as unique fingerprints for batches,
allowing the measurement of diversity in pre-training datasets.

Embeddings: Vector representations of data points in a high-dimensional space. In
the context of the paper, embeddings are generated using the Task2Vec method,
capturing information about batches in pre-training datasets. These embeddings
play a crucial role in computing the diversity coefficient, reflecting the intrinsic
variability of data batches.

Fisher Information Matrix: A matrix derived from tuning or fine-tuning the final
layer of a neural network. In the context of Task2Vec, the diagonal entries of the
FIM are interpreted as measures of information that parameters contain about the
generative distribution. These entries are utilized to generate embeddings for
batches in the dataset.

Cosine distance: A metric used to measure the angular similarity between vectors.
In the paper, cosine distance is applied to calculate the diversity coefficient by
assessing the expected cosine distance between pairs of Task2Vec embeddings of
batches. Higher cosine distances indicate greater diversity between batches.

Hidden Markov Models: Hidden Markov Models (HMMs) are statistical models
that assume an underlying hidden structure influencing observed data. In the
context of GINC datasets, HMMs with varying latent concepts are used to simulate
synthetic datasets for studying the behavior of the diversity coefficient with
different numbers of latent concepts.

Cited references to follow up on

Longpre, 5., Yauney, G., Reif, E., Lee, K., Roberts, A.,
Zoph, B., Zhou. D., Wei. 1., Robinson, K., Mimno, D.,
and Ippolito, D. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, qual-
ity, & toxicity. arXiv preprint arXiv:2305.13169, 2023,
URL https://doi.org/10.48550/arXiv.2305.13169.
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Follow up Questions

How does the diversity coefficient approach contribute to advancing discussions
on data quality, and in what ways does it provide a more nuanced understanding
compared to traditional measures in the context of large language models?

The paper emphasizes the importance of considering data diversity and quality in
the context of pre-training large language models. How might the findings impact
the development and evaluation of future language models, particularly in terms
of addressing biases and ensuring robust performance?

The experiments highlight the impact of varying batch size and network
parameters on the diversity coefficient. What practical recommendations can be
drawn from these results for researchers and practitioners aiming to optimize the
pre-training process for large language models?
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Notes
Introduction

e With the focus on model and dataset scaling, the effectiveness of scaling the token counts of
models relies fundamentally on the quality and coverage of the pre-training data

Data quality and coverage are often overlooked or discussed in vague or imprecise ways

The paper proposes grounding the discussion of quality with the diversity coefficient

They use the diversity coefficient to quantify the data quality of publicly available datasets

The diversity coefficient is high for these datasets relative to conceptually well-motivated lower
and upper bounds

® The paper shows the following
1. The diversity coefficient increases as one concatenates more pre-training datasets of
different sources
2. The task embedding distances used in the diversity coefficient groups
3. Asthe number of latent concepts increases, the diversity coefficient increases
4. Alarger, more diverse vocabulary leads to a higher diversity coefficient
e Key contributions include
1. A paradigm shift beyond dataset scale to a data-centric machine learning perspective
through a formal data quality metric — the diversity coefficient
2. Advancing discussions on data quality by measuring an aspect of quality—data
diversity—using the diversity coefficient
3. \Validating the diversity coefficient by demonstrating its interpretability and correlation
with intuitive diversity properties aligned with human intuitions
4. Demonstrating the high diversity of public datasets for LLM pre-training
5. Studying properties of different parameters for computing the formal diversity and
therefore providing practitioners with simpler ways to evaluate the diversity coefficient

Methods
Task2Vec Embeddings for Sequence Data

The Task2Vec diversity coefficient is used to compute the formal diversity of a dataset
The first step is computing the embeddings, which is done according to the original Task2Vec
method using the entries of the Fisher Information Matrix that result from tuning fine-tuning the
final layer of a neural network
e The diagonal entries of the FIM can be an be interpreted as a measure of the information that a
given parameter contains about the generative distribution
o It serves as a unique fingerprint, or feature vector, for a batch, which defines a task
distribution

Diversity Coefficient
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e The Task2Vec diversity coefficient is calculated as the expected cosine distance d between pairs
of Task2Vec embeddings of batches

Cross Diversity Coefficient

e The cross diversity coefficient computes the expected cosine distances of embeddings of batches
by sampling a batch from the two data sets separately without mixing

Backbone Used and Further Explanation of the Diversity Coefficient

® By measuring the distance between FIMs, the diversity coefficient captures the average intrinsic
variability of batches in the underlying data distribution as a proxy for data coverage or
information contained in the dataset

e The dataset diversity reflects how different batches are from each other

Recipe for Establishing if a Diversity Coefficient is High via the Conceptual Lower and Upper Bounds

e To establish if a diversity coefficient is high or low, two conceptually well-motivated reference
values are used: the lower and upper bounds

® The conceptual lower bound is measured on a dataset with probability concentrated on an
arbitrary token

e Lower bound created with vocabulary size of 2, assigning probability weight to <eos> token and
a randomly selected non-special token
Probability weight for <eos>: 1/{GPT-2 vocab size}, remaining weight for the non-special token
Conceptual upper bound measured on a synthetic dataset with equal probability for all tokens in
GPT-2 tokenizer vocabulary

e High or maximum diversity dataset consists of random sequences with no underlying order in
semantics, formatting, etc

LLM Pre-training Datasets

e The publicly available language datasets used in the paper were outlined as follows
Cc4

WikiText-103

The Pile

Pile-CC

HackerNews

NIH ExPorter

PubMed Abstracts

USPTO Backgrounds

O O O 0O O O O

Experiments & Results

Diversity Coefficients of Pre-training Data shows LLMs are Pre-trained on Formally Highly Diverse Data
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e The experiment evaluated the diversity coefficient of the eight public datasets and computed the
diversity coefficient of two concatenated datasets
® Results in Table 2 show diversity coefficients for eight LLM pre-training datasets and their
conceptually motivated lower and upper bounds
e Measured diversity coefficients for concatenation of various publicly available datasets are also
presented in Table 2
e Key observations:
o Pre-training datasets generally have diversity coefficients 3-5 times greater than the
theoretical lower bound and, on average, half the upper bound
WikiText-103, C4, The Pile, and Pile-CC exhibit high diversity coefficients (0.21, 0.25)
Pile-CC has higher diversity than C4, suggesting a potentially more stringent
preprocessing method for Pile-CC from the Common Crawl corpus
o Three sub-datasets of The Pile (NIH ExPorter, PubMed Abstracts, USPTO) show relatively
low diversity (0.15-0.17), about half of the upper bound (0.4), possibly due to their
specialized fields
o Pile-CC and HackerNews have higher diversity, likely attributed to their broad topic
coverage
o Pile-CC exhibits higher diversity, aligning with its heterogeneous content composition

Concatenation of Datasets of Different Sources Produces Higher Measured Diversity

e To show that the concatenation of different datasets produces high diversity, the paper
measures the diversity coefficient of C4 plus WikiText-103, as well as the diversity coefficient of
the five sub-datasets of The Pile in Table 2
e Key Observations:
o Diversity coefficient for C4 and WikiText-103 concatenated dataset is 0.2711,
approximately +0.03-0.05 higher than each individual dataset
o Diversity coefficient for concatenation of five sub-datasets of The Pile is 0.2939 (Table 2),
about +0.04-0.1 (Figure 1) higher than each individual dataset
o Concatenation of five sub-datasets of The Pile achieves the highest diversity coefficient
in Table 2
o Increase in diversity results from higher pairwise Task2Vec distances between batches
from different datasets (see Figure 1)
o Diversity coefficient is an average of all pairwise Task2Vec distances, aligning with human
intuition that combining data from heterogeneous sources increases overall diversity.

Distribution of Pairwise Batch Distances Reflects Conceptual and Semantic Dataset Information

e To increase confidence in the diversity coefficient as a diversity metric, the distributions of the
Task2Vec distances used to compute the coefficient were studied

e In particular, the alignment of the grouping of these distances with human conceptual and
semantic understanding was noted

® Analyzed Task2Vec (cosine) distances between batches from five sub-datasets of The Pile
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e Compared distances within individual sub-datasets and across different sub-datasets, visualized
in Figure 1
Combined datasets show increased diversity coefficient compared to individual datasets
Expect higher diversity for pairings of unrelated datasets than related datasets, observed in
Figure 1 (right)

e Pairings of conceptually unrelated datasets in concatenated C4 and WikiText-103 show higher
distances than individual datasets

e Concatenated sub-datasets of The Pile exhibit higher distances for unrelated datasets above the
dotted line, while related datasets group below

e Pile-CC and HackerNews anticipated to cover diverse topics due to their web-scale nature, with
highest individual diversities and increases when combined with other datasets

e Distances between Pile-CC and HackerNews batches are the lowest among pairwise distances of
concatenated datasets above the diversity coefficient, aligning with human intuition

e Findings reinforce trust in the diversity coefficient as a metric, as it aligns with human intuition in
interpreting Task2Vec distances

Diversity Coefficient Captures LLM Pre-training Data Distributional Properties

e To instill further confidence in the diversity coefficient, a correlation analysis with data
distributional properties was performed on a synthetic dataset, GINC
e Experiments:
GINC datasets, mixtures of HMMs with 1-10,000 latent concepts, analyzed
o Diversity coefficient variation plotted as latent concepts increase (Figure 2, top)
o Curve fitted for GINC datasets with fixed vocabulary sizes of 50 and 150
o Fixed latent concepts at 5 and 5000, plotted diversity coefficient against increasing
vocabulary size (Figure 2, bottom)
o Curve fitted for GINC datasets with 5 and 5000 latent concepts
e Results:
o Diversity coefficient increases with a greater number of latent concepts (Figure 2, top)
m Diminishing returns observed
m High R2 values (0.952 and 0.898)

O

o Diversity coefficient saturates as more latent concepts are added
m Hypothesized due to marginal increases in variation from increased overlap
o Diversity coefficient increases with larger vocabularies (Figure 2, bottom)
m Exponential pace observed
m High R2 values (0.993 and 0.984)
o Hypothesis: Exponential growth due to scaling the number of tokens creating a more
diverse dataset
o Results indicate the diversity coefficient successfully captures different distributional

sources of variation in the data
Using the Diversity Coefficient in Practice: Setting Batch Size and Network Parameters

e Experiments:
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o Tested sensitivity of computed diversity coefficient to changes in batch size and probe
network parameters

o Varied batch size and observed impact on diversity coefficient for C4 (200 batches,
pretrained, fine-tuned GPT-2)

o Tested various probe network configurations for C4 and WikiText-103 diversity
coefficient measurement

e Results:
o Diversity coefficient increases with task batch size but with diminishing returns (Figure 3,
left)
o Diminishing returns due to greater coverage in tokens, topics, document formats, etc.,

between batches

o Using a random probe network underestimates diversity compared to pretrained
networks

o Using a non fine-tuned network overestimates diversity

o Trends in diversity coefficient estimation consistent across C4 and WikiText-103

e Recommendations:

o Suggested using a batch size of 512 for faster computations and fewer memory issues

o Proposed diversity coefficient computation using random and non fine-tuned networks
for efficiency, saving computational costs

o Acknowledged absolute diversity coefficient values may differ but consistency in
network configuration is crucial

o Further validation needed to determine if forgoing pre-trained and/or fine-tuned probe
networks can produce robust embeddings as the original Task2Vec method

Related Work

e Existing diversity metrics focused on GAN-produced data, using precision- and recall-based
frameworks

e Similar to Task2Vec, these metrics use embedding functions and argue that data quality is
distinct from diversity in GANs

e In the context of LLMs, data diversity considered a subset of data quality, important for
in-context learning

e Diversity metric sufficient to capture a crucial aspect of data quality, aiding coverage and task
inclusion in test datasets

e large LLMs robust to noise; high diversity preferred, and evidence suggests current open LLM
datasets have this property

e A proposed diversity metric, Vendi Score, doesn't rely on embedding functions, but its benefits
are unclear. Computationally more expensive than Task2Vec
Vendi Score assumes a suitable similarity function, lacking guidance on data representation
Data representation fundamental to machine learning success; deep learning effective for
dataset/task embeddings

e Task2Vec's end-to-end approach learns effective embeddings, more general, flexible, and
scalable than Vendi Score
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® Leave detailed comparison with Vendi Score for future work
Discussion

e Extending and validating Task2Vec diversity coefficient for natural language data, confirming
open LLMs pre-trained on formally diverse data

e Intuitive properties verified through experiments, instilling confidence in diversity coefficient
method

e Conceptually motivated lower and upper bounds aid understanding of diversity coefficient
magnitude

e Bounds apply to symbolic vocabulary sequence data; multi-modal embedding method can
address this limitation

e Method doesn't rely on activations from an arbitrarily selected layer; diversity coefficient
well-justified and extensively tested

o Deep learning representations suggested due to their success in various machine learning
domains

o Need for a data representation acknowledged; deep learning representations and open-source
pre-trained models recommended
Explore random networks and models with no fine-tuning for accessibility
Diversity coefficient deemed reliable and trustworthy, suggested for building quality diverse
datasets for capable LLMs

e Relationship between pre-training data diversity and LLM evaluation test performance explored,
showing a negative correlation between diversity and cross-entropy loss

e Positive relationship between diversity and model performance conjectured, but more extensive
experiments needed

e Experiment challenges due to the expensive nature of pre-training large language models
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Article #12 Notes: A Pretrainer's Guide to Training Data:
Measuring the Effects of Data Age, Domain Coverage,
Quality, & Toxicity

Source Title A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain
Coverage, Quality, & Toxicity

Source citation (APA Format) Longpre, S., Yauney, G., Reif, E., Lee, K., Roberts, A., Zoph, B., Zhou, D., Wei, J.,
Robinson, K., Mimno, D., & Ippolito, D. (2023). A pretrainer’s guide to
training data: Measuring the effects of data age, domain coverage,
quality, & toxicity. (arXiv:2305.13169). arXiv.

https://arxiv.org/abs/2305.13169

Original URL https://arxiv.org/abs/2305.13169
Source type Journal Article
Keywords Language Model Performance, Data Curation Choices, Temporal Misalignment,

Toxicity and Quality Filters, Domain Composition Effects

#Tags #lIm, #bigdata, #nlp, #modelperformance, #pretraining
Summary of key points + notes The study investigates the impact of data curation choices on large language
(include methodology) model (LM) performance, emphasizing the lack of documentation in model

development processes. Findings reveal that the age of the dataset, quality and
toxicity filters, and domain composition significantly affect LM behavior. Notably,
quality filtering increases toxic generation, while toxicity filtering trades toxic
generations for reduced generalization. The study also addresses temporal
misalignment, suggesting that the temporal properties of pretraining corpora are
crucial, especially for larger models. Additionally, the impact of domain
composition on downstream performance is explored, emphasizing the
importance of diverse data sources.The study involves a comprehensive
examination of 28 1.5B parameter LM models, spanning various data curation
decisions. Pretraining datasets include Common Crawl (C4) and The Pile, with
considerations for dataset age, domain filtering, and content filtering. Evaluation
encompasses tasks related to toxicity identification, toxic generation,
guestion-answering, and domain generalization. The study introduces measures
like Temporal Degradation to assess the effects of pretraining misalignment.
Filtering effects are analyzed using quality and toxicity filters, and the impact of
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domain composition is evaluated through downstream performance on diverse
tasks, shedding light on crucial aspects of responsible LM development.

Research Question/Problem/
Need

What is the impact of data curation decisions on large language model
performance, and how can this understanding contribute to responsible and

effective model development?

Important Figures
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A list of well-known language models and a quantitative breakdown of their
pretraining data
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Temporal Degradation due to pretraining is significant and persistent
across domains
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Toxicity filtering C4 reduces LM-XL’s downstream performance on most QA task
domains

Common Caontrast
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QA tasks are affected by removing domains when pretraining LM-XL
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Effect of the Pile’s domain composition on toxicity identification and generation

VOCAB: (w/definition)

Toxicity: The presence of harmful or offensive content, such as profanity, insults, or
threats, within textual data, evaluated using methods like the Perspective API to
assign toxicity scores

Domain compositions: The diverse sources or categories from which data is drawn,
influencing the makeup of the pretraining dataset and subsequently affecting the
behavior of language models in different domains

Heuristic filtering: The use of practical and experience-based rules or methods to
filter and curate datasets, often applied to identify and remove undesirable or
low-quality content

Rule-based classifiers: Algorithms or systems that classify data into predefined
categories based on explicit rules, frequently used for categorizing documents into
quality or toxicity levels in the context of language models

N-gram filter: A filtering technique based on the analysis of contiguous sequences
of n-grams (sets of n adjacent words), often employed to identify or eliminate
specific patterns or content in language datasets
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Pll: Sensitive information that can be used to identify individuals, such as personal
names, addresses, and emails, which is often removed or handled with care during
data curation

Temporal misalignment: A discrepancy between the time of dataset pretraining
and the time of evaluation, impacting language model performance due to
changes in language use over time

Temporal Degradation (TD): A measure introduced to assess the decline in
performance resulting from the time gap between pretraining and evaluation,
particularly relevant for larger language models

Pearson correlation: A statistical measure indicating the strength and direction of a
linear relationship between two variables, employed to analyze the correlation
between temporal misalighment and performance degradation

Wald test: A statistical test used to assess the significance of coefficients in
regression analysis, potentially applied to evaluate the significance of factors
influencing language model performance

SafeSearch filters: Filtering mechanisms designed to block or restrict access to
content that may be considered inappropriate, often used to improve the quality
of web-derived training data

Safety discriminators: Mechanisms or filters integrated into language models to
discern and mitigate unsafe or undesirable outputs, enhancing the model's safety
during generation

Presentist bias: The potential bias introduced when language models are
predominantly trained on recent data, leading to a skewed representation of
language that may not align with historical language use

Ablating: The process of selectively removing or excluding specific components, in
this context, certain domains or data sources during the analysis of language
model behavior and performance

Cited references to follow up on

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Allahsera
Tapo, Nishant Subramani, Artem Sokolov, Claytone Sikasote, et al. Quality at a glance: An audit of
web-crawled multilingual datasets. Transactions of the Association for Computational Linguistics, 10:50-72,
2022.

Follow up Questions

How might the findings of this study influence the development and deployment
of large language models, especially in industries where responsible data use and
ethical considerations are paramount?

Given the observed trade-offs in toxicity and quality filtering, what strategies or
tools can model developers employ to strike a balance between mitigating toxic
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content generation and maintaining model generalization across diverse datasets?

In light of the temporal misalignment challenges highlighted, what are potential

solutions or recommendations for adapting language model training practices to
better align with evolving language use over time, particularly for larger models

that are more susceptible to degradation?
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Notes (written with the assistance of ChatGPT)

Introduction

Modern LMs' performance relies on self-supervised pretraining on massive text datasets
Model developers decide dataset composition, filtering, and document collection protocols,
often undocumented

Lack of documentation hinders responsible data use and effective model development

This study systematically tests common data design decisions' impact on model performance
Findings and recommendations presented for model developers

Age of dataset affects performance, leading to degradation if evaluation data is before or after
pretraining data collection

Quality and toxicity filters have significant but opposite effects on model behavior

Quality filtering increases toxic generation and downstream performance; toxicity filtering trades
toxic generations for reduced generalization

Inverse toxicity filters demonstrate targeted benefits

Domain composition influences performance, with high-quality and heterogeneous data
contributing to toxic generation

Benefits of training on diverse data often greater than collecting targeted domain-specific data
Best-performing models use all data sources, recommending practitioners to include diverse
sources

Experiments constitute the largest publicly documented LM data curation study, spanning 28
1.5B parameter models

Findings justify computational cost and inform model developers training the next wave of LMs

Methodology

Pretraining Datasets

The two datasets used in the study are
o C4
o The Pile

Data Curation Choices

Dataset Age
o New versions of C4 are created by regenerating snapshots of the Common Crawl from
different years
o Multiple time-based collections are not available for the Pile
Domain Filtering
o Both C4 and the Pile draw from multiple distinct data sources
o The Pile explicitly delineates 22 distinct sources from web pages, Wikipedia articles,
code repositories, online forums, legal texts, and research paper archives
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o Documents from different domains are selectively removed to control for the topical
content of the pretraining collection
e Content Filtering
o Datasets from weakly curated internet sources tend to contain low-quality, toxic, or
offensive content
o Various approaches to determining document appropriateness, including
negatively-defined filters (removing specific categories), positively-defined filters
(keeping specific categories), and features-based filters
o Evaluation of the impact of two document-level, classifier-based filters for toxic content
and quality content
e Quality Filters
o Language models create quality classifiers to distinguish between "high-quality" corpora
and other documents
The classifier assigns each document a score from 0 (high quality) to 1 (low quality)
Experimentation with removing documents above and below specified quality
thresholds
e Toxicity Filters
o The Perspective APl is used to identify toxic content, assigning toxicity scores based on
profanity, identity-based negativity, insults, or threats
o Experimentation with removing documents above and below specified toxicity
thresholds
o In addition to the classifier-based filter, experimentation with an n-gram based filter
used in the original version of the C4 dataset

Evaluation

Measurement of effects of time, topic, and toxicity on pretrained models
English-language tasks include toxicity identification, toxic generation, question-answering tasks
from diverse domains, and tasks with temporal annotations
Comparison of general utility and performance on tasks influenced by dataset characteristics
Finetuning of each pretrained model on relevant datasets for downstream tasks, evaluated on
the same testing data
e Downstream Task Performance
o Evaluation of each pretrained model's performance on downstream tasks, attributing
systematic differences to pretraining variations
o Reporting mean performance relative to a baseline, often models trained on an
unfiltered dataset
e Domain Generalization Evaluation
o Assessment on the union of two question-answering benchmarks: Machine Reading for
Question Answering (MRQA) and UnifiedQA
o 30 unique QA datasets spanning diverse domains, measuring the impact of topic
alignment
e Temporal Misalignment Evaluation
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o Investigation of the impact of dataset collection time on downstream model abilities
o Evaluation on five datasets with varying domains to explore potential performance
variations between pretraining and evaluation time
e Toxic Generation Evaluation
o Assessment of language model behavior in generating profane, sexually explicit,
insulting, or obscene text
o Evaluation using prompts designed to elicit biased or toxic outputs related to gender,
race, and religion
o Measurement of the fraction of generated continuations assigned a high toxicity score
by the Perspective API
o Utilization of the RealToxicityPrompts dataset, consisting of labeled toxic text excerpts
e Toxicity Identification Evaluation
o Assessment of the ability of language models to recognize toxic language
o Importance for content moderation on communication platforms
o Evaluation with various toxicity interpretations using train and test sets from Social Bias
Frames (SBF), DynaHate (DH), and Toxigen

Models

® Two sizes of decoder-only transformer, Transformer-based language models were used
0 LM-XL: 1.5B parameters
o LM-SMALL: 20M parameters

Impact of Data Curation on Data Characteristics

® Observational Findings
o The Pile's documents exhibit differences compared to C4
m Longer, more readable, higher quality, but contain more personally identifiable
information (PII)
o Books domain is an outlier with
m Longest, most readable, most toxic, and most PlI-filled documents
m Contains high-quality text
o High toxicity and low-quality documents show similarities in high Pll amounts but differ
in average length and quality
o More recent web-scraped text is more diverse and less toxic but also lower quality
e Data Analysis
o Calculation of features for each document, including toxicity and quality metrics, Pl
categories, and text statistics
Substantial interactions between curation choices impacting data features
Features include average word length, readability, type-token ratio, sentiment, and more
(details in Appendix D)
® (4 vs. Pile
o Pile documents compared to C4
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m Longer (2.4x), more non-ASCII characters (1.9x), higher quality (1.2x), more
readable (1.8x)
m  Contain more PII, particularly personal names, addresses, and emails

e Toxicity and Quality Relationship

o

O

o

High toxicity does not necessarily correlate with low quality

High toxicity documents exhibit higher text quality than low toxicity documents

Little discernible difference in feature measurements for profanity, toxicity, and sexually
explicit content between low vs. high-quality content

e Domain Characteristics

O

Books domain stands out with more profane, toxic, and sexual content, yet greater
predicted quality

High toxicity documents in both C4 and Pile are longer, more profane, sexually explicit,
and toxic

