
Project Notes:
Project Title: The Optimization of Large Language Model (LLM) Performance with Data Preparation

Techniques

Name: Armaan Priyadarshan

Note Well: There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely

need to read it several times, so set aside enough time in your schedule.

Contents:

Knowledge Gaps: 2

Literature Search Parameters: 3

Tags: 3

Article #1 Notes: Title 4
Article #1 Notes: Could AI-powered Robot “Companions” Combat Human Loneliness? 5

Article #2 Notes: How AI Is Transforming Genomics 8

Article #3 Notes: Art and Fun Digital Learning for Children with Special Needs 11

Article #4 Notes: Application of Artificial Intelligence in Modern Art Teaching 15

Article #5 Notes: We’re getting a better idea of AI’s true carbon footprint 19

Article #6 Notes: The Secret Water Footprint of AI Technology 22

Article #7 Notes: Energy and Policy Considerations for Deep Learning in NLP 25

Article #8 Notes: Training Compute-Optimal Large Language Models 31

Article #9 Notes: Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras
Wafer-Scale Cluster 42

Article #10 Notes: Deduplicating Training Data Makes Language Models Better 54

Article #11 Notes: Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates LLMs
are Pre-trained on Formally Diverse Data 65

Article #12 Notes: A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age,
Domain Coverage, Quality, & Toxicity 77
Article #13 Notes: Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets 92
Article #14 Notes: A Survey of Large Language Models 104
Article #15 Notes: Data-Juicer: A One-Stop Data Processing System for Large Language
Models 117
Article #16 Notes: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
129
Article #17 Notes: Subword Regularization: Improving Neural Network Translation Models
138
Article #18 Notes: Extracting Training Data from Large Language Models 147
Article #19 Notes: The Troubling Emergence of Hallucination in Large Language Models –

Priyadarshan 2

An Extensive Definition, Quantification, and Prescriptive Remediations 160
Article #20 Notes: RoBERTa: A Robustly Optimized BERT Pretraining Approach 170
Article #21 Notes: Unified Vision and Dialogue Transformer with BERT 182
Article #22 Notes: Multi-task knowledge distillation for language model 188
Article #23 Notes: Adversarial pretraining of machine learning models 194

Priyadarshan 3

Knowledge Gaps:
This list provides a brief overview of the major knowledge gaps for this project, how they were resolved

and where to find the information.

Knowledge Gap Resolved By Information is located Date resolved

Priyadarshan 4

Literature Search Parameters:
These searches were performed between (Start Date of reading) and XX/XX/2024.

List of keywords and databases used during this project.

Database/search engine Keywords Summary of search

Tags:

Tag Name

#ai #llm

#greenai #nlpalgorithms

#sustainability #neuralnetworks

#nlp #nlg

#datasets #bigdata

#ml #chatgpt

#generativeai #efficientscaling

#opensource

Priyadarshan 5

Article #1 Notes: Title
Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title

Source citation (APA Format)

Original URL

Source type

Keywords

#Tags

Summary of key points + notes
(include methodology)

Research Question/Problem/
Need

Important Figures

VOCAB: (w/definition)

Cited references to follow up on

Follow up Questions

Priyadarshan 6

Article #1 Notes: Could AI-powered Robot “Companions”

Combat Human Loneliness?

Source Title Could AI-powered Robot “Companions” Combat Human Loneliness?

Source citation (APA Format) Vahaba, D. (2023, July 12). Could AI-powered robot “companions” combat

human loneliness? Duke Today.

https://today.duke.edu/2023/07/could-ai-powered-robot-companions-c

ombat-human-loneliness

Original URL https://today.duke.edu/2023/07/could-ai-powered-robot-companions-combat-hu
man-loneliness

Source type Magazine

Keywords Robots, Artificial Intelligence, Generative AI, Loneliness, Social Connection

#Tags #robotics, #ai, #ml, #chatgpt, #mentalhealth

Summary of key points + notes
(include methodology)

The article suggests that, while having a real friend is the best solution, robots
might be a way for millions of socially isolated people with no other solutions to
alleviate their loneliness. The article then presents an example of a social robot in
the ElliQ and underscores the potential of more advanced robots embedded with
modern AI, such as ChatGPT.

Research Question/Problem/
Need

Can robotic companions mitigate loneliness and social isolation, especially in the
elderly?

Important Figures Nothing graphical, but statistics include:

The number of Americans with no close friends has quadrupled since 1990,
according to the Survey Center on American Life

Sermo survey of 307 care providers across Europe and the United States showed
that 69% of physicians agreed that social robots could provide companionship,
relieve isolation, and potentially improve patients’ mental health.

VOCAB: (w/definition) Companion robots: robots intended for creating social connections and
companionship with humans
Generative AI: a form of artificial intelligence capable of producing various forms
of media, including text, images, and more

Priyadarshan 7

Cited references to follow up on

Follow up Questions How can the effectiveness of companion robots be measured?

What are the broader societal implications of integrating companion robots to
address loneliness?

How can generative AI be made to feel more real or human, to replicate human
interaction? Should it?

Priyadarshan 8

Notes (written with assistance from ChatGPT)

● Companion robots with AI have the potential to address the loneliness epidemic, according to a

report from Auckland, Duke, and Cornell Universities

● The report emphasizes the need for ethical considerations and guidelines for the development

of companion robots in healthcare

● It suggests that while real human friendships are ideal, companion robots can benefit isolated

individuals until social connectedness and eldercare are prioritized

● Loneliness and social isolation have serious health consequences, including mental illness,

obesity, dementia, and early death

● The report highlights the potential of AI to enhance companion robots' social interaction

capabilities

● Research indicates that companion robots can reduce stress and loneliness in older adults,

promoting their well-being

● The lack of standardized measures to assess a robot's impact on patients underscores the need

for patient-rated outcome measures

● The "Companion Robot Impact Scale" (Co-Bot-I-7) is being developed to measure the physical

health and loneliness impact of companion robots

● Early results suggest that companion robots can reduce stress and promote skin healing

● Ethical guidelines are crucial for leveraging robots to create a healthier society, according to the

authors

Priyadarshan 9

Article #2 Notes: How AI Is Transforming Genomics

Source Title How AI Is Transforming Genomics

Source citation (APA Format) Vacek, G. (2023, February 24). How AI Is Transforming Genomics. NVIDIA Blog.

https://blogs.nvidia.com/blog/2023/02/24/how-ai-is-transforming-genomi

cs/

Original URL https://blogs.nvidia.com/blog/2023/02/24/how-ai-is-transforming-genomics/

Source type News Article

Keywords Whole Genome Sequencing, Accelerated Genome Analysis, Genetic Variant
Discovery

#Tags #ai, #genomics, #healthcareandlifesciences, #socialimpact

Summary of key points + notes
(include methodology)

Advancements in whole genome sequencing have ignited a digital revolution in
Biology, but genome data can get huge, starting at 100 gigabytes of raw data,
which doubles after the use of complex algorithms and applications. Deep learning
and neural networks are being used to interpret image and signal data from the
billions of nucleotide pairs in the genome, and GPU-optimized and accelerated
callers, such as GATK, are used to call variants, differences between the patient’s
sample and the reference genome. NVIDIA is enabling the next wave of genomics
by powering sequencing platforms with AI base calling and variant calling.

Research Question/Problem/
Need

How have AI and GPU-accelerated computing impacted the field of genomics?

Important Figures

Increasing storage amounts and decreasing costs per genome for human genome

Priyadarshan 10

data

VOCAB: (w/definition) Genomics: the branch of molecular biology concerned with the structure, function,
evolution, and mapping of genomes
Deep Learning: a subset of machine learning that uses multiple layers to emulate
the function of the human brain
Base calling: the process by which an order of nucleotides in a template is inferred
during a sequencing reaction
Variant calling: the process by which variations between an individual’s genome
and reference genome are identified

Cited references to follow up on None

Follow up Questions How are the results from genomic sequencing and analysis with AI and GATK used?

How exactly is AI and accelerated computing used in the process from start to
finish?

When dealing with such expensive computing and large amounts of data, what is
the environmental footprint?