Pile documents with high toxicity are more likely to have various kinds of Pl
OpenWeb provides the most lexical and linguistic diversity, Wikipedia has the highest
quality text, technical domains score low on predicted quality

e Temporal Trends in C4

O

o

O

Increase in non-ASCll characters over recent years
Decline in measured text quality
Slight decrease in toxicity scores and increase in sentiment over time

Impact of Dataset Age on Pretrained Models

e Temporal Misalignment Findings

o

O

o

Both models and evaluation datasets become stale over time
Temporal misalignment persists even after finetuning
Effects of pretraining misalignment are more pronounced in larger models

e Observations and Context

o

O

Models are frequently updated with new finetuning data, but pretraining is expensive
Majority of downloaded models are static and rarely updated, constituting ~58% of all
downloads on HuggingFace

Language use changes over time, and temporal misalignment between finetuning and
evaluation datasets leads to performance degradation

e Experimental Setup

o

Pretrained four autoregressive language models on different C4 versions (2013, 2016,
2019, 2022)

Removed data scraped after the cutoff year

Evaluated impact of pretraining time on NLP using tasks split by year in News, Twitter,
and Science domains

e Temporal Degradation Metrics

o

O

Replicated performance degradation observed by Luu et al. (2021)
Introduced Temporal Degradation (TD) measure for pretraining time and evaluation time
differences
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o High correlation (average Pearson correlation of 0.61) between pretraining temporal
misalignment and performance degradation
o Pretraining misalignment effects are non-trivial (0.4 on average for one year difference)
e Effect on Model Performance
o Pretraining misalignment not overcome by significant finetuning
o Asymmetric effects observed, with degradation steeper when evaluation year is after
pretraining year
o Models and evaluations become stale, leading to performance differences between
older and newer models on respective evaluations
e Temporal Degradation Across Model Sizes
o Greater temporal degradation for larger models (LM-XL with 1.5B parameters) compared
to smaller models (LM-Small with 20M parameters)

Impact of Quality & Toxicity Filters on Pretrained Models

e Filtering Effects Findings
o Quality and toxicity filters have distinct impacts on model performance
o Quality filters significantly enhance performance despite reducing training data
o Effects of quality filtering are not easily predictable based on dataset characteristics
o Toxicity filtering involves a trade-off between generalization, toxicity identification, and
risk of toxic generation
o For toxicity identification tasks, an inverse toxicity filter is recommended
e Common Filter Usage in Language Models
o Modern large language models use quality and/or toxicity filters in pretraining datasets
o Examples include n-gram filters, SafeSearch filters, and "safety discriminators"
e Experimental Setup and Implementation of Filters
o Implemented quality and toxicity filters at various thresholds on Pile and C4 datasets
o Varied the quantity of toxic and low-quality text during pretraining
e Quality Filters Impact on Performance
o Quality filters significantly improve performance across various tasks
o Improvements observed in toxicity identification (2%) and most QA task categories
(1-6%)
o Greater quality filtering outperforms the unfiltered baseline, even with 10%+ data
removal
o Notable performance improvements persist beyond T = 0.975 for QA tasks
e Dataset Quality Characteristics and Filtering Effects
o Dataset quality characteristics are not strong indicators of filtering effects
o QA tasks in Books, Wikipedia, and Web categories benefit less from quality filtering
o Academic and biomedical data, ranked lower in quality, benefit the most from quality
filtering
e Challenges with One-Dimensional Quality Measurement
o Optimizing on one quality measure is insufficient to predict or improve performance
across domains
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o Wikipedia and Web QA tasks are negatively affected by the inverse filter

o Both quality and inverse quality filters lead to models with higher toxic generation
tendencies

e Toxicity Filtering Trade-offs

o Toxicity filtering involves a trade-off between toxic identification and toxic generation
goals

o Models from heavily filtered datasets have less toxic generation but poorer toxicity
identification
Inverse toxicity filter performs best for toxicity identification across all datasets
Filtering strategy should align with the intended behavior of the model

Impact of Domain Composition on Pretrained Models

® Impact of Pretraining Source Domains on Downstream Performance

o Common Crawl, OpenWeb, and Books have the most positive impact on downstream
performance

o Data source heterogeneity is more crucial than data quality or size

o Inclusion of as many pretraining data sources as possible is beneficial
e Experimental Setup

Grouped Pile data sources into nine domains

o Pretrained LM-XL with the full dataset minus each domain
o Evaluated downstream performance on 27 QA tasks from MRQA and UnifiedQA
O

Domains: Common Crawl (CC), OpenWeb, Wikipedia, Books, PubMed, Academic, Code &
Math, Legal, and Social
o Key Findings
o Web-based domains like CC, Books, and OpenWeb have the strongest positive effects on
performance
Heterogeneity and quality are more important factors than the quantity of data
Domain heterogeneity is often more beneficial than targeted data, even for targeted
evaluations
o Best-performing models utilize all pretraining data sources, except for targeted domains
like Code and Academic

o Web and Books domains present a trade-off between toxic identification and generation

Discussion

e Guided by Intuition

o Pretraining dataset curation often guided by intuitions, lacking thorough evaluation
o Documentation debt is maintained, limiting knowledge sharing
® Impact of Curation Choices
o Pretraining curation choices significantly impact models and cannot be fully mitigated by
finetuning
Dataset curation policies should be treated as hyperparameters
Better tools are needed to model the relationship between data and model capabilities
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® Age of Pretraining Corpus
o Staleness of pretraining data affects model performance, especially for larger, more
capable models
o Finetuning on newer data may introduce a "presentist"” bias, and the effect of staleness
is not overcome by ample finetuning data
o Temporal properties of pretraining corpora are crucial for larger models and novel tasks
e Recommendations
o Model creators should report the temporal distribution of pretraining data
o Users need awareness of potential performance degradations on newer datasets
e Data Source Composition
Composition of the pretraining corpus significantly impacts downstream performance
Ablating any data source in diverse corpora like the Pile negatively affects generalization
to text-to-text tasks
o Future work should focus on collecting more diverse web and books content
e Filtering for Toxicity and Quality
o Filtering for toxicity and quality involves normative decisions that modify dataset bias
o There's a trade-off between a model's generalization abilities and its tendency to
generate toxic content
Toxic identification should be prioritized over curbing toxic generation during pretraining
Quality filters, despite removing large portions of training data, significantly improve
performance across domains

Limitations

Largest publicly documented LM pretraining data ablation study
Spans 28 1.5B parameter models, surpassing other studies like GLaM, miniBertas, MultiBerts,
and Pythia
Computationally and environmentally costly experiments
Carefully curated experiments focused on age of corpora, quality filters, toxicity filters, and
source domains

e Limited multiple rounds of reflection and repetition, striking a balance between computational
costs and reproducible validity
Use of Perspective's API for toxicity evaluation, with limitations on irreproducibility
English datasets used, highlighting the importance of considering training composition for
multilingual and non-English models
Focus on finetuned settings rather than zero- or few-shot prompting
Findings may be correlated to prompted settings but not explicitly established

Related Work

® General-purpose models include ELMO, BERT, BERT's descendants, XLNet, T5, GPT-2, GPT-Neo,
OPT, LLaMA, Pythia, and BLOOM
e Publicly available models and proprietary models by companies like Alphabet and OpenAl
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Filtering techniques used to improve web-derived training data quality, including classifiers,
SafeSearch, and heuristics

Pretraining data analysis studies by Dodge et al., Luccioni and Viviano, Kreutzer et al., Lee et al.,
Kaddour, and Zhao et al.

Mixed findings on the effects of data detoxification techniques, such as data filters, on
underrepresented communities

Instruction tuning and alignment tuning as methods to reduce unwanted toxic generation
Language's distribution shift over time and its impact on model performance on new test sets
Proposed remedies for temporal degradation include finetuning on more recent data,
adaptive/continuous pretraining, data augmentation, and modeling text with timestamps
Exhaustion of high-quality text data on the web for training large language models

Adaptation strategies for pretrained models to new downstream domains, including domain
adaptive pretraining, intermediate finetuning tasks, balancing data sources, data selection,
augmentation, and active learning

Research on rebalancing mixtures of datasets, importance sampling for selecting useful subsets,
and benchmarking effects of intermediate finetuning tasks

Exploration of scaling model size, pretraining data amount, and number of pretraining steps
Investigation into how temporal pretraining misalignment varies on different model sizes
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Summary of key points + notes
(include methodology)

The research focuses on enhancing access to multilingual datasets for NLP,
emphasizing web-derived collections like ParaCrawl|, WikiMatrix, CCAligned,
OSCAR, etc. The study enabled the development of highly multilingual models but
highlighted the lower quality of automatically crawled datasets compared to
hand-curated collections. A manual data audit involving 230 per-language subsets
revealed significant challenges, leading to proposed solutions for effective,
low-effort auditing and an error taxonomy. The analysis uncovered issues like
mislabeled language codes, nonlinguistic content, and offensive material. The
study advocates for improved data quality through techniques such as automatic
filtering and emphasizes the importance of standardized language codes. The
research's methodology involved a diverse group of 51 non-expert participants
from the NLP community, who manually annotated a random sample of 100 lines
per language in each dataset. The audit results exposed severe quality issues
across datasets, especially for lower-resource languages, leading to valuable
recommendations for the NLP community's future data releases and evaluations.

Research Question/Problem/

How can the quality and reliability of multilingual datasets for natural language



https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 94

Need

processing be enhanced, particularly addressing challenges such as mislabeled
language codes and low-quality content, to improve the effectiveness of NLP
research and applications?

Important Figures

Parallel Monolingual

CCAligned ParaCrawl v7.1 WikiMatrix OSCAR mC4
#languages 137 41 85 166 101
Source CC 2013-2020 selected websites Wikipedia CC 11/2018 CCall
Filtering level document sentence sentence document  document
Langid FastText CLD2 FastText FastText CLD3
Alignment LASER Vec/Hun/BLEU-Align LASER - -
Evaluation TED-6 WMT-5 TED-45 POS/DEP-5 XTREME

Comparison of parallel and monolingual corpora extracted from web documents,
including their downstream evaluation task

Correct Codes

C: Correct translation, any Combined label for CC, CE, C5

CC: Correct translation, natural sentence
en The Constitution of South Africa nso Molaotheo wa Rephabliki ya Afrika Borwa
en Transforming your swimming pool into a pond  de Umbau Thres Swimmingpools zum Teich

CB: Correct translation, Boilerplate or low quality

en Reference number: 13634 1n Motango ya référence: 13634
en Latest Smell Stop Articles £i1 Pinakabagong mga Artikulo Smell Stop
Cs: Correct translation, Short
en movies, dad it cinema, papa
en Halloween - without me ay Hallowen — janiw nayampejj
Error Codes
X: Incorrect translation, but both correct languages
en A map of the arrondissements of Paris kg Paris kele mbanza ya kimfumu ya Fwalansa.
en Ask a question tr Soru sor Kullanima gére secim

WL: Source OR targef wrong language, but both still linguistic content
en The ISO3 language code is zho zza Tdim eadra bracach mar bhionns na frogannaidhe.
en Der Werwolfl — sprach der gute Mann, de des Weswolfs, Genitiv sodann,

NL: Not a language: at least one of source and target are not linguistic content

en EntryScan 4 _ tn TSA PM704 _
en organic peanut butter ckh VOO GOOOY

Annotation codes for parallel data with sentence pair examples
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Parallel Monolingual
CCAligned ParaCrawlv7.1 WikiMatrix 0OSCAR mC4
#langs audited / total 65/119 21738 20/78 51/ 166 48/ 108
Folangs audited 54.62% 55.26% 25.64% 30.72% 44 445
#sents audited / total 8037 /907T™M 2214/ 521M 1997 /95M  3517/84B 5314/8.5B
Yesents audited 0.00089% 0.00043% 0.00211% 0.00004 % 0.00006%
C 29.25% 76.14% 23.74% 87.21% 72.40%
X 29.46% 19.17% 68.18% - -
g WL 9.44% 3.43% 6.08% 6.26% 15.98%
E NL 31.42% 1.13% 1.60% 6.54% 11.40%
offensive 0.01% 0.00% 0.00% 0.14% 0.06%
porn 5.30% 0.63% 0.00% 0.48% 0.36%
C 53.52% 83.00% 50.58% 98.72% 92.66%
X 32.25% 15.27% 47.10% - -
g WL 3.60% 1.04% 1.35% 0.52% 2.33%
' NL 10.53% 0.69% 0.94% 0.75% 5.01%
offensive 0.00% 0.00% 0.00% 0.18% 0.03%
porn 2.86% 0.33% 0.00% 1.63% 0.08%
#langs =0% C 7 0 1 7 0
#langs <50% C 44 4 19 11 9
#langs =50% NL 13 0 0 7 1
#langs ==50% WL 1 0 0 3 4

Averages of sentence-level annotations across datasets and selected languages
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(b) Parallel corpora

Percentage of sentences labeled as correct vs. log N sentences for all audited
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languages
es_¥¥ bm ML vyo NG tr_TR ku_TR zh CN af_ZA FJv_ID zh_TW it_IT mean
Ace-6 0.58 0.73 0.41 0.45 0.43 0.55 0.65 0.55 0.46 0.55 0.66
Acec-4 0.77 0.73 0.60 0.55 0.56 0.72 0.72 0.57 0.58 0.66 0.72
Ace-2 091 0.96 0.72 0.64 0.71 0.79 0.77 0.92 0.81 0.69 0.79

Rater evaluation for a subset of audits from CCAligned (translated from English)
measured by the accuracy (Acc-n) of annotations by non-proficient speaker against
annotations by proficient speakers

tyw rm bar eml zh la mean

Acc-0 1O 098 1.0 1.0 086 L0 098
Acc4 1O 1.0 1.0 1.0 087 1.0 098
Acec-2 L0 1.0 1.0 1.0 087 1.0 098

Rater evaluation for a subset of audits from OSCAR measured by the accuracy
(Acc-n) of annotations by non-proficient speaker against annotations by proficient
speakers

en The prime minister of the UK is Boris Johnson.
nl De mimister-president van Nederland 1s Mark Rutte.
en: The prime minister of the Netherlands is Mark Rutte.

en 24 March 2018
Pt 14 Novembro 2018
en: 14 November 2018

&rn The current local ime in Sarasota is 89 minutes.
nn Den lokale tuden 1 Miami er 86 minutt.
e The local time in Miami is &6 minutes.

en In 1932 the highway was extended north to LA
bar 1938 is de Autobahn bei Inglstod feruig gsielll.
en: The highway near Inglstod was completed in 1938,

Examples of “parallel” data where the translation has a different meaning than the
source, but the form looks the same. (We added translations of the non-English
side.) Such data may encourage hallucinations of fake “facts"

VOCAB: (w/definition)

Automatic language classification: A process utilized in the article to automatically
determine the language of web-derived datasets, aiding in the curation and
analysis of multilingual data

Low-resource languages: Languages with limited available linguistic resources,
which are a focus in the article due to their challenges in data curation and
evaluation

Error taxonomy: A systematic classification system used to categorize and analyze
different types of errors within datasets, as applied in the manual data audit
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process

Web crawlers: Automated programs or algorithms designed to navigate the
internet and collect data, as mentioned in the article in the context of obtaining
web-derived collections for NLP research

LanglD: A shorthand for Language Identification, referring to the process of
automatically determining the language of a given piece of text, discussed in the
article regarding its use in data curation

WMT benchmarks: Benchmarks from the Workshop on Machine Translation
(WMT), which may serve as reference points or standards in the field of machine
translation. The article does not explicitly mention WMT benchmarks, but it
discusses benchmarks and challenges in the context of evaluating datasets

Macro-average: An averaging technique used to calculate overall performance
metrics across different categories or languages, applied in the article to aggregate
labels and assess dataset quality

Micro-average: A method of averaging that provides a per-instance assessment,
employed in the article to offer a more detailed view of performance metrics on a
sentence-by-sentence basis

Correct codes: Refers to data labeled accurately in terms of language codes, as
discussed in the article concerning the assessment of correct sentences in the
auditing process

Spearman rank correlation: A statistical measure used in the article to evaluate the
correlation between different variables, such as the correlation between data
quality scores and translation performance in downstream applications
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Cited references to follow up on

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2017. Bag of tnicks for
efficient text classification. In Proceedings of
the 15th Conference of the European Chapter
of the Association for Computational Linguis-
tics: Volume 2, Short Papers, pages 427431,
Valencia, Spain. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt. 2018.  Dual condi-
tional cross-entropy filtering of noisy parallel
corpora. In Proceedings of the Third Confer-
ence on Machine Translation: Shared Task Pa-
pers, pages 888-895, Belgium, Brussels. Asso-
ciation for Computational Linguistics.

Follow up Questions

How can the proposed solutions for effective, low-effort data auditing and error
taxonomy be practically implemented in the NLP community's current dataset
curation practices?

In the context of low-resource languages, what additional challenges and potential
solutions should be considered to ensure the quality and inclusivity of multilingual
datasets in future NLP research?

Considering the identified issues with mislabeled language codes and low-quality
content, what specific strategies and best practices can be recommended for the
improvement of automated filtering methods to enhance the overall quality of
multilingual datasets for NLP applications?




Priyadarshan 99

Notes (written with the assistance of ChatGPT)
Introduction

Improved access to multilingual datasets for NLP research

Web-derived collections available for download: ParaCrawl, WikiMatrix, CCAligned, OSCAR, etc.
Enabled development of highly multilingual models like mT5, M2M-100, M4

Curating datasets relies on website clues and automatic language classification (LanglD)
Automatically crawled datasets tend to have lower overall quality than hand-curated collections
Quality is judged through improvements in downstream applications

Promising for low-resource languages, but there's a lack of research on evaluating data
collections and crawling tools for such languages

Manual data audit for 230 per-language subsets of five major crawled multilingual datasets
Proposed solutions for effective, low-effort data auditing and an error taxonomy

Quantitative analysis reveals surprisingly low amounts of valid in-language data and identifies
systematic issues

Many datasets labeled with nontransparent or incorrect language codes

Reflection on potential harm of low-quality data releases for low-resource languages
Recommendations provided for future multilingual data releases

Related Work

Corpora collected by web crawlers are noisy

Issues with web crawls of lower-resource languages, especially with segment-level LangID
Cleaning and filtering web crawls can enhance general language modeling and downstream task
performance

Difficulty in validating automatically collected and curated datasets as ML research scales

Focus on advancing methodologies and best practices for dataset validation

Introduction of data statements by Bender and Friedman as a framework for dataset description
Similar work in systematizing documentation in data science and machine learning

Data quality implicitly documented by successes of filtering methods

Literature on filtering data for various NLP tasks

Analysis of a highly multilingual web crawl and LangID-related quality issues by Caswell et al.
Brief analysis of the quality of OSCAR by Caswell et al., with focus on the presence of in-language
content

e Dodge et al. automatically documented and analyzed the contents and sources of C4, revealing
machine-translated contents and NLP benchmark data

Multilingual Corpora

e Table 1 overview of selected multilingual corpora
e Corpora selected for multilinguality and inclusion of under-studied languages in NLP
e Corpora derived from CommonCrawl (CC), except WikiMatrix and ParaCrawl|
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® CCAligned (El-Kishky et al., 2020): parallel dataset aligned with FastText LangID and cross-lingual
LASER embeddings

e Multilingual C4 (mC4) (Xue et al., 2021): document-level dataset for mT5, filtered and
deduplicated, language identification using CLD3

® OSCAR (Ortiz Suarez et al., 2019; Ortiz Sudrez et al., 2020): monolingual corpora from CC
snapshots, deduplicated, LangID at line-level

e ParaCrawl v7.1: parallel dataset with 41 language pairs, primarily aligned with English, mined
using Bitextor

e WikiMatrix (Schwenk et al., 2021): public dataset with 135M parallel sentences in 1620 language
pairs mined from Wikipedia

e Focus on language pairs with English on one side in the audit

Auditing Data Quality
Auditing Process

e Participants
o 51 volunteers from NLP community, covering 70 languages
o Each sentence annotated by one rater
o Hypothesis tested with non-expert annotations
® Sample Selection
o Random sample of 100 lines for each language in each dataset
o Manual annotation based on error taxonomy
o Focus on languages with the least sentences in each dataset
e Non-expert Labeling Strategies
o Volunteers familiar with languages or used dictionaries/internet search
o Emphasis on low-resource evaluation by non-proficient speakers
e Effort
o Individual effort dependent on data quality and complexity
o Effort varied based on annotator's knowledge of the language(s)
e Taxonomy
o Error classes: Incorrect Translation (X), Wrong Language (WL), Non-Linguistic Content
(NL)
o Correct sentences (C) further classified into single words/phrases (CS) and boilerplate
contents (CB)
o Offensive/pornographic content flagged

Human Audit Results

e Interpretation of Results
o Compute percentage of each label within 100 audited sentences for each language
o Aggregate labels across languages: macro-average or weight them by dataset presence:
micro-average
o Combined statistics for correct codes (CC, CB, CS) as C
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o Results based on a small sample partially annotated by non-experts
o Capture ratio of languages (25-55%), tiny fraction of overall sentences
(0.00004-0.002%)
e Quality Issues Across Datasets
o Macro-averaged results show varied ratio of correct samples (C) (24% to 87%)
o Severe problems in CCAligned and WikiMatrix, with many languages having under 50%
correct sentences
o Some datasets show a high percentage of misaligned/mistranslated sentences (X),
especially in WikiMatrix
® Reporting Issues and Imbalance
o Macro-average gives equal weight to low and high-resource languages
o Micro-average (per-sentence basis) provides a more optimistic view
o Evaluation and tuning often focused on higher-resource languages, leading to
low-quality issues in underrepresented languages
e Nonlinguistic and Wrong Language Content
o Nonlinguistic content more common than wrong-language content
o CCAligned has the highest percentage of nonlinguistic content (31.42%)
o mC4 has the highest ratio of sentences in incorrect languages (15.98% average)
e Language Confusion
o Languages confused often related to higher-resource languages
o Some "out-of-model cousin" cases where unsupported languages end up in
similar-seeming languages
e (Quality and Size Correlation
o Low-resource datasets tend to have lower human-judged quality
o Positive correlation between quality (%C) and dataset size
e Languages with Lowest Quality
o Poor quality for languages in romanized script (_rom/_latn) and African languages
o Some languages have extremely low quality even within the same datasets
e Offensive and Pornographic Content
o Overall, sampled sentences had low offensive content but notable amounts of
pornographic content in CCAligned for 11 languages
® Annotation Quality
o Accuracy (Acc) of labels assigned by non-proficient speakers compared to proficient
speakers measured
o Mean accuracy of 0.66 for CCAligned audits (6-class taxonomy) and 0.98 for OSCAR
audits
o Significant drop of accuracy for finer-grained labels suggests room for improvement in
the error taxonomy

Automatic Filtering

e Given WL and NL frequency, tempting to use LanglD for per-sentence filtering
e Sentence-level n-gram LangID filtering using CLD3 on CCAligned
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o Evaluation shows CLD3 average precision at 40.6%
e Sentence-level Transformer LanglID filtering

o Semi-supervised Transformer-based models outperform n-gram models
Transformer model applied to CCAligned data
Filtering noisy corpora (<50% correct) boosts median precision from 13.8% to 43.9%
Cost: 77.5% recall loss
Biggest winners: Lingala (8% to 80%), Oromo (2% to 33% in-language)
Cost: Lose 50% of correct in-language sentences, reduced from 22k to 3k and 1k
Moral: No one-size-fits-all approach for sentence-level LanglD filtering

o O O O O O

Dataset Mislabeling

e Standardized Language Codes
Importance for practical data use and exchange

o BCP-47 standard widely used, based on ISO639-2 and 1ISO639-3 codes
o Allows subtags for scripts and regional varieties
o Enhances transparency and interoperability, especially with growing language diversity

in NLP
e Errors and Inconsistencies in Language Code Usage
o Analysis includes JW300 dataset from jw.org
o Find 8 nonstandard codes in CCAligned, 3 in OSCAR, 1 in mC4, 1 in WikiMatrix, and 70 in
JW300 (83 in total)
o Excludes 59 codes affected by superset issues
® Inconsistent Language Codes
o Using nonstandard or invented codes is a common issue
o Examples: CCAligned uses only two-letter codes, OSCAR mislabels Tosk Albanian as
Allemannic
e False Sign Languages
o 12% of JW300 carry sign language codes (48/417)
o Instead of sign language transcripts, they contain texts in another high-resource
language
o Example: en-zsl (Zambian sign language) data is actually English-English parallel data
e Mysterious Supersets
o Difficulty determining specific language when datasets contain supersets of other
language codes
o Example: WikiMatrix has Serbian (sr), Croatian (hr), Bosnian (bs), and Serbo-Croatian (sh)
as a superset
e Deprecated Codes
o Deprecated codes used in datasets: sh in WikiMatrix, iw in mC4, sh and eml in Oscar, daf
in JW300