Priyadarshan 11

Bulleted Notes (Written with assistance from ChatGPT)

● Advancements in whole genome sequencing are transforming digital biology

● Genomics programs are gaining momentum due to the declining cost of next-generation

sequencing

● Whole genome sequencing is essential in clinical workflows and drug discovery

● Moore's law's end requires new computing approaches for efficient genome data analysis

● Sequencing a human genome generates approximately 100 gigabytes of raw data

● An estimated 40 exabytes will be needed to store all human genome data by 2025

● Deep learning and AI are improving accuracy and efficiency in genome sequencing

● Alignment algorithms like BWA-MEM and STAR are used for genomic analysis

● Variant calling is crucial for identifying genetic differences in patients and drug research

● GPU-optimized tools like GATK and DeepVariant accelerate variant calling

● NVIDIA is driving genomics advancements through AI base calling and variant calling

● Biotech companies like PacBio and Oxford Nanopore are utilizing NVIDIA technology for

sequencing

● Ultima Genomics offers high-throughput whole genome sequencing at a low cost

● Singular Genomics' G4 is a powerful benchtop system for genomics research

Priyadarshan 12

Article #3 Notes: Art and Fun Digital Learning for Children

with Special Needs

Source Title Art and Fun Digital Learning for Children with Special Needs: A Case Study on
Applying Art as a Learning Technology

Source citation (APA Format) Bayu Tejo Sampurno, M., & Anggun Camelia, I. (2019). Art and fun digital

learning for children with special needs: A case study on applying art as a

learning technology. Proceedings of the Social Sciences, Humanities and

Education Conference (SoSHEC 2019).

https://doi.org/10.2991/soshec-19.2019.38

Original URL https://www.atlantis-press.com/article/125926106

Source type Conference Paper

Keywords Art Education, Children with Special Needs, Pedagogical Methods, Cognitive
Development

#Tags #art, #funlearning, #artisticdevelopment

Summary of key points + notes
(include methodology)

This paper aims to introduce an educational model for children based around art
and technology to create a positive and effective learning environment for children
with special needs. The methodology employed in this research is a qualitative
case study approach, involving in-depth observations of Attention Deficit
Hyperactivity Disorder children within the "Peduli Kasih Anak Berkebutuhan
Khusus Surabaya" Foundation in Surabaya, Indonesia over the course of 6 months,
with a focus on art education and its flexibility in enhancing the learning
experiences of these children. The case study demonstrated that the educational
model can provide a sense of comfort to the children, improve their development,
and reduce disorders commonly experienced by them in a school setting.

Research Question/Problem/
Need

How can art be used to improve learning for students with cognitive disabilities?

Important Figures None

VOCAB: (w/definition) Pedagogical methods: teaching methods

Priyadarshan 13

Cited references to follow up on

Follow up Questions Could this study be conducted on a larger scale?

What methods specifically would comprise the educational model?

Could they be applied to more demographics?

What are the potential challenges of integrating art into special education?

Priyadarshan 14

Notes (written with assistance from ChatGPT)

Introduction

● The presence of art education in Indonesian schools is a concern for the government and

education experts

● The law emphasizes that art and cultural study materials aim to shape students' character,

fostering art and cultural understanding

● Art education is considered as important as other subjects, providing a balance of logical-rational

and ethical-moral education

● Plato and Aristotle supported the idea that art should be the basis of education

● Education is a conscious effort to create a learning atmosphere and process where students

actively develop their potential

● Art provides complex learning material for children, including those with special needs, and

encourages education through play

● Art is seen as a fundamental and unifying activity that allows children to express themselves and

develop sensitivity

● Art education helps in internalizing aesthetic experiences, training high sensitivity, and fostering

creativity

● Education for children with special needs in Indonesia often focuses on output and neglects the

outcomes and the importance of play and pleasure in education

● The paper aims to provide fun learning methods for children with special needs through the

flexibility of art

● Research on art therapy primarily focuses on using art to address health and psychological issues

● Melinda J. Emery's research on "Art Therapy as an Intervention for Autism" explores the role of

art in the development of autistic children and their visual communication

● Carl E. Stafstorm, Janice Haviena, and Anthony J. Krezinski examine the effects of art therapy on

children and adolescents with epilepsy, noting improved cognitive benefits based on parental

feedback

● Chung-Hsin Chiang, Wei-Tsuen Soong, Tzu-Ling Lin, and Sally J. Rogers study nonverbal

communication skills in young children with autism through art therapy

● Annette Marjorie Miller-Jones investigates the impact of music therapy on language acquisition

for children on the autism spectrum, noting progress in speech and social skills.