Risks of Low-Quality Data

e Low Quality in Downstream Applications
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o Text corpora crucial for downstream NLP applications like question answering and text
summarization
o Flawed data for original systems can lead to failures in derived technology for languages
down the line
o Calls for future studies considering data size, domain, language-specific phenomena, and
metric biases
e Impact on Translation Quality
o Comparison of C% metric from audit with sentencepiece-BLEU (spBLEU) of M2M124
multilingual translation model
o Positive correlation (Spearman) between data quality scores and spBLEU (p =0.44, p =
0.041)
o Correlation with data size is higher (p = 0.66, p = 0.00078)
o Correlation between product of C% and data size is the highest (p = 0.73, p = 0.00013)
® Representation Washing
o Datasets with many low-resource languages may create a false sense of progress and
equity
o Low-quality datasets as benchmarks may exaggerate model performance or incorrectly
assume tasks are harder than they are
o Risks redirecting effort away from tasks and languages that need attention
e Trustin Incorrect "Facts"
o Instances of parallel-looking sentences structurally and semantically similar but not
factually correct
o Models may produce plausible but incorrect translations, leading to algorithmic trust
o Automation bias amplifies issues of inaccurate translations caused by misalignments

Future Work and Recommendations

e Severe Quality Issues in Multilingual Corpora
o Evaluation of five multilingual corpora reveals consistent and severe quality issues,
especially in lower-resource languages
Samples of 205 languages rated, 87 with under 50% usable data, 15 at 0% in-language
Identified issues with mislabeled data and nonstandard language codes, particularly in
JW300 dataset
o 83 affected corpora identified, at least 48 entirely spurious
e Lack of Reported Quality Issues
o Majority of quality issues had not been reported or investigated in depth
o Issues might go unnoticed for languages not represented in crawling methods
evaluation, causing harm in downstream applications
® Recommendations for Improvement
o Improve ease and accuracy of human evaluation
o Consider close dialects and develop a standard suite of automatic metrics for datasets
o Address the estimated portion of a dataset generated by machine translation, language
models, or bots/templates
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Strongly recommend looking at samples of any dataset before use or release
Explore techniques for data quality improvement, such as length-ratio filtering, LangID,
TF-IDF wordlists, dictionaries, and neural approaches like LM scoring

o Documentation as an alternative to filtering, with per-language quality scores and notes
about known issues

e Importance of Continuing Evaluations

o Encourage the community to continue conducting evaluations and audits of public

datasets, similar to system comparison papers
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Article #14 Notes: A Survey of Large Language Models

Source Title

A Survey of Large Language Models

Source citation (APA Format)

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,
Zhang, J., Dong, Z,, Dy, Y., Yang, C., Chen, Y., Chen, Z,, Jiang, J., Ren, R, Li,
Y., Tang, X,, Liu, Z., ... Wen, J.-R. (2023). A survey of large language

models. (arXiv:2303.18223). arXiv. https://arxiv.org/abs/2303.18223

Original URL

https://arxiv.org/abs/2303.18223

Source type

Journal Meeting

Keywords Language Model Pre-training, Data Processing and Quality, Model Architectures,
Decoding Strategies, Model Training Optimization
#Tags #lIms, #nlp, #dataquality, #llmpretraining, #trainingoptimizatoin

Summary of key points + notes
(include methodology)

The article delves into the pre-training phase of large language models (LLMs),
emphasizing the critical elements of data collection, preprocessing, and the impact
of quality pre-training data on model performance. It explores diverse data
sources, including general and specialized text, and discusses challenges in filtering
and processing, especially with web data. The study also investigates various
model architectures, from traditional to emergent designs, shedding light on their
advantages and efficiency. Decoding strategies post-pre-training are addressed,
covering auto-regressive methods and strategies like greedy search and sampling.
The article concludes with insights into model training optimization, detailing
strategies for efficient batch training, learning rate, and scalable techniques such
as 3D parallelism. Overall, the methodology involves a comprehensive examination
of the key components in LLM pre-training, offering insights into both established
practices and emerging trends in the field.

Research Question/Problem/
Need

What are the key challenges and optimization strategies in the pre-training phase
of large language models, encompassing data collection, model architectures,
decoding strategies, and efficient training methodologies?
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Model Category Size  Normalization PE Activation  Bias #L #H  dypae MCL
GPT3 [535] Causal decoder 1758 Pre LayerNorm  Learned GeLU v 96 96 12288 2048
PanGU- o Causal decoder ~ 207B  Pre LayerNorm  Learned GeLU v 64 128 16384 1024
orT Causal decoder  175B  Pre LayerNorm  Learned RelLU v 9% 96 12288 2048
PalLM Causal decoder ~ 540B  Pre LayerNorm RoPE SwiGLU * 118 48 18432 2048
BLOOM [69] Causal decoder 176B  Pre LayerNorm ALiBi GelLU v 700 112 14336 2048
MT-NLG Causal decoder 5308 - - - - 105 128 20480 2048
Gopher [59] Causal decoder  280B  Pre RMSNorm  Relative - - B0 128 16384 2048
Chinchilla Causal decoder 70B  Pre RMSNorm  Relative - - 80 64 8192 -
Galactica [35] Causal decoder 120B Pre LayerNorm  Learned GelLU * 96 80 10240 2048
LaMDa [63] Causal decoder 137B - Relative GeGLU - 64 128 8192 -
Jurassic-1 [94] Causal decoder 178B  Pre LayerNorm  Learned GelLU v 7i 9% 13824 2048
LLaMA [57] Causal decoder 656 Pre RMSNorm RoPE SwiGLU ® 80 64 8192 2048
LLaMA 2 [90] Causal decoder 70B Pre RMSNorm RePE SwiGLU ® 80 64 8192 4096
Falcon Causal decoder 40B  Pre LayerNorm RolE GelLU X 60 64 8192 2048
GLM-130B [84) Prefix decoder 130B  Post DeepNorm RoPE GeGLU s 70 96 12288 2048
T5 Encoder-decoder 1B Pre RMSNorm  Relative ReLU ® 24 128 1024 512

Model cards of several selected LLMs with public configuration details
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Configuration |

Method

Equation

Normalization position

Post Norm [22]
Pre Norm [26]
Sandwich Norm [201]]

Norm(x+Sublayer(x))
x + Sublayer(Norm(x))
x + Norm(Sublayer(Norm(x)))

Normalization method

LayerNorm [202]

RMSNorm [203]
DeepMNorm [204]

x\:—'}a v+ 8, p= Tlf E',Ll T o= \,ﬁ ZLL[J-U — )2
_x . il — fLed 2
REsey T RMS(x) =/ 2, 7

LayerNorm({a - x + Sublayer(x))

Activation function

RelU [205)

GeLU [208]

Swish [207]
SwiGLU [208]
GeGLU [208]

ReLl(x) = max(x.0)

GeLU(x) = 0.5% @ [L + erf(x/v2)], erf(zx) = —“: Joemdt
Swish(x) = x @ sigmoid(x)

SwiGLU(x, x2) = Swish(x;) @ xg

GeGLU (%, x2) = GeLU(x; ) & xg

Position embedding

Absolute [22]
Relative [73]
RoPE [209)
Alibi [210]

X=X +pi
Aij = “"qx,xj W;‘: + i

Ajj —W’r,x,R!J_,_J,x;.Wg’_. -

Ay = Wi Ry ;x| WA = Woxix W —m(i - j)

Detailed formulations for the network configurations

I am sleepy. I start a pot of

coftee  (1.661
water (.119
tea 0.057
rice 0.017
chai 0.012

strong  (0.008 | soup 0.005
black  0.008 | ... e
hot 0.007 | happy 4.3e-6
oat 0.006 | Boh 4 3e-6
beans  0.006 | ... .

The probability distribution over the vocabulary in descending order for the next
token of the context “I am sleepy. | start a pot of ”

Model B?;::kf;z; Lear?ll:é Warmup Decay Method Optimizer %rr\;c;smn g:ég;“ g::;j Dropout
GPT3 (175B) 32K—32M 6 x 1077 ves cosine decay to 10% Adam FP16 0.1 1.0

PanGu-ex (200B) 2% 1077 - - Adam - 0.1 - -
OPT (175B) M 12 %1074 ves manual decay AdamW FPle 0.1 - 0.1
PaLM (540B) 1M —4M 1= 1[3'? no inv square root Adafactor BFl6 ir? 1.0 0.1
BLOOM (176B) 4M 6= 1077 yes cosine decay to 10% Adam BF16 0.1 1.0 0.0
MT-NLG (530B) 64 K—3.75M 5 x 107 ves cosine decay to 10% Adam BF16 0.1 1.0 -
Gopher (250B) IM—6M 4% 1077 yes cosine decay to 10% Adam BF16 - 1.0
Chinchilla (70B) 1.5M—3M 1= 1074 yes cosine decay to 10% AdamW BF16 - - -
Galactica (120B) 2M T x 1070 ves linear decay to 10% AdamW - 0.1 1.0 0.1
LaMDA (137B) 256K - - - - BF16 - - -
Jurassic-1 (178B) 32 K—32M 6 x 1077 ves - - - -

LLaMA (65B) 4M 1.5 x 1074 ves cosine decay to 10% AdamW - 0.1 1.0

LLaMA 2 (70B) aM 1.5 % 1074 yes cosine decay to 10% AdamW - 0.1 1.0

Falcon (40B) M Les = 1074 yes cosine decay to 10% AdamW BFl6 0.1 - -
GLM (130B) 0.4M—8.25M &x 1077 ves cosine decay to 10% AdamW FP16 0.1 1.0 0.1
T5 (11B) 64K 1 x 1[}’1 no inverse square root AdaFactor - - - 0.1
ERNIE 3.0 Titan (260B) - 1= 10~ - Adam FPl6 0.1 1.0 -
PanGu-X (1.085T) 0.5M 2% 1079 yes Adam FP16 - -

Detailed optimization settings of several existing LLMs

VOCAB: (w/definition)

Tokenization: In the context of the article, tokenization refers to the crucial step in
data preprocessing where raw text is segmented into individual tokens for input
into Large Language Models (LLMs). The article mentions various tokenization
methods, including Byte-Pair Encoding (BPE), WordPiece, and Unigram, with a
special emphasis on customized tokenizers using the SentencePiece library for

diverse corpora

SentencePiece: SentencePiece is highlighted as a library for customized
tokenization in the article. It is mentioned in the context of creating tailored




Priyadarshan 108

tokenizers, which proves beneficial for handling diverse corpora during the
tokenization process.

Double descent: The term "double descent" is not explicitly mentioned in the
provided article notes. However, in machine learning, double descent typically
refers to a phenomenon where, as model complexity increases, the test error first
decreases, then increases, and finally decreases again. This concept may be
indirectly related to discussions in the article about the quality of pre-training data
and its impact on the performance of Large Language Models

In-context learning: In-context learning is associated with the capability of certain
architectures, such as the Causal Decoder Architecture, to perform autoregressive
generation by attending only to past tokens and themselves. GPT-3, developed on
this architecture, is highlighted for its superior in-context learning capability

Unidirectional attention mask: The unidirectional attention mask is a component
of the Causal Decoder Architecture mentioned in the article. It limits the attention
of input tokens to past tokens and themselves, enabling autoregressive generation
and enhancing the model's in-context learning capability

MOoE scaling: MoE Scaling refers to the application of a mixture-of-experts
approach in the scaling of neural network weights. This technique involves sparsely
activating a subset of weights for each input. The article mentions that models like
Switch Transformer and GLaM implement MoE scaling, leading to substantial
performance improvement with an increased number of experts or total
parameter size.

Parameterized state space models: Parameterized state space models are part of
the emergent architectures discussed in the article. These models include S4, GSS,
and H3, and they aim to address the quadratic computational complexity issues
associated with conventional Transformer architectures, allowing for more
efficient training and inference with long inputs.

Recursive update mechanisms: Recursive update mechanisms are mentioned in
the context of emergent architectures in the article. Architectures like RWKYV,
RetNet, and others employ recursive update mechanisms, combining features of
both recurrent neural networks (RNNs) and Transformer-like architectures. This
enables highly parallel and efficient training with GPU parallelism techniques,
contributing to overall model efficiency.
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Cited references to follow up on

[112] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin,
Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat, B. Zoph,
L. Fedus, M. P Bosma, Z. Zhou, T. Wang, Y. E.
Wang, K. Webster, M. Pellat, K. Robinson, K. 5. Meier-
Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le,
Y. Wu, Z. Chen, and C. Cui, “Glam: Efficient scaling
of language models with mixture-of-experts,” in In-
ternational Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, U5A, 2022, pp.
5547-5569,

Follow up Questions

How do different decoding strategies balance output diversity and coherence, and
are there specific scenarios where one strategy is more effective?

In emerging architectures like parameterized state space models, how do
improvements in computational efficiency impact training and inference, and how
do these architectures address challenges in conventional Transformer models
with longer input sequences?

Considering the importance of data quality, how do proposed data preprocessing
techniques like privacy reduction and deduplication impact model performance,
and what potential biases may arise in classifier-based approaches, especially in
dialectal languages?
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Notes (on relevant sections with the assistance of ChatGPT)
Pre-training

Pre-training establishes essential language understanding and generation skills for LLMs
Large-scale corpora critical for scale and quality of pre-training

Model architectures, acceleration methods, and optimization techniques crucial for effective
pre-training

Data Collection
Data Source

® Pre-training Corpus Sources
o Two broad categories: general data and specialized data
e General Text Data
o Webpages: Diverse but requires careful filtering
o Conversation Text: Enhances conversational competence; risk of misinterpretation
O Books: Formal, long texts beneficial for learning linguistic knowledge
e Specialized Text Data
o Multilingual Text: Improves multilingual abilities; models like BLOOM and PaLM
demonstrate strong performance
o Scientific Text: Enhances understanding of scientific knowledge; relies on arXiv papers,
scientific textbooks, and math webpages
o Code: Significant for program synthesis; two common sources are programming Q&A
communities (e.g., Stack Exchange) and public repositories (e.g., GitHub)
e Challenges
o Filtering and processing are crucial for ensuring data quality, especially in web data
o Risk of integrating dialogue data may lead to a decline in efficacy
o Specialized datasets require specific tokenization and preprocessing techniques

Data Preprocessing

e Data Preprocessing
o Essential after collecting large text data
o Aim: Construct a high-quality pre-training corpus
e Quality Filtering
o Two approaches: classifier-based and heuristic-based
o Language, metric, statistic, and keyword-based filtering methods
o Potential bias in classifier-based approaches, especially in dialectal languages
e Deduplication
o Reduces corpus diversity issues
o Perform at different granularities: sentence, document, and dataset-level
o Essential to prevent dataset contamination
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e Privacy Reduction
o Remove personally identifiable information (PIl) to mitigate privacy risks
o Rule-based methods (e.g., keyword spotting) used for Pll detection
e Tokenization
Crucial step for data preprocessing

o Aims to segment raw text into individual tokens for LLM inputs
o Different methods: Byte-Pair Encoding (BPE), WordPiece, and Unigram
o Customized tokenizers with SentencePiece library are beneficial for diverse corpora

Effect of Pre-training Data on LLMs

® |terative Pre-training
o Usually infeasible for LLMs due to high computational demand
o Emphasizes the need for a well-prepared pre-training corpus
e Mixture of Sources
o Diverse sources provide distinct linguistic characteristics and semantic knowledge
o Mixing sources enhances LLM's generalization capacity
o Careful consideration of data distribution crucial for downstream task performance
o Excessive data from one domain can impact generalization to other domains
e Amount of Pre-training Data
o Sufficient high-quality data essential for effective LLM pre-training
o Model size and data size scaling are interrelated for optimal performance
o Neglecting data quantity can lead to sub-optimal training, affecting performance
e Quality of Pre-training Data
o Low-quality corpus (noisy, toxic, duplicate) harms LLM performance
o Quantity and quality of training data both crucial
o Filtering and cleaning data improves LLM performance, prevents issues like "double
descent"
Duplicate data degrades LLMs' ability to copy from context, affecting generalization
Preprocessing methods essential for stability in training process and overall model
performance

Architectures
Typical Architectures

e Encoder-decoder Architecture
Vanilla Transformer model based on encoder-decoder architecture
Encoder uses multi-head self-attention layers to encode input
Decoder performs cross-attention on representations, autoregressively generates target
sequence
o Effective for NLP tasks (e.g., T5 and BART)
o Few LLMs built on this architecture (e.g., Flan-T5)
o Causal Decoder Architecture
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Incorporates unidirectional attention mask in decoder

Input tokens attend only to past tokens and themselves
GPT-series models (e.g., GPT-3) developed on this architecture
GPT-3 shows superior in-context learning capability

Scaling plays a crucial role in increasing model capacity
Adopted widely by various LLMs (e.g., OPT, BLOOM, Gopher)

o Prefix Decoder Architecture

O

O O O O

O

Also known as non-causal decoder

Revises masking mechanism to enable bidirectional attention over prefix tokens
Unidirectional attention on generated tokens

Shared parameters during encoding and decoding

Practical suggestion: Continually train causal decoders and then convert them into prefix
decoders

Representative LLMs based on prefix decoders include GLM-130B and U-PaLM

® Mixture-of-Experts (MoE) Scaling

O

o

O

Subset of neural network weights sparsely activated for each input

Implemented in models like Switch Transformer and GLaM

Substantial performance improvement with increased number of experts or total
parameter size

e Emergent Architectures

o

O

o

Conventional Transformer architectures suffer from quadratic computational complexity
Efficiency becomes crucial for training and inference with long inputs

New architectures include parameterized state space models (e.g., S4, GSS, H3), long
convolutions (e.g., Hyena), and Transformer-like architectures with recursive update
mechanisms (e.g., RWKV, RetNet)

Key merits: Recursive output generation like RNNs and parallel encoding of entire
sentences like Transformers

Enables highly parallel and efficient training with GPU parallelism techniques

Detailed Configuration

e Normalization Methods

o

LayerNorm: Original normalization method in vanilla Transformer, calculates mean and
variance per layer

RMSNorm: Introduced for faster training, scales activations with root mean square
(RMS), used in models like Gopher and Chinchilla

DeepNorm: Microsoft's method for stabilizing training in deep Transformers, adopted by
GLM-130B

e Normalization Position

O

o

Post-LN: Placed between residual blocks, tends to be unstable and rarely used alone
Pre-LN: Applied before each sub-layer, more stable than post-LN, commonly adopted
despite slightly decreased performance
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o Sandwich-LN: Adds extra LN before residual connections, aimed at preventing value
explosion, but may lead to training collapse
e Activation Functions
o GelU Activations: Widely used in existing LLMs for feed-forward networks
o  SwiGLU and GeGLU Variants: Variations of GLU activation used in recent LLMs like PaLM
and LaMDA, achieving better performance but with additional parameters
e Position Embeddings
o Absolute Position Embedding: Employed in vanilla Transformer, includes sinusoidal and
learned position embeddings
o Relative Position Embedding: Generated based on offsets between keys and queries,
facilitates extrapolation to longer sequences
O  Rotary Position Embedding (RoPE): Uses rotatory matrices based on absolute position,
widely adopted in recent LLMs like PaLM and LLaMA, improving translation invariance
and length extrapolation
o ALiBi: Improves extrapolation by biasing attention scores with penalties based on
distances, stable in BLOOM
e Attention Mechanism
o Full Attention: Original pairwise attention mechanism in vanilla Transformer, quadratic
complexity for all token pairs
o Sparse Attention: Efficient variants like Factorized Attention adopted in GPT-3, allows
each query to attend to a subset of tokens
o Multi-query/Grouped-query Attention: Shares linear transformation matrices, reducing
computation costs; explored in models like PaLM and StarCoder
o FlashAttention: Optimizes speed and memory consumption on GPUs, utilizing different
levels of memory for improved efficiency
o PagedAttention: Addresses GPU memory occupation issues by partitioning sequences
into subsequences, improving memory efficiency and throughput

Pre-training Tasks

e Language Modeling (LM)
o Commonly used pre-training task for decoder-only LLMs like GPT-3 and PaLM
o Objective is to autoregressively predict target tokens based on preceding tokens in a
sequence
o Training objective maximizes the likelihood: LLM (x) = Zi log P (xi | x<i) for a sequence x =
{x1, ..., xn}
o Decoder-only LLMs naturally transfer to certain tasks without fine-tuning, revealing
task-universal capabilities
o Variant: Prefix Language Modeling
m Designed for pre-training models with the prefix decoder architecture
m  Randomly selected prefix tokens excluded in computing the loss
m Performs slightly worse than traditional language modeling due to fewer tokens
involved in pre-training
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e Denoising Autoencoding (DAE)
o Another widely used pre-training task, adopted by models like T5 and GLM-130B
Inputs x\"x for DAE are corrupted text with randomly replaced spans
Language models trained to recover replaced tokens “x
Training objective: LDAE (x) = log P ("x | x\"x)
Implementation of DAE task is more complex than LM task, limiting its widespread usage
for large language models
® Mixture-of-Denoisers (MoD)
o Unified objective introduced for pre-training language models, combining LM and DAE

O O O O

objectives

o Recognizes LM and DAE as different denoising tasks: S-denoiser (LM), R-denoiser (DAE,
short span and low corruption), and X-denoiser (DAE, long span or high corruption)

o For sentences starting with different special tokens ({[R], [S], [X]}), corresponding
denoisers are optimized

o Applied in the latest PaLM 2 model

Decoding Strategy

e Background
o Post-pre-training, choosing an effective decoding strategy is crucial for generating
appropriate outputs from LLMs
® Auto-Regressive Decoding
o For decoder-only LLMs pre-trained on language modeling tasks
m Greedy Search
m Predicts the most likely token at each step based on previously
generated tokens
m  Modeled as: xi = arg max P (x | x<i) for the token at the i-th step
m Suitable for tasks where output depends heavily on input
m In open-ended tasks, may lead to awkward and repetitive sentences
m Sampling-Based Methods
m  Randomly selects the next token based on the probability distribution to
enhance randomness
m  Modeled as: xi ~ P (x | x<i)
m  Enhances diversity during generation
e Decoding Improvements for Greedy Search
o Beam Search
m Retains sentences with the n (beam size) highest probabilities at each step and
selects the top probability response
m Beam size configured within the range of 3to 6
o Length Penalty
m  Mitigates favoring shorter sentences in beam search
m  Normalizes sentence probability based on length (divided by an exponential
power Q)
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e Decoding Improvements for Random Sampling
o Temperature Sampling
m  Modulates randomness of sampling by adjusting the temperature coefficient of
the softmax function
m Reducing temperature increases the chance of selecting high-probability words
o  Top-k Sampling
m Truncates tokens with lower probability and samples only from tokens with the
top k highest probabilities
o Top-p Sampling
m  Gradually adds tokens from the vocabulary sorted by generative probability until
cumulative value exceeds p
e Efficient Decoding Strategies
o Speculative Decoding
m  Uses a compact, efficient model (e.g., n-gram model) to generate short
segments, verified and corrected by the LLM
m Achieves notable speedup without compromising quality
o Token-Level Early-Exit Techniques
m Enables generating a token at lower Transformer layers for greater speedup but
at the cost of quality
® Practical Settings
o Various decoding strategies supported by existing libraries and public APls
m T5 [73]: Greedy search (default) and beam search (beam size 4) with length
penalty 0.6 for translation and summarization
m  GPT-3 [55]: Beam search (beam size 4) with length penalty 0.6 for all tasks
m Alpaca [128]: Sampling-based strategies with top-k (k = 50), top-p (p = 0.9), and
temperature 0.7 for open-ended generation
m LLaMA [57]: Greedy search for question answering, sampling with temperature
settings 0.1 (pass@1) and 0.8 (pass@100) for code generation
m  OpenAl API: Supports greedy search, beam search, temperature sampling, and
nucleus sampling, with additional parameters to control repetition degree