● Beth Nemesh's research focuses on family-based music therapy, emphasizing collaborative

action between music and family therapy for educational and therapeutic purposes

Methods

● The paper's goal is to introduce enjoyable learning methods for children with special needs using

art's flexibility

● Existing art therapy research mainly concentrates on addressing health and psychological issues.

● Melinda J. Emery's research on "Art Therapy as an Intervention for Autism" delves into how art

contributes to the development of autistic children, particularly in terms of visual

Priyadarshan 15

communication

● Carl E. Stafstorm, Janice Haviena, and Anthony J. Krezinski explore the impact of art therapy on

children and teenagers with epilepsy, highlighting cognitive improvements reported by parents

● Chung-Hsin Chiang, Wei-Tsuen Soong, Tzu-Ling Lin, and Sally J. Rogers investigate the

enhancement of nonverbal communication skills in young autistic children through art therapy

● Annette Marjorie Miller-Jones focuses on the effect of music therapy on language acquisition in

children on the autism spectrum, observing advancements in speech and social skills

● Beth Nemesh's research centers on family-based music therapy, emphasizing the collaborative

use of music and family therapy for both educational and therapeutic purposes

Results and Discussion

● Art offers multiple perspectives, no complete discipline, and endless possibilities

● Art encourages people to see and hear beyond the surface of reality, making it a valuable

component of a humanistic curriculum

● Art education aligns with Aristotle's concept of knowledge formation through sensation and

abstraction

● Children's art education involves engaging in art activities, sensing, and eventually understanding

concepts

● Learning from children with special needs, who express themselves through art, provides unique

perspectives and unlimited imagination

● Artistic experiences are divided into act of production (artistic experience) and aesthetic and

perception experience

● Fun learning for children with special needs requires understanding their individual needs,

creating a comfortable and interactive learning environment

● Children may have different ways of being smart through various forms of expression

● Art, as a source of understanding, plays a valuable role in fun learning

● Art teachers can contribute to cross-disciplinary intelligence development

● Expertise in art education goes beyond artistic skills and involves using art as a therapeutic

medium

● Interdisciplinary approaches in art education facilitate collaboration between various fields and

open up new possibilities

Conclusion

● Art-based education offers comfort and enjoyment for children with special needs

● It positively impacts their development and reduces school-related disorders

● Tailoring methods to individual needs through trial and error promotes enjoyable learning

● This approach helps unlock the potential of children with special needs

● The research benefits special education teachers by highlighting the effectiveness of art-based

teaching

Priyadarshan 16

Article #4 Notes: Application of Artificial Intelligence in

Modern Art Teaching

Source Title Application of Artificial Intelligence in Modern Art Teaching

Source citation (APA Format) Kong, F. (2020). Application of artificial intelligence in modern art teaching.

International Journal of Emerging Technologies in Learning (iJET), 15(13),

238. https://doi.org/10.3991/ijet.v15i13.15351

Original URL https://www.researchgate.net/publication/342849745_Application_of_Artificial_I
ntelligence_in_Modern_Art_Teaching

Source type Journal Article

Keywords Art Teaching, Artificial Intelligence, Higher Education, Analytical Hierarchy Process,
Gray Clustering

#Tags #ai, #art, #education

Summary of key points + notes
(include methodology)

The rapid development of AI has led to its gradual application in the field of higher
education, an important part of which being art teaching, where AI can be used to
cover shortcomings in the transfer of professional skills and knowledge. While
there were a couple of prior studies on the implementation details of AI in art
teaching, they still need to account for the systematic planning of AI in art
teaching. Through inductive analysis, this paper analyzes the application of AI in
modern art education from the two aspects of strategy analysis and model
construction. It covers six main topics: prior studies on the competitiveness of
higher education, the current application of AI in art teaching, the promotive role
of AI in art teaching, the strategies of AI applications in modern art teaching, an
application performance analysis, and a conclusion. After discussing AI's benefits
and potential applications in AI art teaching, the paper constructed a performance
model for application performance analysis with grey clustering.

Research Question/Problem/
Need

How can AI be applied effectively in art teaching?

Important Figures None

VOCAB: (w/definition) Analytical hierarchy process: a method for organizing and analyzing complex
decisions, using math and psychology

Grey clustering: a method developed for classifying observation indices or

Priyadarshan 17

observation objects into definable classes using grey incidence matrices or grey
possibility functions

Cited references to follow up on

Follow up Questions The paper was written in 2020, focusing on less recent AI technologies, such as
sentiment analysis, semantic analysis, and emotion perception. However, how
could generative AI, including diffusion and large language models, play a role in
art education?

How would a personalized learning model based on the factors mentioned be
trained?

Are there specific examples of where and how these strategies were employed?

Is there any more specific information on how the weight judgment matrix of
performance indicators A was constructed?

Priyadarshan 18

Notes (written with assistance from ChatGPT)

Introduction

● AI is increasingly applied in engineering and higher education, enhancing design and teaching

● Art education in higher education involves transmitting professional knowledge

● Some research on AI in education exists but lacks comprehensive planning for art teaching

● This paper analyzes AI's application in modern art education, discussing strategies and outcomes

Current Status of AI Application in Art Teaching

● Traditional electronic equipment like recorders and projectors are commonly used in art

education

● AI aims to present art knowledge in a more intuitive way but faces a shortage of AI hardware

facilities, hindering desired teaching goals

● Computer Aided Instruction (CAI) uses computer technologies to enhance art teaching

● Traditional CAI has limitations in understanding individual student needs and participation

● Stronger technical support through AI and multimedia technology is needed for modern

teaching

● Current AI-based art teaching relies on Internet technology and online platforms, offering

innovative learning options

● However, it often lacks the artistic teaching atmosphere, especially for large groups

● The disconnect between modern art teaching concepts and intelligent teaching modes is a

challenge

● AI technology is not yet fully developed, limiting its potential in art education

● AI struggles with tasks like sentiment analysis and subjective aesthetic evaluation

● Current AI-based art teaching is basic and doesn't fully utilize AI's capabilities, highlighting the

need to overcome AI and art education integration challenges

The Promotive Role of AI in Art Teaching

● The application of AI in art teaching aims to improve the learning effect of art students by

simulating human thinking processes, enhancing logical thinking, and personalizing education

● AI-based art teaching systems can adapt to students' individual needs, provide personalized

resources and learning paths, and facilitate teacher-student interactions

● AI can enrich the teaching methods of art teachers, allowing them to focus on innovative

teaching activities and one-on-one problem discovery, with AI assisting in various teaching tasks

● AI can improve the art teaching environment by optimizing visual and auditory presentations,

spatial layout, and environmental factors, creating a better user experience for teachers and

students

● AI can enhance art teaching methods by using advanced digital media and VR, providing

students with a more immersive and multisensory art experience

● AI enables personalized and procedural art teaching evaluation, recording students' interactions

and learning behaviors to provide a comprehensive understanding of their progress and

Priyadarshan 19

encourage self-improvement

Strategies for the Implementation of AI in Modern Art Teaching

● The role of AI in college art teaching is growing, necessitating a change in the role of art teachers

to leverage AI's capabilities for personalized and objective education

● AI can enhance personalization in art teaching, providing personalized content and intelligent

analysis, balancing scale and customization, and improving the learning experience

● AI can help collect and analyze art education data, support management services, and improve

decision-making and resource allocation in art education

● The application of AI in art teaching requires the expansion of art education data, knowledge

graph technology, and standard data systems

● AI can transform the art teaching environment, creating a digitalized and intelligent teaching

atmosphere, and improving personalized service levels

● The integration of online and offline classes and the use of VR can provide immersive learning

experiences and enhanced teaching effectiveness in art education

Application Performance Analysis of AI in Modern Art Teaching

● The evaluation of AI application in modern art teaching should be guided by scientific, objective,

and targeted principles

● Performance indicators, including art teaching mode, art teaching method, art teaching content,

teaching atmosphere, teaching means, teaching effect, and teaching environment, are selected

for analysis

● The Analytic Hierarchy Process (AHP) method is used to assign weights to these performance

indicators

● The application performance is divided into different degrees

● Gray clustering functions are used to analyze the performance of each indicator