Model Training

® Optimization Setting
o Commonly used settings for batch training, learning rate, optimizer, and training stability
e Batch Training
o Language model pre-training often uses a large batch size (e.g., 2,048 examples or 4M
tokens) to enhance stability and throughput
o Dynamic batch size increase during training, demonstrated in GPT-3, improves training
stability
® Learning Rate
o Linear warm-up schedule (0.1% to 0.5% of steps) increases learning rate to maximum
(e.g.,5x10-5to 1 x10-4)
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o Cosine decay strategy follows, reducing learning rate to 10% of maximum until
convergence
Optimizer
o Adam optimizer and AdamW optimizer widely used (e.g., GPT-3)
m Hyper-parameters: 1=0.9, 32 =0.95, € =10-8
o Adafactor optimizer (used in PaLM and T5) designed to conserve GPU memory
m Hyper-parameters: 31=0.9,32=1.0 — k-0.8
Stabilizing the Training
o Weight decay and gradient clipping commonly used to address training instability
m Threshold of gradient clipping: 1.0, weight decay rate: 0.1
o PalLM and OPT use a strategy to restart training from an earlier checkpoint before spikes
in training loss
o GLM proposes shrinking the embedding layer gradients to alleviate abnormal gradients
Scalable Training Techniques
o Challenges with increasing model and data sizes necessitate efficient training strategies
o Review of approaches: 3D parallelism, ZeRO, mixed precision training
3D Parallelism
o Combination of data parallelism, pipeline parallelism, and tensor parallelism
m Data parallelism: Replicates model parameters across GPUs for scalable training
m Pipeline parallelism: Distributes layers into multiple GPUs, using techniques to
reduce inefficiencies
m  Tensor parallelism: Decomposes LLMs for multi-GPU loading, supported in
open-source libraries
ZeRO
o DeepSpeed's technique addresses memory redundancy in data parallelism
o Retains only a fraction of data on each GPU, reducing memory usage without increasing
communication overhead
o Three solutions: optimizer state partitioning, gradient partitioning, and parameter
partitioning
Mixed Precision Training
o Transition from 32-bit FP32 to 16-bit floating-point numbers (FP16) for reduced memory
usage and communication overhead
o Some studies explore Brain Floating Point (BF16) for improved representation accuracy
during pre-training
Overall Training Suggestion
o Joint use of training techniques, including 3D parallelism, ZeRO, and mixed precision
training, to enhance throughput and model loading
o Open-source libraries (e.g., DeepSpeed, Colossal-Al, Alpa) support parallel training
methods
Techniques like ZeRO, FSDP, and activation recomputation reduce memory redundancy
Early detection of issues and performance prediction facilitated by mechanisms like
GPT-4's predictable scaling



Priyadarshan 117

o Leveraging supporting training techniques in mainstream deep learning frameworks
(e.g., PyTorch's FSDP) can enhance efficiency
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Article #15 Notes: Data-Juicer: A One-Stop Data
Processing System for Large Language Models

Source Title

Data-Juicer: A One-Stop Data Processing System for Large Language Models

Source citation (APA Format)

Chen, D., Huang, Y., Ma, Z., Chen, H., Pan, X., Ge, C., Gao, D., Xie, Y., Liu, Z,,
Gao, J., Li, Y, Ding, B., & Zhou, J. (2023). Data-Juicer: A one-stop data
processing system for large language models. (arXiv:2309.02033). arXiv.

https://arxiv.org/abs/2309.02033

Original URL

https://arxiv.org/abs/2309.02033

Source type

Journal Article

Keywords Large Language Models (LLMs), Data-Juicer, Language Model Data Processing,
Operator Pool for Data Processing, Feedback-Driven Data Processing
#Tags #lims, #nlp, #pretraining, #distributeddataprocessing, #systemoptimization

Summary of key points + notes
(include methodology)

The article highlights the significance of Large Language Models (LLMs) in
achieving unprecedented intelligence, emphasizing their potential for artificial
general intelligence. It identifies challenges in LLM data processing, such as
heterogeneity, timely feedback, usability, customizability, and massive data
volume. The proposed solution, Data-Juicer, is introduced as a comprehensive data
processing system that addresses these challenges. The system features a
Standardized Operator Pool, Feedback-Driven Data Processing with a dynamic
feedback loop, Boosting Usability with Built-Ins, and Comprehensive System
Optimization. Data-Juicer's methodology involves a unified configuration
paradigm, a range of dedicated tools, and operator reordering for optimization.
The article concludes with a quantitative evaluation demonstrating the system's
superiority over a state-of-the-art baseline in terms of processing time, memory
utilization, and CPU efficiency, showcasing its effectiveness in enhancing data
quality and system scalability for LLMs.

Research Question/Problem/
Need

How can Data-Juicer address the challenges in Large Language Model data
processing, offering a unified and optimized solution to enhance usability, data
quality, and scalability in the pursuit of artificial general intelligence?
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Category Function Input Process Level Output OP Usage Examples
Formatters Data format Dataset Dataset Dataset Load and unify dataset-hub, txt, json. md, codes,
unifying html, pdf, docx, ...
Mappers In-place text Sample Single-sample; Sample; Transform specified headers, textual elements; Fix
editing Multi-samples Samples messy codes; Enable text enhancement
Filters Conditional Sample Single-sample; Boolean Filter by meta-info, stats (e.g. lines count); model
text removing Dataset scores; external resources (e.g., flagged words)
Dedup- Duplication Single or Dataset Dataset Compare with hash-based and vector-based
licators removing Paired Dataset deduplication methods

Overview of the operator (OP) pool in Data-Juicer, with a detailed list continuously
maintained at the official documentation:
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Evaluation results of reference models trained with different datasets but the same
pre-training procedures

Model Training Data #Tokens Score
Falcon-1.3B [40] RefinedWeb 350B 33.97
Pythia-1.4B [28] Pile 300B 33.96

LLaMA-1.3B

Data-Juicer

150B 34.21

(RedPajama+Pile)

+ Alpaca-CoT-IFT 1508 + 15B

35.04

+ Our Refined IFT 150B + 4.7B 36.76

The average score of the pre-trained LLMs on 16 HELM core tasks

Model Tuning Data #3amples Win Tie
Alpaca 52k 16
100
LLaMA-7R Data-Juicer 40k 44
[33] Random (CFT, EN) 40k 19
105
Data-Juicer 40k 36
Belle 543k 28
LLaMA2-7B o 99
{Chinese, Data-Juicer 5Zk 33
FlagAlpha Random (CFT,ZH) 52k 19
[41]) , 96
Data-Juicer 52k 45

Results of pair-wise model comparisons using GPT4 scoring
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Scalability of Data-Juicer

Heterogeneity: The presence of diverse and varied elements within LLM data,
requiring specialized processing methods to handle different formats and sources.
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Data-Juicer: A proposed data processing system designed to address challenges in
LLM data processing, providing fine-grained abstraction, timely feedback, and
end-to-end configurability.

Operator Pool (OP): A collection of standardized operations in Data-Juicer,
categorized as Formatters, Mappers, Filters, and Deduplicators, offering flexibility
and user interaction in processing LLM data.

Hyper-Parameter Optimization (HPO): The tuning of parameters in Data-Juicer for
optimal data processing, tied to custom target metrics and visualization results for
effective optimization.

Checkpoint and Caching: Built-in mechanisms in Data-Juicer for resilient and
reliable data processing, allowing swift recovery during system restarts, mitigating
redundancy, and providing flexibility in space-time trade-offs.

Interactive Visualization: A feature in Data-Juicer integral to feedback stages,
enabling users to visually track the effects of individual operations, compare
results before and after processing, and enhance control over data processing.

Distributed Data Processing: The capability of Data-Juicer to work seamlessly with
distributed processing frameworks like Ray, Apache Beam, and Apache Flink,
translating single-node pipelines into multi-node clusters for accelerated
processing of large-scale LLM training data.

Cited references to follow up on

[43] Abhinav Jam, Hima Patel, Lokesh Magalapatti, Mitin Gupta, Sameep Mehta,
Shanmukha Guttula, Shashank Mujumdar, Shazia Afzal. Buhi Sharma Mittal,
and Vitobha Mumigala. 2020, Overview and importance of data quality for
machine learning tasks. In KD 3561-3562.

Follow up Questions

How does Data-Juicer specifically handle the challenges of heterogeneity in LLM
data processing, and what mechanisms are in place to ensure efficient processing
of diverse data formats?

Can you provide more insights into the feedback-driven data processing aspect of
Data-Juicer, particularly how the dynamic feedback loop and interactive
visualization contribute to enhancing understanding and optimizing the system for
LLM data processing?

In the quantitative evaluation, what specific benchmarks and metrics were used to
compare Data-Juicer against the state-of-the-art baseline, and are there any
particular scenarios or use cases where Data-Juicer demonstrated superior
performance or faced challenges?
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Notes (written with the assistance of ChatGPT)

Introduction

e Large Language Models (LLMs) achieve unprecedented intelligence, enabling applications
otherwise infeasible.

e LLMs are built through pre-training on large-scale general-purpose corpus and fine-tuning with
specific-purpose data.

e Challenges in LLM data processing include high heterogeneity, timely feedback, usability,
customizability, and massive data volume.

e Existing open-source projects contributing LLM training data are limited, hindering quantitative
understanding and enhancement.

e Data-Juicer is proposed as a one-stop data processing system addressing challenges in LLM data
processing.

e Data-Juicer offers fine-grained abstraction, timely feedback, and end-to-end configurability with
over 50 versatile operators and tools.

e Challenges addressed by Data-Juicer include heterogeneity, timely feedback, usability, and
massive data volume.

e Data-Juicer integrates with Huggingface-datasets library, Megatron-LM, HELM, Ray, and Beam for
comprehensive LLM data processing.

e Empirical evidence demonstrates Data-Juicer's ability to produce high-quality data recipes and
improve LLM performance.

e Contributions include the novel system, high-quality data recipes, integration with distributed
computing ecosystems, and user-centric interface designs.

e Data-Juicer's system, data recipes, and tutorials are publicly accessible on GitHub:

https://github.com/alibaba/data-juicer.

Background and Related Works

Language modeling is crucial for achieving machine intelligence.
Advancements in language models, especially pre-training and fine-tuning paradigms, have led
to exceptional performance in natural language processing tasks.

e The self-supervised Transformer architecture, highly parallelizable, has enabled significant
increases in model parameters and training corpus scales for Large Language Models (LLMs).

e LLMs show potential for artificial general intelligence, but challenges persist in processing LLM
data, whether for pre-training or fine-tuning.

® Pre-training data serves as the foundation for LLM intelligence, involving training on large
amounts of high-quality data from diverse sources.

e Fine-tuning, refining pre-trained LLMs with smaller task-specific datasets, enhances capabilities
and aligns models with human values.

e Challenges in processing pre-training data include filtering noise, redundancy, and toxicity, while
fine-tuning data needs effective processing for maximum usefulness and minimized risks.
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e The symbiotic nature of pre-training and fine-tuning data involves shared properties such as
quality, diversity, and volume considerations.

e Quality is addressed through cleaning, deduplication, and detoxification in both pre-training and
fine-tuning data processing.

e Diversity is emphasized by mixing various types of data to achieve appropriate diversity in both
pre-training and fine-tuning data.

o The pursuit of quality and diversity often trades off with data volume, leading to challenges such
as increased noise and bias.

e Existing open-source LLM data processing projects like BLOOM, PromptSource, and RedPajama
have made progress but lack the abstraction and functionalities of Data-Juicer.

e Data-Juicer aims to address limitations by providing systematic and modular processing abilities
for managing heterogeneous data.

e Current works lack optimal usability and the ability to explore data insight, hindering adaptability
for diverse users and alternative usages.

e The focus of existing works is on functionality rather than system performance, leaving room for
enhancement in efficiency, space management, and scalability.

Standardized Operator Pool

Standardized Operator (OP) pool devised to address heterogeneity of data recipes for LLMs.
OPs organized into four categories: Formatters, Mappers, Filters, and Deduplicators, promoting
flexibility and user interaction.

e Unified Data Representation introduced through Formatter OPs, backed by Huggingface-datasets
and Apache Arrow.

e \Versatile Data Processing in Data-Juicer, including Mappers for text editing, Filters for conditional
text filtering, and Deduplicators for dataset-level deduplication.

e Decoupling of computation for statistics and actual data processing in Filter and Deduplicator
OPs for effective reuse and streamlined processes.

e Composability of Data-Juicer's OPs, allowing users to effortlessly process a variety of data types
in a modular manner.

e Each OP designed for a distinct function and adaptable to different text fields, providing
immense flexibility.

o Configurable parameters such as number of tokens, filtering thresholds, and auxiliary models
enhance adjustability of OPs.

o OPs labeled with typical usage scenarios for easy navigation and operation, blending simplicity
with power in Data-Juicer's architecture.

Feedback-Driven Data Processing

e Dynamic Feedback Loop:
o Challenge 2 addressed with a dynamic feedback loop in the data processing pipeline.
o Enables effective data processing and understanding through extensive visualization
tools and automated tracking.



o
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Holistic feedback loop for LLM data processing and training with interactive visualization
features.

® Hyper-Parameter Optimization (HPO) for Data Processing (Sec. 4.1):

O

o

O

o

Incorporation of hyper-parameter optimization (HPO) in Data-Juicer for data processing.
HPO tied to custom target metrics and visualization results for effective optimization.
Acceleration with Checkpoint and Caching:
m Built-in checkpoint and caching management for resilient and reliable data
processing.
m  Swift recovery during system restarts or failures, mitigating processing
redundancy.
m Flexibility in space-time trade-off with user-specified saving frequencies and
rules.
Auto-HPO:
m Automated HPO tool integrated into Data-Juicer for finding optimal data
processing hyper-parameters.
m Support for advanced HPO algorithms such as Bayesian optimization and
Hyperband algorithm.
m Users can investigate correlations and importance scores of specific
hyper-parameters.

e Interactive Visualization (Sec. 4.2):

o

O

o

o

Interactive visualization integral to multiple feedback stages of Data-Juicer.

Tracer tool records sample changes after each operation for effective tracking.

Users can visually track the effects of individual OPs, enhancing control over the data
processing.

Comparative visualization before and after processing, aiding in statistical analysis.

o Feedback with LLM Ecosystem Integration (Sec. 4.3):

Integration of rich ecosystems of LLMs to support mainstream training libraries.
Facilitates timely assessment of model abilities across various metrics or benchmarks.
Supports state-of-the-art LLM benchmarks and extension of customized evaluation
benchmarks.

Dynamic expansion of evaluation metrics during training process for subsequent scaling
predictions.

Leaderboard-style comparison enhances visualization of model strengths and
weaknesses.

o Feedback Loop Showcase (Sec. 4.4):

O

o

Concrete example of the feedback loop with Data-in-the-LLMdev-Loop process.

Steps include analyzing the original dataset, refining parameters, processing, analyzing
refined dataset, training LLMs, and comparing results.

Innermost loop (steps 1 and 2) for data probe creation, middle loop (steps 1~4) for
refining and processing, and outermost thorough feedback loop.

Users can flexibly leverage built-in tools or expand the loop based on specific needs.
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Boosting Usability with Built-Ins

e Unified Configuration Paradigm (Challenge 3):
o Challenge addressed: Supporting diverse user customization preferences and technical
expertise.
Unified and easy-to-use configuration paradigm for data recipes and extensive tools.
All-in-one configuration principle ensures reproducibility, traceability, and simplifies
specification changes.
o Facilitates the formation of data recipes for refinement, reuse, quantitative exploration,
and automatic optimization.
e Configuring Your Data Recipe (Sec. 5.1):
o End-to-end pipeline of data processing configurable in Data-Juicer.
Configuration includes processing environment parameters, OP lists, and tools.
Jsonargparse used for unified, flexible, and easy-to-use configuration capabilities.
Configuration items automatically registered for OPs and tools.
Users can build config files using "subtraction" or "addition" methodologies.

o O O O

o Extensive examples of pre-built data processing recipes provided for user reference.
e Dedicated Pluggable Tools (Sec. 5.2):
o Extensible collection of powerful dedicated tools in Data-Juicer.
o Quality Classifier:
m  Text quality classifier for culling high-quality text from heterogeneous sources.
m Reproduced model based on GPT-3 quality scorer, expanded applicability to
Chinese text and various code types.

o Enhanced Sampler for LLM data:
m Advanced data sampling utilities for large-scale data chunk handling in LLMs.
m Stratified sampling technique using metadata or statistical fields for varied
selection metrics.
o Full Toolkit:

m Includes analyzers, evaluators, and reference models, maintaining and evolving
toolkit in Data-Juicer.
e User-Friendly Experiences (Sec. 5.3):
o Designed for adaptability, catering to users with diverse expertise.
o Zero-Code Processing:
m Ready-to-use data recipes and plug-in tools for novice users with no advanced
system knowledge.

o Low-Code Customization:
m Intermediate users can alter configurations, customize quality classifiers, and
refine data based on pre-developed recipes.
o Advanced Extension:

m Experienced users can introduce new OPs, derive from base classes, and
implement specific functions.

m Decoupled design allows smooth incorporation of new tools at all stages of LLM
data processing.
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o Interactive Demos:
m Series of interactive demos in Streamlit for hands-on learning and ease of
adoption.

Comprehensive System Optimization

® Operator Reordering for Optimization:
o Reorder OPs after fusion to enhance computational efficiency.
o Utilize commutativity of Filters to prioritize less time-consuming OPs.
o Reduces processing time and handles fewer samples for time-consuming OPs.
o Minimizes redundant computation and overhead of initializing multiple processes.
e Optimized Space Utilization - Caching OPs and Compression:
o Design dedicated hashing method to bypass serialization issues in OPs.
o Enables successful caching of each OP, ensuring optimal cache management.
o Users can activate compression technologies (Zstandard, LZ4) to reduce cache data
storage.
o Automatic compression and decompression of cache files reduce volume without
compromising speed.
® Optimized Scalability - Distributed Data Processing:
o Data-Juicer compatible with distributed processing frameworks (Ray, Apache Beam,
Apache Flink).
o Translates single-node data processing pipeline into multi-node cluster for accelerated
processing.
o Adapts HuggingFace-datasets interfaces for Ray-datasets, allowing execution in
distributed mode.
o Supports alternative back-ends like Flink, accelerating Mapper, Filter, and Deduplicator
OPs in a multi-node cluster.
Alleviates bottlenecks on a single node caused by memory capacity and 10 throughput.
Enhances scalability for handling large-scale LLM training data while minimizing resource
requirements.

Quantitative Evaluation

e Data Quality Enhancement:
o Data-Juicer focuses on comprehensive and flexible operability for LLM data processing.
o Aims to generate high-quality, diverse datasets for improved LLM performance.
o Deviates from traditional simplistic filtering for richer, more learnable information.
o Refined Pre-training Data Recipes:
Utilizes publicly available sources like RedPajama and the Pile for transparency.

o Merges and enhances data quality, offering reproducible pre-training datasets.
o LLMs pre-trained on Data-Juicer recipes consistently outperform alternatives.
o Achieves higher performance with half the data volume compared to SOTA baselines.
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Refined Fine-tuning Data Recipes:

O

O

o

O

Labels subsets from Alpaca-CoT for “Instruct Fine-Tuning (IFT)” and performs data
mixing.

LLMs trained on Data-Juicer recipes consistently demonstrate high validity.
Outperforms competitive fine-tuning datasets (Alpaca, Belle) with higher win rates.
Effectiveness confirmed compared to trivial processing strategies with higher win rates.

System Performance and Optimization:

O

Examines end-to-end performance of Data-Juicer against RedPajama, a state-of-the-art
baseline.

Data-Juicer demonstrates 55.6% less processing time, 63.0% less memory, and 52.2%
less CPU utilization.

Context management, OP fusion, and reordering save up to 24.91% total time and
42.04% for fusible OPs.

System Scalability:

o

Tests scalability on multiple servers, showcasing effective performance on Ray with up to
87.4% time reduction.

Limited scalability on Beam due to constraints in data loading component.

Demonstrates enhanced scalability and efficiency in handling large datasets for LLMs.
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Article #16 Notes: GLaM: Efficient Scaling of Language

Models with Mixture-of-Experts

Source Title

GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Source citation (APA Format)

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y.,
Yu, A. W,, Firat, O., Zoph, B., Fedus, L., Bosma, M., Zhou, Z., Wang, T.,
Wang, Y. E., Webster, K., Pellat, M., Robinson, K., ... Cui, C. (2021). GLaM:
Efficient scaling of language models with mixture-of-experts.

(arXiv:2112.06905). arXiv. https://arxiv.org/abs/2112.06905

Original URL

https://arxiv.org/abs/2112.06905

Source type

Journal Artic

Keywords

Language Models, Efficient Scaling, Sparsely Activated MoE

#Tags

#lims, #bigdata, #moe, #efficientscaling

Summary of key points + notes
(include methodology)

The article introduces the GLaM family of language models, addressing the
challenges of scaling in language models like GPT-3. GLaM achieves competitive
results with fewer parameters, demonstrating improved learning efficiency and
lower energy consumption compared to GPT-3. The study underscores the
significance of data quality in producing high-quality auto-regressive language
models and highlights GLaM's ability to close the performance gap between
stereotypical and anti-stereotypical examples. The GLaM models utilize sparsely
activated Mixture-of-Experts (MoE) layers, providing computational flexibility and
energy efficiency. The study evaluates GLaM on 29 public NLP benchmarks,
showcasing its superiority in zero, one, and few-shot learning scenarios.
Additionally, ethical considerations are discussed, emphasizing the potential
democratization of Al usage but also addressing challenges related to biases,
privacy concerns, and environmental impact. The evaluation methods include
analyses of data quality effectiveness, scaling trends, and ethical challenges, with
GLaM demonstrating efficiency and competitive performance.

Research Question/Problem/
Need

How can the GLaM family of language models address the challenges of scaling in
large language models like GPT-3, achieving competitive results with fewer
parameters and demonstrating improved learning efficiency and lower energy
consumption?
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Important Figures

GPT-3 GLaM  relative
FLOPs { token (G) 350 180 —45.6%

cost Train enerey (MWh) 1287 456  —64.6%
accuracy Zero-shot 56.9 62.7T  +10.2%
N averase One-shot 6l.6 65.5  +6.3%

‘ £ Few-shot 652 681 +4.4%

Comparison between GPT-3 and GLaM
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(a) Zero-shot (b) One-shot (c) Few-shot (d) Train and inference cost

An overview of the percentage change in predictive performance (higher is better)
of GLaM (64B/64E) versus GPT-3 (175B) in the (a) zero-shot, (b) one-shot, and (c)
few-shot setting across 7 benchmark categories with 29 public tasks in total

Dataset Tokens (B)  Weight in mixture
Filtered Webpages 143 0.42
Wikipedia 3 0.06
Conversations 174 0.28
Forums 247 0.02
Books 390 0.20
News 650 0.02

Data and mixture weights in GLaM training set

VOCAB: (w/definition)

Pretrained Word Vectors: Word representations learned from large amounts of
unlabeled text, capturing semantic relationships between words.

Contextualized Word Vectors: Word embeddings that take into account the context
of a word within a sentence or document.

Mixture-of-Experts (MoE): A neural network architecture that combines multiple
expert models, with a gating mechanism selecting which expert to use for a given
input.

Sparse Decoder-Only Language Models: Models that focus on the decoding part of
the sequence generation process and leverage sparsely activated MoE layers.

Sharding Algorithm: A technique to partition large models into smaller,
manageable parts for efficient processing.
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Pareto Distribution: A statistical distribution used for sampling to ensure a mix of
content quality and prevent bias in the training dataset.

Gated Linear Unit (GLU): An activation function used in place of the traditional
activation function in certain model sub-layers.

Positional Embedding: Representations added to input sequences to convey the
position of each token.

SentencePiece Subword Tokenizer: A tokenizer that breaks down words into
smaller subword pieces for language modeling.