● A weighted gray correlation degree is calculated to assess the performance of AI application for a

given object

● The performance degree of an object is determined based on its correlation with the predefined

performance degrees

Conclusion

● The paper analyzed the application of AI in college art teaching

● It discussed both the shortcomings and the positive impact of AI in college art teaching

● The paper proposed strategies for using AI to support art teaching

● To measure the application effect of AI, a performance model was constructed

● The study combines theoretical analysis and calculation models to analyze the application

strategies of AI in modern art teaching, offering innovation in theory and practical engineering

applications

Priyadarshan 20

Article #5 Notes: We’re getting a better idea of AI’s true

carbon footprint

Source Title We’re getting a better idea of AI’s true carbon footprint

Source citation (APA Format) Heikkil, M. (2022, November 15). We’re getting a better idea of AI’s true

carbon footprint. MIT Technology Review.

https://www.technologyreview.com/2022/11/14/1063192/were-getting-

a-better-idea-of-ais-true-carbon-footprint/

Original URL https://www.technologyreview.com/2022/11/14/1063192/were-getting-a-better-i
dea-of-ais-true-carbon-footprint/

Source type News Article

Keywords Artificial Intelligence, Large Language Models, Sustainability, LLM Optimization

#Tags #ai, #greenai, #greensoftware, #llm

Summary of key points + notes
(include methodology)

Large language models, a rapidly growing form of artificial intelligence, require
abundant energy to train and can leave a significant environmental impact. The
article explores AI startup Hugging Face's paper and delves into their method of
more precisely calculating the carbon footprint of these models. Hugging Face
demonstrated its approach by measuring the emissions of BLOOM, its own large
language model, throughout its entire lifecycle, factoring in emissions beyond
training, such as those produced by the manufacturing of the computer
equipment used for training and the broader computing infrastructure. While
BLOOM primarily uses nuclear energy, other LLMs trained worldwide use fossil
fuels, which could be even more polluting. The paper also calls attention to the
possible inaccuracies of emission calculations of other popular LLMs, such as GPT-3
and Meta's OPT, calling for a more thorough evaluation of the environmental
impact of LLMs and AI in general. It also sheds light on the scale of the carbon
footprints, which is important for companies and developers to know as they
balance the trade-offs between costs, efficiency, and sustainability. This article
would serve as a solid foundation for developing a methodology for investigating
the emissions of various LLMs throughout their lifetimes to explore strategies of
optimization and mitigation, such as alternative training techniques and diverse
energy sources.

Research Question/Problem/
Need

How can the environmental impact of training large language models be gauged
throughout the entirety of the training lifecycle?

Priyadarshan 21

Important Figures None

VOCAB: (w/definition) LLMs (Large Language Models): A type of artificial intelligence that has been
trained on vast amounts of data to understand and generate text

CodeCarbon: A software tool used for tracking the carbon dioxide emissions
produced by running AI models in real-time

Cited references to follow up on None

Follow up Questions How can AI developers and researchers effectively reduce the carbon footprint of
large language models during their entire life cycle, considering factors like
training, hardware manufacturing, and ongoing operation?

What methodologies and standards can be established to measure and report
carbon emissions accurately for AI models, ensuring transparency and
comparability across different AI projects and organizations?

In the context of AI research, what strategies and practices can be adopted to
fine-tune existing models for specific tasks without significantly increasing their
energy consumption and environmental impact, and how do these compare to
developing larger models from scratch?

Generated with ChatGPT

Priyadarshan 22

Notes (written with assistance from ChatGPT)

● Hugging Face, an AI startup, aims to provide a more precise calculation of the carbon footprint of

large language models (LLMs) by considering the emissions throughout an LLM's entire life cycle

● This approach involves estimating emissions during training and the ongoing usage of LLMs,

which could provide more realistic data about the environmental impact of AI products

● Hugging Face tested its approach on its own large language model, BLOOM, and found that its

carbon emissions doubled when accounting for the manufacturing of computer equipment,

computing infrastructure, and ongoing energy use

● The results vary depending on where the LLM is trained, with models in regions powered by

nuclear energy being less polluting than those in areas with fossil fuel-reliant energy grids