Cited references to follow up on

Carlini, N., Tramer, F., Wallace, E.. Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T. B., Song, D., Er-
lingsson, U., Oprea, A., and Raffel, C. Extracting training
data from large language models. CoRR, abs/2012.07805,
2020.

Follow up Questions

How can the GLaM family of language models contribute to mitigating ethical
challenges, such as representation bias and privacy concerns, associated with the
use of large language models, and what specific strategies does the article propose
for addressing these challenges?

Given the emphasis on data quality over quantity, what are the key insights and
methodologies employed in the study to ensure high-quality auto-regressive
language models, and how do these insights impact the performance and
efficiency of GLaM models compared to other large language models like GPT-3?

The article highlights the efficiency of GLaM models in terms of both learning and
energy consumption. Could the findings from this study inform future directions in
the development of large language models, particularly in terms of achieving
competitive performance with reduced computational resources, and what
implications might this have for the broader field of natural language processing?
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Notes (written with the assistance of ChatGPT)

Introduction

Language models have significantly contributed to the progress of natural language processing
(NLP) in the last decade.

Pretrained word vectors and contextualized word vectors have been produced using variants of
language models for various NLP applications.

The trend has shifted towards scaling with more data and larger models, allowing complex NLP
tasks with less labeled data.

Models like GPT-3 and FLAN demonstrated the feasibility of in-context learning for few-shot or
zero-shot generalization, requiring very few labeled examples.

However, further scaling is becoming expensive and energy-consuming.

The proposed GLaM family of language models strikes a balance between dense and conditional
computation, achieving competitive results with fewer parameters.

GLaM's largest version has 1.2T parameters, with 64 experts per MoE layer, and each token
activates only a subnetwork of parameters.

GLaM outperforms GPT-3 on zero, one, and few-shot learning across 29 public NLP benchmarks,
with improved learning efficiency and lower energy consumption.

The study emphasizes the importance of data quality over quantity, even for large models, in
producing high-quality auto-regressive language models.

GLaM closes the performance gap between stereotypical and anti-stereotypical examples on the
WinoGender benchmark, suggesting reduced reliance on superficial statistical correlations.
Sparse decoder-only language models, particularly those based on MoE, show promise in
achieving high-quality NLP models while saving energy costs.

Mok is highlighted as a strong candidate for future scaling in the NLP community.

Related Work

Language Models:
o Neural language models, including word embedding models like word2vec and GloVe,
have proven useful for various natural language processing (NLP) tasks.
Pre-training and Fine-tuning:
o Abundance of compute and data allows training large models through unsupervised
pre-training, particularly using recurrent models and Transformers.
o Transfer learning through pre-training and fine-tuning has demonstrated good
performance on downstream tasks, but it requires task-specific fine-tuning.
In-Context Few-shot Learning:
o GPT-3 and related work show that scaling up language models significantly improves
task-agnostic, few-shot performance without gradient updates.
Sparsely Gated Networks:
o Mixture-of-Experts (MoE) models, especially sparsely activated ones, offer advantages in
language modeling and machine translation.
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o Shazeer et al. demonstrated effective use of a large number of weights with only a small
subset of the computation graph at inference time.

o Fedus et al. showcased results with a large 1 trillion parameter sparsely activated model
(Switch-C), which differs from GLaM in terms of architecture and evaluation
benchmarks.

e GLaM and Related Models:

o GLaM is a family of decoder-only language models, while Switch-C is an encoder-decoder
sequence-to-sequence model.

o0 GLaM and Switch-C both have one trillion trainable parameters, but GLaM excels in
few-shot settings without requiring fine-tuning, contrasting with Switch-C's focus on
fine-tuning benchmarks like SuperGlue.

o Table 2 provides a summary of key differences between GLaM and related models
pre-trained on text corpora.

Training Dataset

e Dataset for Training:
o A 1.6 trillion token dataset is curated, representing diverse language use cases primarily
sourced from web pages.
e Quality Classification:
o A text quality classifier is developed to distinguish between high-quality and
lower-quality web content, using a feature hash-based linear classifier.
e C(lassifier Application:
o The classifier rates webpages, and a Pareto distribution is used for sampling, ensuring a
mix of content quality and preventing bias.
e Dataset Composition:
o The GLaM dataset combines web pages, books, Wikipedia, forums, news, and public
domain social media conversations.
® Mixture Weights:
o Mixture weights are set based on component performance in smaller models to avoid
over-sampling smaller sources like Wikipedia.
e Overlap Analysis:
o An analysis checks for data contamination by comparing the training set with evaluation
data, showing alignment with previous work (Brown et al., 2020).

Model Architecture

e Sparsely Activated MoE in GLaM Models:
o GLaM models leverage sparsely activated Mixture-of-Experts (MoE) similar to GShard
MoE Transformer.
o Feed-forward components of every other Transformer layer are replaced with an MoE
layer, each containing independent feed-forward networks as 'experts.'
e MoE Layer Structure:
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o Each MoE layer has a collection of experts, and a gating function, using softmax
activation, models a probability distribution over these experts.

o Sparsity is maintained, activating only a limited subset of experts for a given input token,
enhancing model capacity while limiting computation.

o In this architecture, the subset size is two, and the gating network dynamically selects
the best two experts for each token during inference.

e Computational Flexibility:

o Each MoE layer offers O(E*2) combinations of feed-forward networks, providing
significantly more computational flexibility compared to the classic Transformer
architecture.

e Model Modifications:

o Standard positional embedding is replaced with per-layer relative positional bias.

o In non-MoE Transformer feed-forward sub-layers, the first linear projection and
activation function are replaced with the Gated Linear Unit and Gaussian Error Linear
Unit.

e Sharding Algorithm:

o Large GLaM models are weight- and computation-partitioned using the 2D sharding

algorithm, detailed in Xu et al. (2021), for efficient processing.

Experiment Setup

® Training Settings for GLaM:
o GLaM is a family of dense and sparse decoder-only language models.
o Training variants of GLaM with hyperparameters specified for models ranging from 130
million to 1.2 trillion parameters.
e Hyperparameter Overview:
o Key hyperparameters include E (number of experts), B (mini-batch size), S (input
sequence length), M (model and embedding dimension), H (hidden dimension), L
(number of layers), N (number of total devices), and more.
o Dense models with comparable per-token FLOPs are included for reference.
e Training Procedure:
Common learning hyperparameters are used across all GLaM models.

o Adafactor optimizer with specific decay schedules and threshold clipping is employed.
o The MoE auxiliary loss is added to encourage expert load balancing.
o Training employs SentencePiece subword tokenizer with float32 for model weights and

bfloat16 for activations.
o Larger GLaM models, such as the 64B/64E, are trained on 1,024 Cloud TPU-V4 chips.
e Training Challenges and Strategies:
o Training at the trillion parameter scale is expensive and allows little room for
hyperparameter tuning.
o Smaller-scale models are trained first to expose potential issues in the dataset and
infrastructure early on.
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o Strategies include skipping weight updates for batches with NaNs or Infs and restarting
from an earlier checkpoint in case of fluctuations or NaN/Inf occurrences during training.
Evaluation Setting:
o Evaluation focuses on zero, one, and few-shot learning protocols.
o Benchmarks are chosen to match GPT-3 evaluations, with 29 datasets grouped into
natural language generative (NLG) and natural language understanding (NLU) tasks.
Benchmarks and Metrics:
o Benchmarks include NLG tasks (e.g., TriviaQA, SQUADv2) and NLU tasks (e.g., MultiRC,
COPA).
o Metrics involve accuracy, exact match (EM), and F1 scores, with normalization for
comparison.
o Both NLG and NLU tasks are considered for the overall few-shot performance, and
results are reported in a standardized format.

Extensive Evaluation of GLaM Models:
o Evaluation of GLaM models emphasizes advantages of sparsely activated models in
language modeling and their scaling trends.
o Quantitative inspection of data quality effectiveness for language model training.
Comparison between MoE and Dense Models:
o GLaM (64B/64E) competes favorably with GPT-3 (175B) for zero, one, and few-shot
learning.
o Outperforms GPT-3 in 6 out of 7 categories on average, demonstrating consistent
performance.
o GLaM (64B/64E) activates fewer parameters than GPT-3, achieving similar performance
with half the compute FLOPs.
Challenging Task: TriviaQA:
o GLaM (64B/64E) excels in the challenging open-domain question-answer task TriviaQA,
surpassing GPT-3 and previous finetuned SOTA.
o Demonstrates better one-shot performance, outperforming GPT-3 on the testing server.
Impact of Data Quality:
o Evaluation on the development set reveals the impact of data quality on few-shot
performance.
o Filtering text on model quality using GLaM (1.7B/64E) indicates consistent improvement
in both NLG and NLU tasks, emphasizing the importance of pretraining data quality.
Scaling Studies:
o Scaling trends in dense models involve increasing depth and width, resulting in linear
growth in parameters.
o GLaM MoE models scale differently, growing the size or number of experts in the MoE
layer.
o MoE models consistently outperform dense models at larger scales, and additional
experts enhance predictive performance.
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e Efficiency of GLaM:

o GLaM MoE models require significantly less data than dense models for similar
performance in zero, one, and few-shot scenarios.

o Computation efficiency and energy consumption analyses demonstrate that training
sparsely activated models consumes much fewer computational resources than training
dense models.

o GLaM (64B/64E) achieves similar performance to GPT-3 with 1/3 of the energy cost
during training. Training time and energy consumption are notably reduced, showcasing
the efficiency of the MoE architecture.

Ethical Considerations

e Zero and Few-shot Inference Capabilities:

o Large language models exhibit exciting capabilities in zero and few-shot inference.

o Enables intuitive control of model behavior with natural language and small datasets,
lowering the barrier for prototyping and application development.

o Potential to democratize Al usage by reducing the need for specialist knowledge.

e Ethical Challenges and Considerations:

o The versatility and power of large language models emphasize ethical challenges:

m Representation bias.
m Proper selection and handling of training data.
m Documentation of training data.
m Privacy concerns.
m  Environmental impact.

e Focus on Unintended Biases:

o Research emphasizes unintended biases learned by language models, including
correlations between gender and profession, negative sentiment about racial and
religious groups, and biases related to people with disabilities.

o Rigorous evaluation methods are essential for assessing the encoding of harmful
stereotypes.

® Assessment Metrics and Methods:
Inspiration taken from GPT-3 for evaluation methods.

o Examination of co-occurrence in generated text referencing identity terms.
o Analysis of the WinoGender benchmark for coreference errors.
o Evaluation of toxicity degeneration using the RealToxicityPrompts dataset and

Perspective API.
e Co-occurrence Prompts Analysis:
o Analysis of commonly co-occurring words in generated text for prompts related to
gender, religions, racial, and ethnic identity.
o Utilizes top-k sampling and an off-the-shelf POS tagger.
o Results indicate associative biases and patterns in the generated text.
e WinoGender Benchmark:
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Assessment of gendered correlations and coreference errors using the WinoGender
benchmark.

GLaM (64B/64E) achieves a new state-of-the-art accuracy of 71.7%.
Remarkably close accuracy between 'he' and 'she' examples, as well as between
stereotypical and anti-stereotypical examples.

e Toxicity Degeneration Evaluation:

o

o

O

Toxicity degeneration is assessed using the RealToxicityPrompts dataset and Perspective
API.

Relationship between Toxicity Probability of the Prompt (TPP) and the Toxicity
Probability of the Continuation (TPC) is analyzed.

Model's TPC closely follows TPP, indicating the model's influence by the prompt.
Distribution of toxicity probabilities for batches of continuations is examined.

e Consideration of Ethical Challenges in Language Models:

O

Despite exciting capabilities, ethical challenges remain, requiring ongoing research and
evaluation.

Emphasis on measurement methods and criteria for assessing general-purpose large
language models.

The importance of assessing models on a range of metrics given their versatility and
powetr.
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Article #17 Notes: Subword Regularization: Improving

Neural Network Translation Models

Source Title

Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates

Source citation (APA Format)

Kudo, T. (2018). Subword regularization: Improving neural network translation
models with multiple subword candidates. (arXiv:1804.10959). arXiv.

https://arxiv.org/abs/1804.10959

Original URL

https://arxiv.org/abs/1804.10959

Source type

Journal Article

Keywords Neural Machine Translation (NMT), Subword Regularization, Open Vocabulary,
Empirical Experiments
#Tags #llms, #nmt, #nlp, #subwordregularization

Summary of key points + notes
(include methodology)

The article discusses the challenges in Neural Machine Translation (NMT) models
related to fixed word vocabularies and the resulting open vocabulary issue. It
introduces Subword Regularization as a method to address this problem by
breaking rare words into subword units, specifically using Byte-Pair-Encoding
(BPE). The methodology involves integrating multiple segmentation candidates
during on-the-fly data sampling in the training process. The experiments,
conducted on various corpora, demonstrate significant improvements in
translation accuracy and robustness, especially in open-domain settings. Subword
regularization is highlighted as an effective approach across different NMT
architectures, providing a flexible solution to enhance the performance of NMT
models.

Research Question/Problem/
Need

How can the accuracy and robustness of Neural Machine Translation models be
enhanced in open vocabulary settings, addressing the limitations of fixed word
vocabularies and increasing translation quality in the presence of unknown words?
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Important Figures

Subwords (. means Spaces)

Vocabulary id sequence

_Hell/o/_world
_H/ello/_world
_He/llo/_world
JHe/ll/o/ _world

13586 137 255
3207363 255

579 10115 255
7 18085 356 356 137 255

_H/el/l/o/ /world 320 585 356 1377 12295
Multiple subword sequences encoding the same sentence “Hello World”
Size of sentences Parameters
Language ] #vocab #eim of LSTM #layers of LSTM
Corpus pair train dev test (Enc/Dec shared) embedding (Enc+Dec)
IWSLTI15 | en < vi 133k 1553 1268 16k 512 2+2
en ++zh | 209k 887 1261 16k 512 2+2
IWSLTI17 | en <+ Ir | 232k 890 1210 16k 512 2+2
en <+ ar | 231k 888 1205 16k 512 2+2
KFTT en <++ja | 440k 1166 1160 8k 512 6+6
ASPEC en ++ ja 2M 1790 1812 16k 512 6+6
WMTI14 | en ++de | 45M 3000 3003 32k 1024 8+8
en < cs 15M 3000 3003 32k 1024 8+8
Details of evaluation data set
Proposed (one-best decoding) Proposed (n-best decoding, n=164)
Language baseline I =64 I =nc | =64 =m0
Corpus pair (BPE) [=1 a=01 [a=02/05| (=1 a=01 |a=02/0.5
IWSLTI5 | en — vi | 25.61 25.49 27.68% | 27.71% | 25.33 28.18% | 28.48*%
vi—en | 2248 22.32 24.73% | 26.15% | 22.04 24.66% | 26.31%
en — zh 16.70 16.90 19.36%* 20.33% 16.73 20.14% 21.30%
zh—en| 1576 15.88 17.79% 16.95% 16.23 17.75% 17.29%
IWSLTI7 | en — It | 35.53 35.39 36.70F | 36.36* | 35.16 37.60% | 37.01%
fr - en 33.81 33.74 35.57% 35.54% 33.69 36.07% 36.06%
en—ar | 13.01 13.04 14.92% 15.55% 12.29 14.90% 15.36%
ar—en | 2598 27.09% | 28.47% | 2922% | 27.08*% | 29.05% | 29.29%
KFTT en — ja 27.85 28.92% 30.37% 30.01% 28.55% 31.46% 31.43%
ja—en | 21.37 21.46 22.33% | 22.04% | 21.37 22.47% | 22.64%
ASPEC | en —ja | 40.62 40.66 4124% | 41.23% | 40.86 41.55% | 41.87%
ja—en 26.51 26.76 27.08%* 27.14% 27.49% 27.75% 27.89%
WMTI4 | en — de | 24.53 24.50 25.04% | 2474 2273 25.00% | 2437
de —en| 2801 28.65% | 28.83% | 29.39% | 28.24 29.13% | 29.97*
en — Cs 25.25 25.54 2541 25.26 24 88 2549 25.38
cs —en | 2878 28.84 29.64% | 2941% | 25.77 29.23% | 29.15%
Main Results (BLEU(%))
Model BLEU
Word 23.12
Character (512 nodes) 22.62
Mixed Word/Character 24.17
BPE 24.53
Unigram w/o SR ([ = 1) 24.50
Unigram w/ SR (I = 64, o =0.1) | 25.04

Comparison of different segmentation algorithms (WMT14 en—de)

VOCAB: (w/definition)

Neural Machine Translation (NMT): A paradigm in machine translation that utilizes
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neural networks to learn and generate translations, capturing complex linguistic
patterns.

Byte-Pair-Encoding (BPE): A subword tokenization technique that breaks down rare
words into smaller units, enhancing the model's ability to handle open vocabulary.

Recurrent Neural Network (RNN): A type of neural network designed for sequence
modeling, commonly used in predicting subwords in NMT.

Maximum Likelihood Estimation (MLE): An approach in training neural networks
that maximizes the likelihood of the observed data, often used as an objective
function in NMT training.

Dropout: A regularization technique in deep learning where random units are
omitted during training to prevent overfitting and enhance model generalization.

Denoising Auto-Encoders (DAEs): Models that introduce noise to input data during
training, aiming to make the model robust to variations and improve
generalization.

BLEU Score: A metric used to evaluate the quality of machine-generated
translations by comparing them to reference translations, measuring precision and
recall of n-grams.

Hyperparameters: Configurable settings in a machine learning model that are not
learned from the data, requiring manual tuning for optimal performance.

Moses Tokenizer: A tool used for text tokenization, commonly employed before
training subword models to preprocess data in NMT.

Ensemble Training: A concept involving training multiple models on different
subsets of data and combining their predictions to enhance overall performance.

Cited references to follow up on

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proc. of ACL.

Follow up Questions

How does the Subword Regularization method compare to other approaches for
handling open vocabulary issues in Neural Machine Translation, and are there
specific scenarios where it excels or falls short?

Given the success of Subword Regularization in improving translation accuracy and
robustness, how transferable is this approach to other natural language processing
tasks beyond NMT, and what considerations should be taken when applying it to
different domains?
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The article highlights the impact of hyperparameters on the effectiveness of
Subword Regularization. What further research or experimentation is needed to
better understand the optimal hyperparameter settings for different corpora and

language pairs, and how can these settings be generalized or fine-tuned for
broader applications in NMT?
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Notes (written with the assistance of ChatGPT)

Introduction

o Neural Machine Translation (NMT) Models:
o Operate with fixed word vocabularies (Bahdanau et al., 2014; Luong et al., 2015; Wu et
al., 2016; Vaswani et al., 2017).
Vocabulary size crucial for training and inference.
Limiting vocabulary increases unknown words, affecting translation accuracy in open
vocabulary settings.
e Open Vocabulary Issue and Subword Units:
o Common approach: Break up rare words into subword units.
o Examples: Byte-Pair-Encoding (BPE) (Sennrich et al., 2016).
o BPE offers a balance between vocabulary size and decoding efficiency, addresses
unknown words without special treatment.
® BPE Segmentation and Ambiguity:
o BPE encodes sentences into unique subword sequences.
o lllustration (Table 1): Multiple subword sequences encoding the same sentence, causing
spurious ambiguity.
O Variants treated as different inputs in NMT, affecting decoding.
e Subword Regularization Method:
o Aim: Improve accuracy and robustness of open-vocabulary NMT.
o Components:
m Integration of Multiple Segmentation Candidates:
m Implemented as an on-the-fly data sampling during NMT training.
m  Not specific to NMT architecture, applicable to any NMT system without
changing the model structure.
m  New Subword Segmentation Algorithm:
m Based on alanguage model.
m Provides multiple segmentations with probabilities, emulating noise
generated during actual data segmentation.
e Empirical Experiments and Results:
o Multiple corpora, different sizes, and languages used.
o Subword regularization demonstrates significant improvements over single subword
sequence methods.
O Robustness improvement shown through experiments with out-of-domain corpora.
e Conclusion:
o Subword regularization emerges as an effective method for enhancing the accuracy and
robustness of open-vocabulary NMT models through the integration of multiple
subword segmentations during training.
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Neural Machine Translation with multiple subword segmentations

e NMT Training with On-the-Fly Subword Sampling:

o

Given source sentence X and target sentence Y, segmented into subword sequences x
andy.

NMT models translation probability P(Y|X) as a sequence model generating target
subwords.

Recurrent Neural Network (RNN) commonly used for predicting subwords.

Subword regularization is not limited to RNN architecture; applicable to various NMT
architectures (e.g., Vaswani et al., 2017; Gehring et al., 2017).

e Standard Maximum Likelihood Estimation (MLE) Training:

o

O

o

Training objective: Maximize log-likelihood L(0) of parallel corpus D.

Objective function: L(B) = Z log P(y(s)|x(s); 8) for each sentence pair in D.
Assumption: Source and target sentences can be segmented into multiple subword
sequences with probabilities P(x|X) and P(y|Y).

e Subword Regularization Objective:

O

Optimize parameter set 8 with marginalized likelihood (Lmarginal) considering multiple
subword segmentations.

Exact optimization not feasible; approximate with finite k sequences sampled from
P(x|X) and P(y|Y).

Objective function: Lmarginal(B) ~= (1/k”2) £ Z X log P(yj| xi; 8) for each sentence pair in
D, where xi and yj are sampled subword sequences.

® Training Process:

o

O

Online training with iterative optimization of © on mini-batches from D.
Subword sampling executed on-the-fly for each parameter update, yielding a good
approximation of the objective function.

e Decoding in NMT:

o

O

o

o

For decoding, only raw source sentence X is available.

One-best decoding: Translate from the best segmentation x* maximizing P(x|X).

N-best decoding: Use n-best segmentations of P(x|X) to consider multiple segmentation
candidates.

Scoring function: score(x, y) = log P(y|x)/|y|A, penalizing shorter sentences with
parameter A.

Parameter A optimized with development data.

e Conclusion:

o

Related Work

Describes the training process with on-the-fly subword sampling in NMT, emphasizing
the flexibility of subword regularization across various NMT architectures. Additionally, it
outlines decoding approaches, including one-best and n-best decoding strategies.

® Regularization by Noise in Deep Neural Networks:
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o Dropout (Srivastava et al., 2014) is a well-known example, randomly turning off hidden
units during training.

o Ensemble training concept, where different models are trained on different subsets of
data.

o Subword regularization considered a variant of ensemble training, introducing
randomness to data inputs.

Noise Injection in Denoising Auto-Encoders (DAEs):

o DAEs (Vincent et al., 2008) add noise to inputs, training the model to reconstruct original
inputs.

o (Lample et al., 2017; Artetxe et al., 2017) independently propose DAEs in
sequence-to-sequence learning, altering word order for compositionality.

o Word dropout (lyyer et al., 2015) drops words from a bag-of-words representation
before averaging word embeddings.

o (Belinkov and Bisk, 2017) explore character-based NMT with synthetic noise altering
character order.

Motivation and Similarities with Subword Regularization:

o Subword regularization shares motivation with previous work: increasing robustness by
injecting noise to input sentences.

o Previous approaches often rely on heuristics for synthetic noises, not always reflecting
real noises.

o Subword regularization generates synthetic subword sequences using an underlying
language model for better emulation of noises and segmentation errors.

o Can be applied to both source and target sentences due to invertible conversion.

Data Augmentation Perspective:

o Subword regularization viewed as data augmentation.

o Converts input sentence into multiple invariant sequences, similar to data augmentation
in image classification tasks (e.g., random flipping, distorting, cropping).

Segmentation Ambiguities in Language Modeling:

o Latent Sequence Decompositions (LSDs) (Chan et al., 2016) marginalize over all possible
segmentations, similar to subword regularization.

o Subword regularization injects multiple segmentations with a separate language model
through on-the-fly subword sampling.

o LSDs and subword regularization handle segmentation ambiguities without assuming
predetermined segmentations, with subword regularization being simple and
independent of NMT architectures.

Lattice-to-Sequence Models:

o Extension of sequence-to-sequence models, representing input uncertainty through
lattices (Su et al., 2017; Sperber et al., 2017).

o Lattice encoded with a variant of TreeLSTM (Tai et al., 2015), requiring a change in model
architecture.

o Unlike subword regularization, lattice-to-sequence models do not handle target side
ambiguities.

Mixed Word/Character Model (Wu et al., 2016):
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Addresses out-of-vocabulary problem with a fixed vocabulary.
Out-of-vocabulary words not collapsed into a single UNK symbol, converted into a
sequence of characters with special prefixes.

o Similar to BPE, encodes a sentence into a unique fixed sequence, without considering
multiple segmentations.

Experiments

e Experiment Overview:
o Experiments conducted using various corpora with different sizes and languages.
o Evaluation data summarized in Table 2.
e Corpora Details:
o IWSLT15/17 and KFTT:
m  Small corpora with diverse languages and linguistic properties.
m Evaluate language-agnostic property of subword regularization.
o ASPEC and WMT14 (en«<>de):
m  Medium-sized corpora.
o WMT14 (en<>cs):
m Llarge corpus with over 10M parallel sentences.
® NMT System Used:
o Implementation: GNMT (Wu et al., 2016).
o Settings and training procedures followed (Wu et al., 2016) with adjustments based on
corpus size.
® Hyperparameters:
o Settings varied according to corpus size (see Table 2).
o Common settings: Dropout probability 0.2, Adam and SGD for parameter estimation,
length normalization, converge penalty parameters set to 0.2, decoding beam size set to
4,
e Data Preprocessing:
o Moses tokenizer used before training subword models.
o Chinese and Japanese processed with characters and KyTea, as Moses tokenizer does not
segment sentences into words for these languages.
e Evaluation Metric:
o Case-sensitive BLEU score (Papineni et al., 2002) used.
e Baseline System:
o BPE segmentation used as the baseline system.
o Three test systems evaluated with different sampling strategies.
e Sampling Strategies Evaluated:
o Unigram language model-based subword segmentation without subword regularization
(I=1).
o With subword regularization (I = 64, a = 0.1).
o (I=9,a=0.2/0.5)-0.2 for IWSLT, 0.5 for others.
e Comparison and Decoding:
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o  One-best decoding and n-best decoding compared.
o 7 systems evaluated for each language pair.
e Main Results:
o Table 3 shows translation experiment results.
o Subword regularization (I > 1) significantly boosts BLEU scores, especially in lower
resource settings (IWSLT and KFTT).
o (=% a=0.2/0.5) slightly outperforms (I = 64, a = 0.1) on IWSLT corpus.
e Results with Out-of-Domain Corpus:
o Systems evaluated with out-of-domain in-house data (Web, patents, query logs).
o Subword regularization achieves larger improvements (+2 points) in every domain
compared to in-domain evaluations (Table 4).
o Significant improvements even on large training datasets (WMT14), supporting the claim
that subword regularization is more useful for open-domain settings.
e Comparison with Other Segmentation Algorithms:
o Table 5 compares different segmentation algorithms.
o Unigram language model with subword regularization achieves the best BLEU score
(25.04), demonstrating the effectiveness of multiple subword segmentations.
® Impact of Sampling Hyperparameters:
o Figure 1 shows BLEU scores for various hyperparameters on IWSLT15 (en — vi) dataset.
o Optimal hyperparameters depend on sampling size (l).
o a=0.0leads to performance drops, suggesting biased sampling with a language model
helps emulate real noise in translation.
Larger | allows more aggressive regularization, more effective for low-resource settings.

o

O

Optimal hyperparameters challenging to determine, open question for subword
sampling.
® Results with Single Side Regularization:
o Table 6 summarizes BLEU scores with subword regularization on either source or target
sentence.
o Single side regularization has positive effects, although BLEU scores are lower than full
regularization.
o Suggests applicability of subword regularization to other NLP tasks beyond
encoder-decoder architectures.
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Article #18 Notes: Extracting Training Data from Large
Language Models

Source Title

Extracting Training Data from Large Language Models

Source citation (APA Format)

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K.,
Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., & Raffel, C.
(2020). Extracting training data from large language models.

(arXiv:2012.07805). arXiv. https://arxiv.org/abs/2012.07805

Original URL

https://arxiv.org/abs/2012.07805

Source type

Journal Article

Keywords Language models, Attack methodologies, Memorization, Data privacy, Mitigation
strategies
#Tags #lims, #nlp, #bigdata, #dataprivacy, #privacyleakage

Summary of key points + notes
(include methodology)

The paper investigates the practical threat of extraction attacks on language
models (LMs), challenging the notion that state-of-the-art LMs do not significantly
memorize training examples. Demonstrating that even large LMs memorize and
leak individual training examples, the study proposes a black-box query-based
attack methodology to extract verbatim sequences from an LM's training set. The
attacks, applicable to various LMs, including GPT-2, identify memorized content
through diverse sample generation, likelihood ranking, and membership inference.
The results reveal significant memorization even in LMs with minimal overfitting,
highlighting the impact of model size on memorization and emphasizing the need
for privacy mitigation strategies. The study employs a two-step attack process,
generating text samples from the LM and predicting memorized text through
membership inference. The initial approach, utilizing top-n sampling, reveals
memorized content but exhibits weaknesses. The improved attack introduces
enhanced sampling methods, including random sampling and conditioning on
internet text, alongside refined membership inference strategies. Evaluation
involves datasets with varying sample generation strategies and automated
de-duplication. Manual inspection, categorization, and correlation analyses
contribute to understanding the nature of memorized content and the
effectiveness of different attack strategies. The study concludes with insights into
mitigating privacy leakage in LMs.

Research Question/Problem/

How can the threat of privacy leakage posed by language models, particularly their
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Need

significant memorization of training data, be effectively addressed to ensure the
responsible and secure deployment of these models in real-world applications?

Important Figures

Training Data Extraction Attack Evaluation

200,000 LM Sorted Choose Check
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Workflow of extraction attack and evaluation

Category Count
US and international news 109
Log files and error reports 79
License, terms of use, copyright notices 54
Lists of named items (games. countries, etc.) 54
Forum or Wiki entry 33
Valid URLs 50
Named individuals (non-news samples only) 46
Promotional content (products, subscriptions, etc.) 45
High entropy (UUIDs, base64 data) 35
Contact info (address, email, phone, twitter, etc.) 32
Code 31
Configuration files 30
Religious texts 25
Pseudonyms 15
Donald Trump tweets and quotes 12
Web forms (menu items, instructions, etc.) 11
Tech news 11
Lists of numbers (dates, sequences, etc.) 10

Manual categorization of the 604 memorized training examples that we extract
from GPT-2, along with a description of each category
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The zlib entropy and the perplexity of GPT-2 XL for
200,000 samples generated with top-n sampling

Memorized Sequence Occurrences in Data

String Length Docs Total
v2 R 87 | 10
o WY 40 | 22
.. . v 54 1 36
ab. ...z 64 | 49
a3 T 32 | 64
c1 R o 43 | 83
tx . co 10 | 06
76 R .2 17 | 122
27 R0 40 | 311

Examples of k = 1 eidetic memorized, high entropy content that we extract from
the training data. Each is contained in just one document. In the best case, we
extract a 87-characters-long sequence that is contained in the training dataset just
10 times in total, all in the same document.

VOCAB: (w/definition)

Differential Privacy (DP): A privacy notion ensuring individual records in a training
dataset remain private during model training.
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DP-SGD Algorithm: A differentially private stochastic gradient descent algorithm,
widely implemented for training private machine learning models.

Top-n Sampling: A text generation method where the model samples from the
top-n likely tokens.

Membership Inference: An attack predicting if a sample was present in the training
data.

Entropy: A measure of uncertainty or disorder in a set of data.

Beam Search: A decoding method that explores multiple possible sequences
during text generation.

Prompting: Providing input to a language model to generate desired output.

Privacy Leakage: Unintended exposure of private information by a machine
learning model.

Memorization Spectrum (k-eidetic memorization): The range of memorization
levels based on the frequency (k) of repeated instances in training data.

Context-Dependent Memorization: The phenomenon where memorized content is
influenced by the model's context during prompt input.

Audit Models: Empirical assessment of a model's behavior, including privacy levels.

Vetting Training Data: Scrutinizing training datasets to identify and filter sensitive
content.

Cited references to follow up on

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, 2019.

Follow up Questions

How can the proposed strategies for mitigating memorization in language models
be practically implemented in real-world applications, considering the trade-offs
between privacy and model utility?

In light of the demonstrated challenges in discovering memorization and the
context-dependent nature of the extracted content, what additional techniques or
approaches could be explored to enhance the detection and understanding of
memorization in large language models?

As language models continue to evolve and grow in size, what implications and
considerations arise for privacy leakage, and what are the potential advancements
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in model architectures or training methodologies to address these challenges?
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Notes (written with the assistance of ChatGPT)
Introduction

e Language models (LMs) are statistical models that assign probabilities to sequences of words
and are crucial for various natural language processing tasks.

® Modern neural-network-based LMs use large model architectures (e.g., 175 billion parameters)
and train on massive datasets (e.g., nearly a terabyte of English text).

e Scaling improves the fluency of natural language generation and allows LMs to be applied to
various tasks without parameter updates.

® Machine learning models, including LMs, are known for exposing information about their
training data, potentially compromising privacy.

e Privacy leakage is often associated with overfitting, where a model memorizes examples from its
training set.

e State-of-the-art LMs, trained on massive de-duplicated datasets for a single epoch, exhibit little
to no overfitting, leading to the assumption that they do not significantly memorize training
examples.

® The paper challenges this assumption, demonstrating that large LMs do memorize and leak
individual training examples.

e The proposed attack involves extracting verbatim sequences from an LM's training set using
black-box query access.

e The attack generates a diverse set of high-likelihood samples, ranks them based on likelihood
ratios, and identifies memorized training examples.

® The attacks apply to any language model, including those trained on sensitive and non-public
data, with experiments using the GPT-2 model.

® A quantitative definition of memorization is provided, and results show that a significant
percentage of candidate samples are verbatim training examples.

e The paper explores the impact of model size and string frequency on memorization and analyzes
how different attack configurations extract data.

® Practical strategies to mitigate privacy leakage are discussed, including differentially-private
training and recommendations for de-duplicating documents.

e While differentially-private training is theoretically effective, it can lead to longer training times
and reduced utility.

e Recommendations, such as careful de-duplication of documents, are suggested to empirically
mitigate memorization but may not prevent all attacks.

Background & Related Work

e Introduction to Language Models and Data Privacy Attacks:
o Large neural network-based language models (LMs) with billion parameters play a crucial
role in natural language processing.
o Introduction to data privacy attacks in the context of LMs.
e Language Modeling:
o Language models are fundamental for natural language processing pipelines.
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Training objectives often involve a "next-step prediction" approach.
State-of-the-art LMs use neural networks, particularly Transformer LMs.

Training involves minimizing the loss function over a training dataset.

Despite the potential for memorization, LMs trained on massive datasets typically
exhibit minimal memorization.

O O O O

e Text Generation with Language Models:
o LMs can generate new text by iteratively sampling tokens based on probability
distributions.
Variations in text generation methods, including greedy sampling and top-n sampling.
Focus on the GPT variant of Transformer LMs, particularly GPT-2 with different model
sizes.
® GPT-2 Model Details:
o GPT-2 model family trained on data scraped from the public Internet.
o Description of the training dataset collection process and model architecture.
o GPT-2 does not overfit, with the training loss only around 10% smaller than the test loss.
® Training Data Privacy:
o Undesirability of models remembering specific details about potentially private training
data.
o Overview of privacy attacks, including membership inference, model inversion, and
training data extraction attacks.
o Training data extraction attacks aim to reconstruct verbatim training examples, posing a
greater risk.
® Privacy Protection Measures:
o Discussion of differentially-private training techniques as an approach to minimize
memorization.
o Challenges associated with differentially-private mechanisms, including reduced
accuracy and increased training time.
o Notable state-of-the-art LMs, such as GPT-2, GPT-3, and T5, do not currently apply these
privacy-preserving techniques.

Threat Model and Ethics

e Training Data Extraction Attacks:
o Commonly viewed as theoretical or academic, not seen as practically exploitable.
o Prevailing belief links privacy leakage to overfitting, and state-of-the-art LMs exhibit
minimal overfitting.
o The paper challenges this view, demonstrating the practicality of training data extraction
attacks.
o Defines "memorization" precisely and introduces the threat model and attack objectives.
e Defining Language Model Memorization:
o Memorization is essential for LMs but needs a formal definition.
o Introduces "eidetic memorization" as data memorized in a small set of training
instances.
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o Formalizes the definition with concepts of model knowledge extraction and k-eidetic
memorization.
o Defines memorization as a spectrum based on the value of k and the length of
memorized strings.
e Threat Model:
o Considers an adversary with black-box access to a language model.
o Adversary can compute probabilities of sequences but cannot inspect individual weights
or hidden states.
o Highly realistic threat model, applicable to many LMs accessible through black-box APIs.
® Risks of Training Data Extraction:
o Discusses privacy risks, including data secrecy, contextual integrity of data, and small-k
eidetic risks.
o Focuses on small-k memorization for more impactful extraction attacks.
o Acknowledges that LMs output memorized data even without an explicit adversary.
e Ethical Considerations:
o Raises ethical concerns about discussing specific memorized content, especially when it
contains personal information.
Minimizes ethical concerns by using public data and attacking a publicly available model.
Ethical considerations remain, and the paper masks personally-identifying information
when disclosed.
o Acknowledges potential harms and emphasizes the benefits of publicizing attacks for
discussions on ethics.
o Notes responsible disclosure efforts, including contacting individuals whose information
is disclosed and informing OpenAl.

Initial Training Data Extraction Attack

e Strawman Baseline for Training Data Extraction:
o Atwo-step procedure:
m Step 1: Generate Text
m  Unconditionally sample a large quantity of data from the language
model.
m Step 2: Predict Memorized Text
m Use a membership inference attack to remove generated samples
unlikely to contain memorized text.
o Corresponds to extracting model knowledge (Definition 1) and predicting k-eidetic
memorization (Definition 2).
e Initial Text Generation Scheme (Section 4.1):
o Initialize the language model with a one-token prompt.
o Repeatedly sample tokens in an autoregressive fashion.
o Sample sequences that the model considers "highly likely."
Concretely, sample exactly 256 tokens for each trial using the top-n strategy with n = 40.
e Initial Membership Inference (Section 4.2):

O
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o Training data extraction reduces to membership inference: predict whether each sample
was present in the training data.

o Use perplexity as a natural likelihood measure, measuring how well the LM predicts
tokens in a sequence.

o Perplexity formula:
P=exp(—1n3 i=1nlogfB(xilx1,...,xi—1))P=exp(—n1> i=1nlogfB(xilx1,...,xi—1)).

e Initial Extraction Results (Section 4.3):

o Generate 200,000 samples using the GPT-2 XL model (1558M parameters) following the
text generation scheme.

o Sort samples based on model perplexity and investigate those with the lowest
perplexity.

o Baseline attack finds various memorized content, including entire licenses and popular
individuals' Twitter handles or email addresses.

o ldentifies memorization but is not k-eidetic for low values of k; content likely appeared
many times in the training dataset.

® \Weaknesses of Initial Approach:

o Low diversity of outputs in the sampling scheme, leading to several hundred duplicates.

o Baseline membership inference strategy has a high number of false positives.

o False positives often contain "repeated" strings, despite being highly unlikely, due to
incorrect likelihood assignments by large LMs.

Improved Training Data Extraction Attack

® Improved Training Data Extraction:
o Low precision and recall in the proof-of-concept attack.

o Improved methods for sampling from the model (Section 5.1) and membership inference
(Section 5.2).

® Improved Text Generation Schemes (Section 5.1):
o Random Sampling:
m  Randomly sample from the language model.
o Sampling With A Decaying Temperature:
m Flatten the probability distribution with a decaying temperature.
m Temperature starts at t=10t=10 and decays to t=1t=1 over the first 20 tokens.
o Conditioning on Internet Text:
m Seed the model with prefixes from Internet scrapes.
m Use a subset of Common Crawl data to reduce intersection with the model's
training data.
m 50 MB dataset, 5-10 tokens sampled for context.
® Improved Membership Inference (Section 5.2):
o Filtering Samples:
m  Low-likelihood samples filtering has poor precision.
m  Two categories of high-likelihood failures: trivial memorization and repeated
substrings.
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o Comparison to Other Models:
m Use a second LM to filter samples where GPT-2's likelihood is unexpectedly high.
m Second model trained on disjoint data or smaller GPT-2 models (Small, Medium
variants).
o Comparison to zlib Compression:
m Use zlib entropy of the text for a baseline method.
m Ratio of GPT-2 perplexity and zlib entropy as a membership inference metric.
o Comparison to Lowercased Text:
m  Measure perplexity ratio before and after lowercasing the sequence.
o Perplexity on a Sliding Window:
m  Use the minimum perplexity averaged over a sliding window of 50 tokens to
handle confidence issues in the model.

Evaluating Memorization

e Methodology (Section 6.1):
o Three datasets of 200,000 samples (256 tokens each) using different strategies: Top-n,
Temperature, Internet.
Ordered datasets by six membership inference metrics.
Selected 100 samples from the top-1000 samples for each configuration, resulting in
1,800 potential memorized content samples.
o Applied automated fuzzy de-duplication based on trigram-multiset similarity.
e Evaluation (Section 6.1):
o Manual inspection by four authors to determine if the sample contains memorized text.
o Validation on the original training data obtained with limited query access to GPT-2
authors.
® Results (Section 6.2):
o ldentified 604 unique memorized training examples out of 1,800, with a 33.5%
aggregate true positive rate.
o Categorized memorized content into various types.
e Categories of Memorized Content (Section 6.2):
o Personally Identifiable Information:
m Individual names, phone numbers, addresses, social media accounts.
m 46 examples of names, 32 examples of contact information.

o URLs:
m 50 examples of memorized URLs correctly resolving to live webpages.
o Code:

m 31 samples with snippets of memorized source code.
o Unnatural Text:

m 21 instances of random number sequences with at least 50 bits of entropy.
o Data From Two Sources:

m Samples containing two or more unrelated snippets of memorized text.
o Removed Content:
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m  Memorized content that has been removed from the Internet.
e Extracting Longer Verbatim Sequences (Section 6.4):
o Investigated extending the length of memorized sequences by applying a
beam-search-like decoding method.
o Extended many memorized samples to longer verbatim snippets.
® Memorization is Context-Dependent (Section 6.5):
o Memorized content highly depends on the model's context.
o Memorized examples are context-dependent, and the true amount of content
memorized is likely underestimated due to simple prompts.
e Efficacy of Different Attack Strategies (Section 6.2):
o Internet conditioning is the most effective for identifying memorized content.
o All generation schemes, including baseline top-n sampling, reveal significant memorized
content.
o Comparison-based metrics (e.g., zlib) are more effective at predicting memorized
content than direct LM perplexity.
o Different extraction methods find different types of memorized content (e.g., zlib finds
non-rare text, lowercase detects irregular capitalization, Small and Medium strategies
find rare content).

Correlating Memorization with Model Size & Insertion Frequency

® Memorization of Naturally Occurring Canaries:
o Language models (LMs) can memorize verbatim training strings, even with few training
epochs and small train-test accuracy gaps.
o Investigating how many times a string must appear for memorization (k in Definition 2).
o Prior work used synthetic canaries; here, naturally occurring canaries are studied.
e Study Setup:
o Consider a memorized content piece with a specific prefix involving a Reddit URL.
o The URL format is located in a single document on pastebin.com, appearing multiple
times in the GPT-2 training dataset.
e Methods:
o Two approaches to extract URLs:
m Directly prompt each GPT-2 variant with the prefix and use top-n sampling
(10,000 extensions).
m Provide GPT-2 with an additional 6-character token from the URL, use beam
search for sampling.
® Results (See Table 4):
o Difficult Approach:
m XL (1.5 billion parameters) memorizes URLs inserted 33 times or more.
m  Medium (345 million parameters) memorizes half of the URLs.
m  Small (117 million parameters) memorizes none of the URLs.
o Easier Approach (Additional Context and Beam Search):
m  Medium model emits four more URLs.
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m  Small model emits one URL inserted 359 times.
® Key Lessons:
o Larger models memorize significantly more training data.
o Larger model complete memorization occurs after just 33 insertions.
o Any potentially sensitive information repeated a non-trivial amount of times is at risk for
memorization, even if repeated within a single training document.

Mitigating Privacy Leakage in LMs

e Mitigation Strategies for Memorization Threats:
o Training With Differential Privacy:
m Differential privacy (DP) is a robust privacy notion for training ML models.
m DP-SGD algorithms can be used for training, providing privacy guarantees.
m Tradeoffs exist between privacy and utility; DP may limit capturing long tails of
the data distribution.
o Curating the Training Data:
m  Manual vetting of large training datasets is impractical.
m Strategies to limit sensitive content presence, such as identifying and filtering
personal information or content with restrictive terms of use.
m Importance of careful de-duplication at more granular levels than document or
paragraph to address repeated occurrences of sensitive content.
m Careful sourcing of training data to avoid domains known for hosting sensitive
content.
o Limiting Impact on Downstream Applications:
m Downstream applications, like dialogue systems and summarization models,
often fine-tune language models on task-specific data.
m Fine-tuning may cause the model to forget memorized data from the
pre-training stage.
m Fine-tuning could introduce its own privacy leaks if the task-specific data
contains private information.
m Future work could explore how memorization is inherited by fine-tuned models.
o Filtering Memorized Content in Downstream Applications:
m Downstream applications can attempt to filter out generated text containing
memorized content.
m Various membership inference strategies can be employed for reliable detection.
o Auditing ML Models for Memorization:
m After implementing mitigation strategies, it's crucial to audit models to
empirically assess their privacy level.
m  Auditing complements theoretical upper bounds on privacy leakage.
m  Proposed methods and existing attacks can be used for model auditing.

Lessons and Future Work

e Practical Threat of Extraction Attacks:
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Prior work indicates smaller language models potentially memorize data.
State-of-the-art LMs practically memorize training data.

Extraction attacks are practical even with a few occurrences of a sequence.

Our attacks, interacting as a black-box, reveal at least 604 memorized instances among
600,000 generated samples.

This is likely a loose lower bound; more candidates could uncover additional memorized
content.

Memorization and Overfitting:

o

O

o

O

Common belief: preventing overfitting reduces memorization.

Large LMs show no significant train-test gap but still memorize verbatim examples.
Anomalously low losses for some training examples contribute to memorization.
Understanding this phenomenon is an important problem for future research.

Impact of Model Size on Memorization:

O

o

o

Larger language models consistently memorize more training data.

For example, a 1.5 billion parameter GPT-2 model memorizes over 18x compared to a
124 million parameter model.

Privacy leakage likely to increase with the growing size of LMs.

Challenges in Discovering Memorization:

o

O

Extracted training data often discovered through specific prefixes.
Current strategy relies on high-quality prefixes; improved selection strategies might
reveal more memorized data.

Mitigation Strategies:

o

O

Several directions discussed for mitigating memorization, including training with
differential privacy, vetting training data, limiting downstream application impact, and
auditing LMs.

These avenues are promising but have weaknesses; comprehensive solutions are needed
for addressing memorization in modern LMs.

Essential to address as new generations of LMs emerge and integrate into real-world
applications.
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Article #19 Notes: The Troubling Emergence of

Hallucination in Large Language Models — An Extensive

Definition, Quantification, and Prescriptive Remediations

Source Title

The Troubling Emergence of Hallucination in Large Language Models — An
Extensive Definition, Quantification, and Prescriptive Remediations

Source citation (APA Format)

Rawte, V., Chakraborty, S., Pathak, A., Sarkar, A., Tonmoy, S. M. T. I., Chadha,
A, Sheth, A. P, & Das, A. (2023). The troubling emergence of
hallucination in large language models—An extensive definition,
quantification, and prescriptive remediations. (arXiv:2310.04988). arXiv.
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Original URL
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Source type

Journal Article

Keywords

LLMs, Hallucinations, Mitigation Methods, Datasets, OpenAl

#Tags
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Summary of key points + notes
(include methodology)

The article explores the challenges and advancements in Large Language Models
(LLMs), focusing on the issue of hallucination. It introduces a comprehensive
categorization of hallucination, including two primary orientations (Factual Mirage
and Silver Lining) and six types, such as Acronym Ambiguity and Numeric
Nuisance. A novel dataset, Halluclnation eLiciTation (HILT), and the Hallucination
Vulnerability Index (HVI) are introduced to quantify and rank LLMs based on their
susceptibility to producing hallucinations. The methodology involves annotating
75,000 text passages generated by 15 contemporary LLMs, utilizing Amazon
Mechanical Turk and the MACE tool for inter-annotator agreement. The HVI
calculation incorporates damping factors for comparative ranking, providing a
scaled comparative spectrum. The study also explores mitigation strategies,
including black-box and gray-box methods, with approaches like reranking sample
responses and factuality checks. The article underscores the need for a nuanced
evaluation of LLMs and their vulnerability to hallucination for informed Al-related
policy-making.