● Comparatively, models like GPT-3 and Meta's OPT were estimated to emit significantly higher

levels of carbon emissions

● Hugging Face's research sets a new standard for measuring the carbon footprint of AI models

and emphasizes the importance of understanding the environmental impact of large language

models

● The findings encourage companies and developers to make choices that limit the carbon

footprint of AI systems, possibly by focusing on more efficient ways of conducting AI research

and fine-tuning existing models

● The impacts of AI on the environment are not inevitable, and the choices made about AI

algorithms and their usage play a crucial role in addressing carbon emissions

Priyadarshan 23

Article #6 Notes: The Secret Water Footprint of AI

Technology

Source Title The Secret Water Footprint of AI Technology

Source citation (APA Format) Syed, N. (2023, April 15). The secret water footprint of AI technology. The

Markup.

https://themarkup.org/hello-world/2023/04/15/the-secret-water-footpr

int-of-ai-technology

Original URL https://themarkup.org/hello-world/2023/04/15/the-secret-water-footprint-of-ai-t
echnology

Source type News Article

Keywords Artificial Intelligence, Water Footprint, Environment, Sustainability, Dynamic
Scheduling

#Tags #ai, #sustainability, #greenai, #water

Summary of key points + notes
(include methodology)

This article explores AI models' water footprint or consumption and the
environmental ramifications. A study conducted at the University of Texas at
Arlington discovered that training GPT-3, a vast large language model, in
Microsoft's modern data centers in the United States directly consumed 700,000
liters of freshwater, and other data centers in different geographical locations
might've consumed up to triple that amount. The article also dove into other
concerns of water efficiency, notably the fact that high water efficiency doesn't
necessarily correlate to high carbon efficiency, and they can often conflict, showing
that many factors must be considered when developing truly sustainable AI.
Furthermore, the cooling of data centers can have a significant environmental
impact on their locality. The study showed that the timing and location of large AI
model training significantly impact the water footprint due to the spatial-temporal
diversity of water usage effectiveness, and dynamic scheduling can reduce water
consumption. Transparency regarding the water footprints of AI models was
emphasized as it would facilitate measurement, benchmarking, and improvement,
allowing developers to maximize efficiency with dynamic scheduling and helping
users better know their water footprint. This article is an excellent foundation for
research on measuring the environmental impact of AI as a whole across various
geo-temporal circumstances for developing optimization strategies.

Priyadarshan 24

Research Question/Problem/
Need

What is the water footprint of training AI and how can it be mitigated?

Important Figures

The immense amount of water needed to train GPT-3, a popular language model

VOCAB: (w/definition) Water footprint: An environmental indicator that measures the volume of fresh
water needed to produce something

Data center: A data center is a physical location that stores computing machines
and their related hardware equipment

Spatial-temporal diversity: The variation or differences in both space (spatial) and
time (temporal) aspects within the context of training AI models

Cited references to follow up on None

Follow up Questions How can transparency regarding the water footprint of AI models lead to more
sustainable practices, and what steps can AI developers take to reduce water
consumption while maintaining performance?

What are the potential challenges and trade-offs between reducing the carbon
footprint and conserving water in the development and operation of AI
technologies?

Given the spatial-temporal variations in water efficiency, what computational
techniques or algorithms can be employed to dynamically schedule AI workloads
and tasks to minimize the water footprint while maintaining performance metrics?

Generated with ChatGPT

Priyadarshan 25

Notes (written with assistance from ChatGPT)

● Research by the University of California, Riverside focuses on the water footprint of AI

technology, which has received less attention compared to its carbon footprint

● Large-scale AI models, like GPT-3, are found to be significant water consumers, with Microsoft's

GPT-3 training using 700,000 liters of clean freshwater in US data centers, not including

electricity generation

● For AI inference, a ChatGPT conversation consumes approximately 500 ml of water for a short

interaction, varying with usage time and location

● The unique spatial-temporal diversities of AI models' runtime water efficiency indicate potential

reductions in water consumption by scheduling AI workloads at specific times and locations

● This study highlights the importance of incorporating water considerations into AI development

● Water-conscious users may opt for water-efficient AI model usage times and data centers