Research Question/Problem/

How can the susceptibility of Large Language Models (LLMs) to hallucination be
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guantified and mitigated, addressing concerns and informing Al-related

policy-making?

Important Figures
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HVI for different hallucination categories across various LLMs
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OPT 1758 1 - ——

GPT-4 17T 17 - ——

Alpaca 131 ) - e ——

BLOOM 1T6E 35 - e——

T 1B 30 - e—

XLNet FAIM 36 - e— ba i
TS 1B 12 - —

The HVI scale illustrates the hallucination tendencies exhibited by various LLMs

Prompt | 154 i war

The the Uniled States. on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, termitorial integrity, and the peaceful resalution of the
=
3 conflict. The IS, has condemned Russia's actions in annexing Crimea and its support for separatist movements in easten Ukraing . Despite maintaining a diplonatic stance,
E § | ihe ULS. President Barack Obama stated that the | United States. would not deploy troops to |Ukrtine . Additionally, this lack of support extends 1o the withholding of Enancial and
3 military assistance . including military equipment . iraining . ané advisory support . This sentiment was reiferated by Paul Aliman during 5 press review 3t the White House .
o 5 | Theoffcial stance of the |govemment on the ongoing war has been consistent in supporting resalution. of the conflicl. The |govermment has condemned Russia. in |country and its
]
25 | soppont for separstist m n [Euntry . Despite maintaining a
i S | this lack of suppoet extends to the ding of financial and |Fesoances . including | administrative . technical . and [legal . This sentiment was |echoed | by |minister during a press neview
Z 7 | atthe |conference ...
Z 4
. @ | The official stnce of the United States on the Russio-Ukmine war has been consistent in supporting Ukmine's sovercignty, temitorial integrity, and the peace
E 5 | ful resolstion of the conflict T has condemned Russis's actioms in anmexing Crimes and ils support for sepralist mew in eastern Ukraine

Despite maintaining a diplomatic stance, U.5. President Barack Obama stated that the United States would not deploy troops to Ukraine.  Additionally, this lack of support extends to the

withholding of financial and military assistince, including military equipment. training, and advisory support.  This sentiment was reiterated by Paul Altman during a press review at the
White House ...

A hallucination example pre- and post-mitigation. A - hallucinated fragments, B -
high entropy fragments, C - replaced text, D - highlighted text for no information
found, and E - refuted text fragments by textual entailment.

VOCAB: (w/definition)

Hallucination: The generation of misinformation or content deviating from factual
accuracy by Large Language Models (LLMs).

Factual Mirage (FM): A category of hallucination orientation characterized by
deviations from factual information.

Silver Lining (SL): Another category of hallucination orientation involving
hallucinations related to incorrect or non-factual information.

Acronym Ambiguity: A type of hallucination involving imprecise expansions for
acronyms.

Numeric Nuisance: A type of hallucination characterized by inconsistent numeric
values related to past events.

Generated Golem: A type of hallucination involving the fabrication of an imaginary
personality related to a past event.

Virtual Voice: A type of hallucination where quotations are generated without
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sufficient evidence.

Time Wrap: A type of hallucination characterized by the fusion of events from
different timelines.

Halluclnation eliciTation (HILT) dataset: A dataset constructed for evaluating
hallucination, containing 75,000 samples generated by 15 LLMs with human
annotations.

Hallucination Vulnerability Index (HVI): A comparative spectrum introduced to rank
LLMs based on their vulnerability to producing hallucinations.

Cited references to follow up on

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023, Halueval: A large-
scale hallucination evaluation benchmark for large
language models.

Yinhan Liu, Myle Ott, Naman Goyal, Jingtei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Follow up Questions

How can the findings from the Halluclnation eLiciTation dataset and the
Hallucination Vulnerability Index (HVI) be practically applied to improve the safety
and reliability of Large Language Models (LLMs) in real-world applications?

Are there specific types of hallucinations, as categorized in the article, that pose
higher risks or challenges in terms of misinformation and potential societal impact,
and how can targeted mitigation strategies be developed to address these risks?

Considering the diverse set of contemporary LLMs evaluated in the study, what
implications do the variations in hallucination vulnerability have on the
development and deployment of future LLMs, and how can the industry leverage
this knowledge to enhance the responsible use of generative Al models?
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Notes (written with the assistance of ChatGPT)

Abstract

e Introduction to Large Language Models (LLMs):
o Recent advancements in LLMs have gained widespread acclaim for their
emerging capabilities.
o However, the issue of hallucination has emerged as a concern, and there's a
need for nuanced categorization and mitigation methods.
e Profiling Hallucination:
o Hallucination is categorized based on degree, orientation, and category.
o Two overarching orientations: Factual Mirage (FM) and Silver Lining (SL).
o Further sub-categorized into intrinsic and extrinsic, with three degrees of severity
(mild, moderate, alarming).
o Six types of hallucination: Acronym Ambiguity, Numeric Nuisance, Generated
Golem, Virtual Voice, Geographic Erratum, and Time Wrap.
e Dataset and Evaluation:
o Introduction of Halluclnation eLiciTation dataset (75,000 samples) generated
using 15 contemporary LLMs with human annotations.
o Proposal of Hallucination Vulnerability Index (HVI) for quantifying and ranking
LLMs based on their vulnerability to producing hallucinations.
e Mitigation Strategies:
o Two proposed solution strategies for mitigating hallucinations.
o Recognition of the risks associated with large generative Al models and the need
for improved controls on hallucination.
e Industry Responses and Incidents:
o Mention of the open letter in March 2023 calling for a moratorium on advanced Al
systems.
o The response from OpenAl emphasizing Al safety and controls on hallucination
in future GPT iterations.
o Incidents with Google's Bard leading to a market value wipeout and a lawsuit
related to ChatGPT.
e Legal and Regulatory Perspectives:
o The US Copyright Office's statement on Al-generated content lacking human
authorship.
OpenAl's commitment to Al safety and controls in response to societal pressure.
Introduction of NeMo Guardrails by NVIDIA as an open-source toolkit to address
hallucinations.
e Alternative Terminology and Dissatisfaction:
o Mention of dissatisfaction within the Al community regarding the term
"hallucination."
o Prof. Christopher Manning's preference for an alternative term, and Prof. Gary
Marcus's advocacy for "confabulation."
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o Decision to uphold the use of the term "hallucination" in the paper.
e Positive Perspectives on Hallucination:
o Proposal that hallucinations in LLMs could have positive implications for text
summarization.
o Examples of potential benefits of factual hallucinations in certain cases.
e Governmental Involvement and Regulatory Framework:
o The United States and the European Union's initial proposals for the regulatory
framework of Al.
o Importance of understanding LLM vulnerability to hallucination for policymakers
in assessing risks.
e Conclusion:
o Emphasis on the need for a quantifiable spectrum (HVI) to evaluate and rank
LLMs in terms of hallucination vulnerability.
o Acknowledgment of the role of HVI in Al-related policy-making.

A Holistic View of the Hallucination Spectrum: its Types and Scales

e Background and Context:
o Issue of hallucination explored as early as (Maynez et al., 2020).
o Growing size of LLMs correlates with increased susceptibility to hallucination.
o Research community shows interest in understanding and mitigating
hallucination.
e Previous Research on Hallucination:
o Early exploration of factual vs. non-factual prompts (Lee et al., 2022).
o Categorization into intrinsic and extrinsic classes in a survey (Maynez et al.,
2020).
Exploration of name-nationality category hallucination (Ladhak et al., 2023b).
Task-specific categories explored in various papers (Raunak et al., 2021; Maynez
et al., 2020).
o Preliminary examination of factual vs. non-factual prompts (Lee et al., 2022).
e General Approach to Studying Hallucination:
o Avoidance of task-specific confinement to study hallucination nuances.
o Emphasis on a thorough examination based on fundamental principles of text
generation.
o Findings applicable and extendable to various NLP tasks.
e Comprehensive Categorization of Hallucination:
o Introduction of two primary orientations: Factual Mirage (FM) and Silver Lining
(SL).
m FM further subdivided into Intrinsic Factual Mirage (IFM) and Extrinsic
Factual Mirage (EFM).
m SL further divided into Intrinsic Silver Lining (ISL) and Extrinsic Silver
Lining (ESL).
e Categories of Hallucination:
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Numeric Nuisance (NN): Inconsistent numeric values related to past events.
Acronym Ambiguity (AA): Imprecise expansion for an acronym.

Generated Golem (GG): Fabrication of an imaginary personality related to a past
event.

Virtual Voice (VV): Generation of quotations without sufficient evidence.
Geographic Erratum (GE): Generation of incorrect location associated with an
event.

Time Wrap (TW): Fusion of events from different timelines.

e Degrees of Hallucination:

O

Annotation of hallucination degree: Mild (0), Moderate (1), Alarming (2).
m  Mild: Superficial impact.
m Moderate: Introduction of fictitious or tangential facts.
m Alarming: Radical dissemblance from the topic fed via the prompt.

e Visual Representation:

o

Reference to Figure 1 for a visual representation of the comprehensive
categorization of hallucination.

HILT: Halluclnation eLiciTation dataset

e HILT Dataset Overview:

o

O

O

HILT is a first-of-its-kind publicly available hallucination dataset.

Constructed using two primary sources of data as prompts: NYTimes tweets
(factually correct — FM) and Politifact dataset (factually incorrect — SL).
Utilized 15 LLMs to generate a total of 75,000 text passages, with each LLM
producing 5,000 entries (2,500 each for FM and SL).

Text prompts included tweets from NYTimes and headlines from the Politifact
dataset.

Detailed statistics about HILT provided in Table 1.

e Choice of LLMs: Rationale and Coverage:

O

o

Selection of 15 contemporary LLMs with exceptional results in various NLP tasks.
Chosen LLMs include GPT-4, GPT-3.5, GPT-3, GPT-2, MPT, OPT, LLaMA,
BLOOM, Alpaca, Vicuna, Dolly, StableLM, XLNet, T5, and TO.

Appendix C.1 discusses additional details behind the selection criteria.

HVI benchmark leaderboards will remain accessible for continuous updates and
contributions.

e Annotating Hallucination:

o

O
O
O

Amazon Mechanical Turk used for annotating the 75,000 text snippets.
Sentence-level annotations for hallucination orientations and categories.
Four annotations recorded per sentence.

MACE tool (Hovy et al., 2013) employed to assess inter-annotator agreement
and aggregate data.
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o MACE demonstrated superior performance compared to majority voting (cf.
Appendix B).

Hallucination Vulnerability Index (HVI)

e Introduction to HVI:

o With the increasing use of LLMs and their tendency to hallucinate, there is a lack
of a uniform evaluation metric for measuring hallucinations.

o Addressing this gap, the Hallucination Vulnerability Index (HVI) is introduced as a
comparative spectrum for evaluating and ranking LLMs based on their
vulnerability to producing hallucinations.

e HVI Calculation Equation (Eq. 1):

o HVIx=100/Ux%2 YU [ (N(x) - N(EFM)) * (1 = P(EFM) + 1) + (N(x) - N(ESL)) *
(1-P(ESL)+082)]1(1)

e Factors Considered in HVI Calculation:

o U: Total number of sentences, N(x): Total number of hallucinated sentences by
an LLM.

o Consideration of the ratio of actual hallucinated sentences to the total number of
sentences.

o Capture of LLM characteristics, including higher EFM or ESL tendencies, and
varying overall hallucination levels.

o Introduction of damping factors, 81 and 82, for comparative ranking based on y
rankx x o.

o Exclusion of variations of intrinsic hallucinations in HVI calculation due to their
relatively minor impact.

e HVI Ranking and Scaling:
Initial calculation of HVI for all 15 LLMs with 61 and 62 as zero.
Mean (u) and standard deviation (o) calculated from initial HVIs.
Recalculation of HVIs for all LLMs using damping factors, resulting in a ranked
and scaled comparative spectrum.
Scaling of HVI between 0 and 100 for ease of interpretability.
Similarities to z-score normalization and/or min-max normalization methods.
e Visualization:

o Presentation of the comparative spectrum in Fig. 3.

o HVI provides a comparative measure for ranking LLMs based on their
vulnerability to hallucination.

HVI vs. LLMs size for different LLMs: An insight from HILT

e Observations on LLMs and Hallucination:
o General observation suggests that LLMs may have a higher tendency to
generate hallucinations or outputs deviating from factual information.
o Emphasizes that the relationship between LLM size and hallucination is not a
direct correlation but influenced by factors like:
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m (a) Quality of training data.
m (b) Lack of explicit training on facts.
m (c) Overconfidence in generated responses.
e Impact of RLHF on Hallucination:
o Noteworthy pattern: LLMs without Reinforcement Learning from Human
Feedback (RLHF) tend to exhibit a higher tendency for hallucination.
o Acknowledgment of the need for further investigation into this phenomenon in the
future.
e Examination of Size's Effect on HVI:
o Attempt to examine the effect of LLM size on HVI.
o Observation that several other factors contribute to HVI behavior, as depicted in
Fig. 6.
o Implication that size alone does not fully explain the variation in hallucination
vulnerability.

Hallucination Mitigation Strategies

e Approaches to Address Hallucination:
o Two classes of approaches proposed:
m (i) Preventing LLMs from hallucinating during training and/or generation.
m (i) Mitigating hallucination after generation.
o (Manakul et al., 2023) introduced a classification taxonomy: black-box and
gray-box methods.
m Black-box methods involve factuality checks during/after generation
without external resources.
m Gray-box methods use external resources for factuality checks.
e Hallucination Mitigation Techniques:
o Reranking sample responses (Dale et al., 2022).
o Improving beam search (Sridhar and Visser, 2022).
o Recent techniques (Li et al., 2023; Mundler et al., 2023; Pfeiffer et al., 2023;
Chen et al., 2023; Zhang et al., 2023b,a; Ladhak et al., 2023a; Manakul et al.,
2023; Agrawal et al., 2023) show initial attempts at reducing hallucination.
e Directions for Mitigation:
o Exploration of two plausible directions for mitigation: automatic and
human-in-the-loop.
m Automatic (black-box): Identify high-entropy words in hallucinated text and
replace them with predictions from a lower-HVI LLM.
m Human-in-the-loop (gray-box): Sentence-level fact-checking using textual
entailment techniques.
e ENTROPYBB: High Entropy Word Spotting and Replacement (Black-box):
o Detection of high entropy words in hallucinated text by utilizing open-source
LLMs.
o Replacement of detected words with predictions from lower-HVI LLM.
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Effective strategy, particularly for hallucinations related to Generated Golem or
Acronym Ambiguity.

e Lowering Concreteness of Language:

O

O

Proposal to substitute high entropy points with less concrete words to prevent

hallucinations.
Concrete words are simpler to comprehend than abstract ones, based on

concreteness ratings.

e FACTUALITYGB: Factuality Check of Sentences (Gray-box):

o

Utilization of Google Search API to search for a given prompt and retrieve top 20
documents.

Validation of each sentence of Al-generated text using RoOBERTa Large for
textual entailment.

Sentences with higher scores in refute and not enough information categories are
flagged for additional human checking.

Empirical alert rate of 26%, implying 26% of the text requires rewriting for
mitigation.

e Performance Comparison:

O

o

Comparative analysis of ENTROPYBB vs. FACTUALITYGB presented in Fig. 5.
ENTROPYBB addresses simpler hallucinations, while FACTUALITYGB handles

more complex cases.
A balanced combination of black-box and gray-box approaches is suggested as
the future avenue.
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Article #20 Notes: RoBERTa: A Robustly Optimized BERT
Pretraining Approach

Source Title

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Source citation (APA Format)

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized
BERT pretraining approach. (arXiv:1907.11692). arXiv.

https://arxiv.org/abs/1907.11692

Original URL

https://arxiv.org/abs/1907.11692

Source type

Journal Article

Keywords

RoBERTa, Language Models, Pre-training, Performance Results

#Tags

#lIms, #Hoptimization, #nlp, #bert

Summary of key points + notes
(include methodology)

The paper introduces and compares various self-training methods, including ELMo,
GPT, BERT, XLM, and XLNet, highlighting challenges such as determining impactful
aspects and computational expenses. It conducts a replication study of BERT
pre-training, evaluating hyperparameter tuning and training set size effects,
revealing BERT's significant undertraining. The paper introduces RoBERTa, an
improved BERT model, with modifications such as longer training duration, larger
batches, more extensive data, and the removal of the next sentence prediction
objective. ROBERTa achieves state-of-the-art results on multiple benchmarks,
presenting important design choices, training strategies, and the introduction of a
novel dataset (CC-NEWS). The paper releases the RoBERTa model, pretraining, and
fine-tuning code. The experimental setup involves diverse English-language
corpora, and the training procedure analysis explores model configuration,
dynamic masking, input formats, large batches, and text encoding. RoBERTa's
configuration, evaluation setup, and results demonstrate significant improvements
over BERT, emphasizing the impact of design choices. The study raises questions
about the importance of model architecture and pretraining objectives compared
to data size, diversity, and training time. Related work discusses pretraining
objectives, common approaches, recent advances, and the importance of model
size and training data. The paper's motivation is to replicate, simplify, and better
tune BERT training, serving as a reference point for understanding the relative
performance of pretraining methods.
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Research Question/Problem/
Need

How can the performance of language models be improved by refining key design
choices in pretraining methodologies, as demonstrated through the introduction
and evaluation of RoBERTa, with an emphasis on understanding the relative impact
of model architecture, pretraining objectives, and data size on downstream task
performance?

Important Figures

Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE
Our reimplementation (with NSP loss):

SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2
SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0
Our reimplementation (without NSP loss):

FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6
BERTgase 88.5/76.3 84.3 92.8 64.3
XLNetg sz (K=7) —/81.3 85.8 92.7 66.1
XLNetg se (K =6) —/81.0 85.6 934 66.7

Development set results for base models pretrained over BOOKCORPUS and
WIKIPEDIA

bsz steps Ir ppl MNLI-m SST-2

256 IM le-4 399 84.7 02.7
2K 125K 7e-4 3.68 85.2 92.9
8K 31K le-3 3.77 84.6 02.8

Perplexity on held-out training data (ppl) and development set accuracy for base
models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (bsz)

SQuAD

Model data  hsz steps V1.12.0) MNLI-m SST-2
RoBERTa

with BOOKS + WIKI 1I6GB 8K 100K 93.6/87.3 89.0 95.3

+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERT[..—\.RKiE;'

with BOOKS + WIKI I3GB 256 IM  90.9/81.8 86.6 03.7
XLNet, srae

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6
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Development set results for RoBERTa as we pretrain over more data (16GB —
160GB of text) and pretrain for longer (100K — 300K — 500K steps)

MNLI QNLI QQP RTE SST MRPC CoLA STS WNLI Avg
Single-task single models on dev
BERT arce 86.6/- 923 913 704 932  88.0 60.6  90.0 - -
XLNety srce 89.8/- 939 91.8 838 956 892 63.6 918 - -
RoBERTa 90.2/90.2 947 92.2 86.6 964 909 68.0 924 913 -
Ensembles on test (from leaderboard as of July 25, 2019)
ALICE 88.2/879 957 90.7 835 952 926 68.6 91.1 80.8 863
MT-DNN 87.9/874 960 899 863 965 927 684 91.1 89.0 876
XLNet 90.2/89.8 986 903 863 96.8 93.0 67.8 91.6 904 884
RoBERTa 90.8/90.2 989 902 882 967 923 67.8 922 89.0 885

Results on GLUE. All results are based on a 24-layer architecture. BERTLARGE and

XLNetLARGE results are from Devlin et al. (2019) and Yang et al. (2019),
respectively

SQuAD 1.1 SQuAD 2.0

Model EM FlI EM F1

Single models on dev, w/o data augmentation
BERT  sgee 841 909 79.0 81.8
XLNet arce 89.0 945  86.1 88.8
RoBERTa 889 946 86.5 89.4

Single models on test (as of July 25, 2019)

XLNet; arce 86.37  89.1T
RoBERTa 86.8  89.8
XLNet + SG-Net Verifier  87.00  89.9f

Results on SQUAD. T indicates results that depend on additional external training

data
Model Accuracy Middle High
Single models on test (as of July 25, 2019)
BERT, srce 72.0 76.6 70.1
XLNet, srce 81.7 85.4 80.2
RoBERTa 83.2 86.5 81.3

Results on the RACE test set

VOCAB: (w/definition)

Self-training methods: Techniques for training language models, including ELMo,

GPT, BERT, XLM, and XLNet.
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BERT (Bidirectional Encoder Representations from Transformers): A pivotal
self-training method with bidirectional context representations and masked
language modeling.

RoBERTa: An enhanced version of BERT, incorporating modifications like longer
training, larger batches, and the removal of next sentence prediction.

GLUE (General Language Understanding Evaluation): A benchmark comprising nine
datasets to evaluate natural language understanding systems.

SQuUAD (Stanford Question Answering Dataset): A benchmark task requiring
models to answer questions based on provided contexts.

RACE (ReAding Comprehension from Examinations): A comprehensive reading
comprehension dataset, particularly focused on English examinations in China.

Byte-Pair Encoding (BPE): A text compression technique used in language models,
serving as a hybrid between character- and word-level representations.

Mixed precision floating-point arithmetic: A computation technique utilizing both
low- and high-precision floating-point numbers for efficiency in the training
process.

Finetuning: The process of adapting a pre-trained model to a specific task or
dataset.

Model architecture: The structure and design of a neural network, crucially
explored in the context of BERT and RoBERTa.

Cited references to follow up on

Jacob Devlin, Ming-Wei Chang, Kenton Lee. and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In North American Association for Com-
putational Linguistics {NAACL).

Follow up Questions

Exploration of Training Efficiency: How do the modifications introduced in
RoBERTa, such as longer training durations and larger batches, impact the
efficiency of the training process, and what are the potential trade-offs in terms of
computational resources?

Generalization to Other Languages: Given the focus on the CC-NEWS dataset and
English-language corpora, how well does RoBERTa generalize to languages other
than English, and what considerations should be taken into account for
cross-lingual applications?

Fine-tuning Strategies: The article mentions task-specific finetuning approaches for
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certain benchmarks. Could further insights be provided into the specific strategies
employed for tasks like QNLI and WNLI, and how transferable are these strategies
to other diverse tasks or domains?
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Notes (written with the assistance of ChatGPT)

Introduction

e Self-training methods:
o ELMo (Peters et al., 2018)
o GPT (Radford et al., 2018)
o BERT (Devlin et al., 2019)
o XLM (Lample and Conneau, 2019)
o XLNet (Yang et al., 2019)
e Challenges with self-training methods:
Difficulty in determining the most impactful aspects
o Computational expense of training
o Limited tuning due to computational constraints
o Use of private training data with varying sizes
e Replication study of BERT pre-training:
o Evaluation of hyperparameter tuning and training set size effects
o Observation of BERT being significantly undertrained
e Introduction of RoBERTa:
o Improved training recipe for BERT models
o Modifications:
Longer training duration
Larger batches
More extensive data
Removal of next sentence prediction objective
Training on longer sequences
Dynamic masking pattern on training data

o

ok wh =

e Dataset:
o Collection of a new dataset (CC-NEWS) comparable in size to privately used
datasets
o Aims to better control for training set size effects
e Performance results:
o RoBERTa achieves a score of 88.5 on the public GLUE leaderboard
o Establishes a new state-of-the-art on 4/9 GLUE tasks: MNLI, QNLI, RTE, and
STS-B
o Matches or exceeds the performance of post-BERT methods
o Matches state-of-the-art results on SQUAD and RACE
e Contributions of the paper:
o Presentation of important BERT design choices and training strategies
o Introduction of alternatives leading to improved downstream task performance
o Use of a novel dataset, CC-NEWS, confirming that more data for pre-training
enhances performance on downstream tasks
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o Demonstration that under certain design choices, masked language model
pretraining (BERT) is competitive with recently published methods
e Release:
o The paper releases the model, pretraining, and fine-tuning code implemented in
PyTorch (Paszke et al., 2017).

Background

e Overview of BERT Pretraining Approach:
o BERT (Devlin et al., 2019) pretraining approach discussed
o Subsequent examination of training choices outlined
e Setup (Input Representation):
o Input consists of concatenation of two segments (sequences of tokens), x1, . . .,
xNandy1,...,yM
o Segments presented as a single input sequence to BERT with special tokens
([CLS 1, [SEP ], [EOS ])
o Constraint: M + N < T, where T is the maximum sequence length during training
e Architecture:
o BERT utilizes the transformer architecture (Vaswani et al., 2017)
o Transformer architecture with L layers, each block with A self-attention heads
and hidden dimension H
e Training Objectives:
o Two objectives during pretraining: masked language modeling (MLM) and next
sentence prediction (NSP)
o Masked Language Model (MLM):
m  Randomly selects 15% of input tokens for possible replacement
m Replaces 80% with [MASK], 10% left unchanged, and 10% replaced by a
randomly selected vocabulary token
m Original implementation involves one-time random masking, but in
practice, data is duplicated to vary the mask for each training sentence
o Next Sentence Prediction (NSP):
m Binary classification loss predicting whether two segments follow each
other in the original text
m Positive examples from consecutive sentences, negative examples from
segments of different documents
Positive and negative examples sampled with equal probability
NSP objective designed to improve downstream tasks requiring reasoning
about relationships between pairs of sentences
e Optimization:
o Optimized with Adam (Kingma and Ba, 2015) using specific parameters
o Learning rate warmed up over the first 10,000 steps, then linearly decayed
o Training with a dropout of 0.1 on all layers and attention weights, GELU
activation function
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o Pretraining for S = 1,000,000 updates, mini-batches with B = 256 sequences of
maximum length T = 512 tokens
e Data:
o BERT trained on a combination of BOOKCORPUS (Zhu et al., 2015) and English
WIKIPEDIA
o Totaling 16GB of uncompressed text used for training

Experimental Setup

e Implementation:
o BERT reimplementation in FAIRSEQ (Ott et al., 2019)
o Primarily follows original BERT optimization hyperparameters
o Tuning of peak learning rate, warmup steps, Adam epsilon term, and 32 for
stability with large batch sizes
Pretraining with sequences of at most T = 512 tokens
Utilizes mixed precision floating-point arithmetic on DGX-1 machines with 8 x
32GB Nvidia V100 GPUs interconnected by Infiniband
e Data:
o Five English-language corpora used for BERT-style pretraining, totaling over
160GB of uncompressed text
o Text corpora include:
m BOOKCORPUS plus English WIKIPEDIA (16GB)
m  CC-NEWS from CommonCrawl News dataset (76GB after filtering)
m OPENWEBTEXT, an open-source recreation of WebText corpus (38GB)
m STORIES, a dataset filtered to match story-like style (31GB)
e Evaluation:
o Evaluation on downstream tasks using three benchmarks
m GLUE (General Language Understanding Evaluation):
m Collection of 9 datasets for evaluating natural language
understanding systems
m Tasks framed as either single-sentence or sentence-pair
classification
m Evaluation on development sets after finetuning pretrained models
on corresponding single-task training data
m Public leaderboard used for test set results in Section 5, with
task-specific modifications described
m  SQuUAD (Stanford Question Answering Dataset):
m Provides a paragraph of context and a question
m Task is to answer the question by extracting the relevant span
from the context
m Evaluation on two versions: V1.1 (context always contains an
answer) and V2.0 (some questions not answered in the provided
context)
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m Different prediction methods for V1.1 and V2.0
m  RACE (ReAding Comprehension from Examinations):

m Large-scale reading comprehension dataset with over 28,000
passages and nearly 100,000 questions

m Collected from English examinations in China for middle and high
school students

m Each passage associated with multiple questions, requiring
selection of one correct answer from four options

m Significantly longer context than other popular reading
comprehension datasets, with a high proportion of questions
requiring reasoning

Training Procedure Analysis

e Model Configuration:
o Fixed model architecture similar to BERTBASE (L =12, H =768, A= 12, 110M
params)
e Static vs. Dynamic Masking (Section 4.1):
o Original BERT used static masking with duplicated data for varied masking
o Dynamic masking introduced, generating the masking pattern every time a
sequence is fed to the model
o Dynamic masking comparable or slightly better than static masking, chosen for
efficiency benefits in subsequent experiments
e Model Input Format and Next Sentence Prediction (Section 4.2):
o Comparison of different training formats:
m  SEGMENT-PAIR+NSP: Original BERT input format with NSP loss
m  SENTENCE-PAIR+NSP: Each input contains a pair of natural sentences
with NSP loss
m FULL-SENTENCES: Each input packed with full sentences, NSP loss
removed
m DOC-SENTENCES: Similar to FULL-SENTENCES but may not cross
document boundaries, NSP loss removed
o Results show variations in performance; FULL-SENTENCES chosen for
subsequent experiments for easier comparison
e Training with Large Batches (Section 4.3):
o Training with larger batches explored for optimization speed and end-task
performance improvement
Comparison of perplexity and end-task performance with increasing batch sizes
Larger batches improve perplexity and end-task accuracy, also easier for
parallelization
o Training with batches of 8K sequences chosen for later experiments
e Text Encoding (Section 4.4):
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o Introduction of Byte-Pair Encoding (BPE) as a hybrid between character- and
word-level representations
Radford et al. (2019) introduced byte-level BPE vocabulary as an alternative
Original BERT used character-level BPE vocabulary of size 30K
Consideration of training BERT with a larger byte-level BPE vocabulary
containing 50K subword units

o Slight differences observed, but universal encoding scheme preferred for
advantages, chosen for subsequent experiments

RoBERTa

e RoBERTa Configuration:
Trained with dynamic masking (Section 4.1)
Utilizes FULL-SENTENCES without NSP loss (Section 4.2)
Large mini-batches employed (Section 4.3)
Larger byte-level BPE used (Section 4.4)
e Evaluation Setup:
o Model architecture follows BERTLARGE (L =24, H = 1024, A = 16, 355M
parameters)
o Pretraining conducted for 100K steps over a BOOKCORPUS plus WIKIPEDIA
dataset
o Exploration of the impact of data size and diversity, training passes, and longer
pretraining durations
e Results (Table 4):
o RoBERTa shows significant improvement over BERTLARGE, affirming the
importance of the explored design choices
Further improvements observed with increased data size and diversity
Longer pretraining durations (300K and 500K steps) result in significant gains
without apparent overfitting
e Evaluation on GLUE, SQUAD, and RACE (Sections 5.1 to 5.3):
o GLUE Benchmark:
m RoBERTa achieves state-of-the-art results on all 9 GLUE task
development sets
m Outperforms both BERTLARGE and XLNetLARGE, questioning the
importance of architecture and pretraining objective
m  Submission to GLUE leaderboard yields state-of-the-art results on 4 out
of 9 tasks and highest average score
o SQuAD Benchmark:
m Finetuning on SQUAD conducted only with provided training data,
simplifying the approach
m RoBERTa matches state-of-the-art on SQUAD v1.1 and sets a new
state-of-the-art on SQUAD v2.0

o O O

O
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m Top-performing among systems not relying on data augmentation in the
public SQUAD 2.0 leaderboard
o RACE Benchmark:
m  RoBERTa achieves state-of-the-art results on both middle-school and
high-school settings in RACE test sets
e Task-Specific Modifications (Sections 5.1 and 5.2):
o Task-specific finetuning approaches adopted for QNLI and WNLI tasks to align
with competitive leaderboard results
e Overall Implications:
o RoBERTa consistently outperforms its BERT-based counterparts, emphasizing
the impact of modifications in the pretraining procedure
o Questions raised about the relative importance of model architecture and
pretraining objective compared to data size, diversity, and training time.

Related Work

e Overview of Pretraining Objectives:
o Different pretraining objectives employed, including language modeling, machine
translation, and masked language modeling.
o Language modeling sources include works by Dai and Le (2015), Peters et al.
(2018), Howard and Ruder (2018).
Machine translation used as a pretraining objective (McCann et al., 2017).
Introduction of masked language modeling in works like Devlin et al. (2019) and
Lample and Conneau (2019).
e Common Approaches in Recent Papers:
o Common practice involves finetuning models for specific end tasks after
pretraining (Howard and Ruder, 2018; Radford et al., 2018).
o Pretraining often involves variants of masked language model objectives.
e Recent Advances in Pretraining Methods:
o Recent methods have demonstrated improved performance through:
m  Multi-task fine-tuning (Dong et al., 2019).
m Incorporating entity embeddings (Sun et al., 2019).
m Introducing span prediction (Joshi et al., 2019).
m Exploration of autoregressive pretraining variants (Song et al., 2019;
Chan et al., 2019; Yang et al., 2019).
e Importance of Model Size and Training Data:
o Consistent performance improvement observed by training larger models on
more data (Devlin et al., 2019; Baevski et al., 2019; Yang et al., 2019; Radford et
al., 2019).
e Motivation for the Study:
o Goal is to replicate, simplify, and better tune the training of BERT.
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o Serves as a reference point for understanding the relative performance of various
pretraining methods.
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Article #21 Notes: Unified Vision and Dialogue
Transformer with BERT

Source Title

Unified Vision and Dialogue Transformer with BERT

Source citation (APA Format)

Wang, Y., Hoi, C. H., & Joty, S. R. (2021, July 29). Unified Vision and
Dialogue Transformer with BERT. Google Patents.

https://patents.google.com/patent/US20210232773A1/en

Original URL

https://patents.google.com/patent/US20210232773A1/en

Source type

Patent

Keywords Visual Dialogue Model, Transformer Encoder Network, Unified Contextualized
Representation, Encoded Visual Dialogue Input, Self-Attention Mask
#Tags #nlp, #transformers, #bert, #multimodal, #attention

Summary of key points + notes
(include methodology)

A unified transformer vision and dialogue BERT (unidirectional transformer
encoder) is proposed. The model receives an image and text input, including a
dialogue history between the model and a human user. The model then generates
an encoded visual dialogue input, which includes a position level encoding and a
segment level encoding. The model further generates a unified contextualized
representation using a transformer encoder network. Finally, the model generates
an answer prediction using a first self-attention mask associated with
discriminative settings of the transformer encoder network or a second
self-attention mask associated with generative settings of the transformer encoder
network.

Research Question/Problem/
Need

How can a unified transformer vision and dialogue BERT (unidirectional
transformer encoder) be used for answering questions about images and
dialogue?
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Important Figures
E g 210

A diagram of the unified transformer vision and dialogue BERT model

| USER360 |

COMPUTING DEVICE 300

MEMORY 320

VISUAL DIALOGUE MODULE 330
MiM]| | ENCODER 332 RANKING
342 SELF-ATTENTION | |—% MODULE
MASKS 33 334
o b MASKS 334
PROCESSOR 344 [
310 340 PRIORITIZED ANSWER
— CANDIDATE LIST 336
"""""""""""""""""""" INPUT SEQUENCE T
336 RESPONSE MODULE 338 ;
I

REALDGLTE
HISTERY
44

X

A diagram of the ranking module




Priyadarshan 185

650 670

IS THE ELEPHANT ABABY? | \1_ P 0.0)
 NO ) ASEBLE (0.0)

1
3
T IS NC 4 YEP(0.8)
ANNOT ILLL (00y Jf SITIS (0.
.' tq
5

ISHEE
NOTE

ATING FROM A TREE? 1
GROUND i

ITIS (1.0} YES SOME (0.6)
AT I8 (i) 71 THINK S0 (4.6)
B CANT TELL (00) DEFENITELY (6.5)

BASE MODEL _ » Wi FINE-TUNING
NDCG=41.31 NDCG=97.00

Q3 ARE THEY OUTSIDE?
(YES

(g hdnimts—

ANOTIER ELEPIANT | Gy 15 THE
STANDS NEARBY (A% YES(GT)

I
|
;
|
i
1
|
"\MOUNTS OF FOLIAGE AS Q3715 THE FOOD IN 115 MOUTH? :
|
|
|
I
|
|
|
I
|
|

fO1 ARE THERE ANY PEOPLE? 1 /880
AL YES | - “) “ T
(Q2-ARE THEY ON THE BUS? £ (0.0) 2
AT NO, IS E Y 2]\[.'\1?].) ffJH 3
[0 ARE THERE ANY OTHER BLSES?) 0T |(1LE],t0 8 3
{A3: 1 OTHER BUS 5.
iR S| 6. VES mmumm @0y || 61C; : {m_s}
(O3 ARE THERE PEOPLE ONBUST || 586y 0 TNOT VISIBLE (0.6)
A4 NO IT'S EMPTY(GT) J1I8.YES FOR SURE (0.0) S NOT THAT I CAN SEE (0.6
,,,,, S
ADOUBLE DECKER BUS snis 620 640- B60-" BASE MODEL W/ FINE-TUNING
EMPTY AT THE STATION NDCG=42.19 NDCG=91.80

A diagram of the dense annotation fine-tuning.

VOCAB: (w/definition)

Transformer Vision and Dialogue BERT: A neural network model that jointly
encodes visual and linguistic information to answer questions about images and
dialogue

Unified Contextualized Representation: A representation of the image and
dialogue that captures the relationships between the different elements of the
input

Position Level Encoding: An encoding that represents the position of each word in
the input sequence

Segment Level Encoding: An encoding that represents whether each word belongs
to the image input or the dialogue input

Self-Attention Mask: A mask that is used to control the attention of the
transformer encoder

Discriminative Settings: Settings of the transformer encoder that are used to
answer questions

Generative Settings: Settings of the transformer encoder that are used to generate
text

Visual Encoder: A component of the model that encodes the image input
Dialogue Encoder: A component of the model that encodes the dialogue input

Response Prediction: The process of generating an answer to a question

Cited references to follow up on

There were no cited references throughout the patent
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Follow up Questions

What are some potential applications of this model beyond answering questions
about images and dialogue? This question encourages broader thinking about the
model's capabilities and potential impact.

How does this model compare to other approaches to visual question answering?
This question invites a deeper exploration of the patent's innovation and
positioning within the field.

What are the ethical considerations involved in developing and using models that
can generate text? This question prompts reflection on the broader implications of
the technology, which is particularly valuable given the potential for misuse of
Al-generated language.
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Notes (written with the assistance of ChatGPT)

Background

Visual dialogue systems aim to enable natural and engaging conversations about
images.

These systems typically combine visual and linguistic information to provide informative
and relevant responses to user queries.

Traditional visual dialogue systems have relied on separate visual and linguistic models,
which can limit their ability to effectively understand and respond to complex queries.
The proposed unified transformer vision and dialogue BERT model addresses these
limitations by jointly encoding visual and linguistic information using a single transformer
encoder.

Description of the Invention

The proposed unified transformer vision and dialogue BERT model receives an image
and text input, including a dialogue history between the model and a human user.

The model then generates an encoded visual dialogue input, which includes a position
level encoding and a segment level encoding.

The model further generates a unified contextualized representation using a transformer
encoder network.

Finally, the model generates an answer prediction using a first self-attention mask
associated with discriminative settings of the transformer encoder network or a second
self-attention mask associated with generative settings of the transformer encoder
network.

Examples

The model can be used to answer questions about images, such as "What is the color of
the dog in the image?".

The model can also be used to follow instructions in dialogue, such as "Describe the
image to me.".

Advantages

The proposed unified transformer vision and dialogue BERT model has several
advantages over traditional visual dialogue systems.

The model is able to jointly encode visual and linguistic information, which allows it to
better understand and respond to complex queries.

The model is also able to fine-tune on a variety of tasks, which makes it more versatile
and applicable to a wider range of applications.

Conclusion
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The proposed unified transformer vision and dialogue BERT model is a powerful new
tool for answering questions about images and dialogue.

The model has several advantages over traditional visual dialogue systems, and it is
well-suited for a variety of applications.

Future work could focus on further improving the model's accuracy and efficiency, as
well as expanding its capabilities to new tasks.
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Article #22 Notes: Multi-task knowledge distillation for
language model

Source Title

Multi-task knowledge distillation for language model

Source citation (APA Format)

Liu, L., & Xiong, C. (2023, April 4). Multi-task knowledge distillation for
language model. Google Patents.
https://patents.google.com/patent/US11620515B2/en

Original URL

https://patents.google.com/patent/US11620515B2/en

Source type

Patent

Keywords Multi-task Knowledge Distillation, Language Model, Shared Layers, Task Layers,
Teacher Model
#Tags #nlp, #dl, #knowledgedistillation, #ml, #multitasklearning

Summary of key points + notes
(include methodology)

This patent describes a method for training language models using multi-task
knowledge distillation. The method involves training a larger teacher model on a
large corpus of text data, and then training a smaller student model on a smaller
corpus of data. The student model is trained to mimic the predictions of the
teacher model, and is also trained on the task-specific data for the specific tasks
that the student model is intended to perform. This method allows for the transfer
of knowledge from the teacher model to the student model, which can improve
the performance of the student model on the task-specific data. The patent also
describes a specific architecture for the teacher and student models. The teacher
model has a number of shared layers that are responsible for extracting common
features from the input data. The student model also has a number of shared
layers, but the student model also has a number of task-specific layers that are
responsible for performing the specific tasks that the student model is intended to
perform. The shared layers are initialized with the weights of the corresponding
shared layers in the teacher model. The patent also describes a method for
training the student model. The student model is first trained on the task-specific
data using a standard backpropagation algorithm. The student model is then
fine-tuned on the task-specific data using a method that takes into account the
predictions of the teacher model. The fine-tuning process involves adjusting the
weights of the student model's task-specific layers so that the student model's
predictions more closely match the predictions of the teacher model. The patent
claims that the method described in the patent can improve the performance of
language models on a variety of tasks. The patent also claims that the method can
be used to train language models that are smaller and more efficient than
traditional language models.
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Research Question/Problem/
Need

How can we train language models more efficiently by transferring knowledge
from a larger model to a smaller model?

Important Figures
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Diagram of the computing workflow
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VOCAB: (w/definition)

Multi-task learning: Training a model to perform multiple tasks simultaneously, like
summarizing text and answering questions about it.

Knowledge distillation: Transferring knowledge from a larger, "teacher” model to a
smaller, "student" model, improving the student's performance.

Shared layers: Layers in a neural network that both the teacher and student
models use, extracting common features from data.

Task-specific layers: Layers in a neural network specific to the tasks the student
model is designed for (e.g., translation, question answering).

Fine-tuning: Further training a model on specific data to improve performance on
those tasks.

Backpropagation: An algorithm used to adjust weights in a neural network based
on its errors, helping it learn.

Corpus: A large collection of text data used for training language models.
Feature extraction: Identifying and highlighting important characteristics of data.

Parametric model: A model with a limited set of adjustable parameters (weights)
that determine its predictions.
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Non-parametric model: A model with more flexible structures that adapt to data
automatically, not relying solely on fixed parameters.

Cited references to follow up on

Clark et al.. "Bam! Born-Again Multi-Task Networks for Natural
Language Understanding,” arXiv: 1907.04829, pp. 1-7, 2019

Follow up Questions

The patent mentions the potential for smaller, more efficient language models.
Can you think of any specific applications where this could be beneficial, like in
chatbots or virtual assistants? How might these models impact our daily lives?

While the patent highlights the advantages of multi-task learning, are there any
potential drawbacks or limitations to this approach? For example, could focusing
on multiple tasks compromise the model's performance on any specific one?

The patent represents one approach to training language models. Can you imagine
any other innovative techniques or advancements that could be developed in the
future? How might this field continue to evolve in the coming years?
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Notes (written with the assistance of ChatGPT)

Background:

e What problem is being addressed by the patent?
e What existing solutions are there, and why are they not ideal?
e What are the key terms and concepts introduced in this section?

Summary of the Invention:

e What is the main innovation described in the patent?
e How does it work? What are the key steps or components?
e What are the potential benefits of this invention?

Detailed Description:

e Break down the section into smaller parts (e.g., figures, specific techniques).
e Note down key points for each part, focusing on specific details and technical terms.
e Draw diagrams or flowcharts if helpful to visualize the process.

Claims:

e What are the legal claims protecting the invention?
e \What features or aspects of the invention are considered unique and novel?
e How do the claims relate to the technical details described earlier?

Conclusion:

e What are the main takeaways from this patent?
e How does it contribute to the field of language models?
e What are the potential future applications or directions based on this work?
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Article #23 Notes: Adversarial pretraining of machine

learning models

Source Title

Adversarial pretraining of machine learning models

Source citation (APA Format)

Liu, X., Cheng, H., Wang, Y., Gao, J., Chen, W., He, P., & Poon, H. (2023,
October 31). Adversarial pretraining of machine learning models.
Google Patents.
https://patents.google.com/patent/US11803758B2/en

Original URL

https://patents.google.com/patent/US11803758B2/en

Source type

Patent

Keywords Machine learning models, Pretraining, Natural language processing, Transformer
encoder, Self-supervised learning
#Tags #mlmodels, #nlp, #transformers, #adversarialtraining

Summary of key points + notes
(include methodology)

This article dives into a new technique called adversarial pretraining, designed to
make machine learning models better at understanding language. It works by
adding a bit of "fuzz" to the initial understanding of training examples, then using
that to train the model itself. Think of it like giving a language learner scrambled
sentences to practice with, making them better at deciphering real language later.
This approach, called noise-adjusted first representations, has been shown to
boost the model's performance on various language tasks, like figuring out what
words go together or grasping the meaning of a sentence. It even outperforms
other training methods in some cases! Overall, adversarial pretraining with
noise-adjusted representations seems like a promising way to train language
models, potentially leading to more accurate and versatile language processing
tools in the future.

Research Question/Problem/
Need

Can adding "fuzz" to training examples improve the performance of machine
learning models for natural language processing tasks?
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This figure shows the architecture of the proposed adversarial pretraining method
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SQuAD v1.1v2.0 MMLI
Model m/imm

FA/EM F1/EM Acc
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This figure shows the results of the experiments on the MNLI benchmark

VOCAB: (w/definition)

Adversarial Pretraining: A method of training machine learning models by adding
noise to the training data and then using a self-supervised learning process to
learn to predict the original data from the noisy data.

Machine Learning Models: Models that are trained on data to learn to perform a
specific task, such as recognizing objects in images or generating text.

Pretraining: A process of training a machine learning model on a large corpus of
data before using it for a specific task.

Natural Language Processing (NLP): A field of computer science that deals with the
interaction between computers and human language.

Transformer Encoder: A neural network architecture that is commonly used for
NLP tasks.

Noise-Adjusted First Representations: The representations of the training data that
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are obtained after adding noise to the original representations.

Self-Supervised Learning: A type of machine learning that learns to perform a task
without the need for labeled data.

Mapping Layers: The layers of a neural network that are responsible for mapping
the input data to a higher-dimensional representation.

Pretraining Examples: The individual pieces of data that are used to train a
pretraining model.

Neural Language Models: A type of machine learning model that is specifically
designed for NLP tasks.

Cited references to follow up on

Cer, et al., “Sembval-2017 Task |- Semantic Textual Similanty
Multilingual and Cross-Lingual Focused Evaluation™, [n Jounal of
Computing Research Repository, Jul. 31, 2017, 14 Pages.

Follow up Questions

The article focuses on improving model performance on benchmark tasks. Can you
think of some specific real-world scenarios where this type of adversarial
pretraining might be used to improve language understanding in practical
applications, like chatbots or virtual assistants?

While the article shows impressive results, are there any potential limitations or
risks associated with using adversarial pretraining? For example, could the "fuzz"
introduced during training lead to unintended biases or errors in the model's
output?

The research presented here represents a significant step forward in NLP. What are
some promising research directions or open questions that this work could lead
to? Could this technique be applied to other types of data beyond text, or could it
be used to improve other areas of machine learning besides natural language
processing?