● Transparency is proposed as a next step to measure, benchmark, and improve AI models' water

footprint, helping developers schedule training and inference efficiently and inform users of their

water consumption

● Transparency can lead to better water management and efficient use of AI models, similar to

Apple's clean energy scheduling for charging devices

Priyadarshan 26

Article #7 Notes: Energy and Policy Considerations for

Deep Learning in NLP

Source Title Energy and Policy Considerations for Deep Learning in NLP

Source citation (APA Format) Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy

considerations for deep learning in NLP (arXiv:1906.02243). arXiv.

https://arxiv.org/abs/1906.02243

Original URL https://arxiv.org/abs/1906.02243

Source type Journal Article

Keywords Machine Learning, Deep Learning, NLP, Sustainability, Green AI, Cost Analysis,
Hyperparameter Optimization

#Tags #ai, #neuralnetworks, #greensoftware, #nlpalgorithms

Summary of key points + notes
(include methodology)

While advances in techniques and hardware for training deep neural networks
have led to significant improvements in accuracy across NLP tasks, training a
state-of-the-art model on abundant amounts of data can have a significant
financial and environmental cost. This paper aims to quantify and approximate the
said costs based on data from recently trained NLP neural network models. To
characterize the dollar cost and carbon emissions, the researchers estimated the
kilowatts of energy required to train various popular NLP models, including the
Transformer, ELMo, BERT, and GPT-2, and converted them to approximate carbon
emissions and electricity costs. Additionally, they also estimated the resources
required to transfer an existing model to a new task or develop new models by
performing a case study on the computational resources required to tune LISA, a
state-of-the-art NLP model. They stress the importance of researchers disclosing
training durations and how models respond to hyperparameter adjustments. This
disclosure aids in making model comparisons and gauging their compatibility with
available resources. Additionally, the article advocates for providing academic
researchers with fair access to computing resources while also urging the
advancement of NLP research through the creation of more energy-efficient
algorithms and hardware.

Research Question/Problem/
Need

What are the environmental and financial costs of training NLP models and how
can they be mitigated?

Priyadarshan 27

Important Figures

The estimated carbon emissions of common NLP model training compared to other
tasks such as a flight or car usage over a lifetime

Percent distribution of energy sources among cloud compute providers

Estimated cost of training models in terms of CO2 emissions (lbs) and cloud
compute cost (USD)

Estimated cost in terms of cloud compute and electricity for training: (1) a single
model (2) a single tune and (3) all models trained during R&D

VOCAB: (w/definition) NLP (Natural Language Processing): A machine learning technology that gives
computers the ability the comprehend, interpret, and manipulate linguistic data

Priyadarshan 28

Neural architecture search: The automated process of finding the optimal neural
network architecture for a specific machine learning task

Hyperparameters: Parameters whose values control the learning process and
determine the values of model

Power Usage Effectiveness: A metric used to determine the energy efficiency of a
data center

BLEU Score: A metric for automatically evaluating machine-translated text. The
BLEU score is a number between zero and one that measures the similarity of the
machine-translated text to a set of high-quality reference translations.

Gigaflops: A measure of computing performance, specifically one billion
floating-point operations per second. It is used to quantify the computational
power required for training and running neural network models.

Cited references to follow up on

Follow up Questions What is meant by “training off-the-shelf” models for one day?

What are the potential advancements in hardware and software technologies that
could lead to more sustainable and accessible NLP research?

How can hyperparameter tuning, alternative architectures, and hardware
optimization mitigate the environmental costs of NLP training?

What does the availability of renewable energy sources for data centers look like
across different geographic locations?

How can this methodology be adjusted to account for the entirety of the training
lifecycle?

What are carbon emissions like for other types of AI models?

Introduction

Priyadarshan 29

● Developments in the capabilities of natural language processing models have been significant,

but have also increased model sizes and computational requirements

● Research and experimentation with hyperparameters exacerbates the environmental and

financial costs of training

● As highlighted in the graph, training newer models, such as the Transformer, takes much more

energy than previous NLP models

○ Additionally, the experimentation aspects and neural architecture search, played an

extreme role on the total carbon footprint

○ Training the Transformer with neural architecture search emitted 5 times as much

carbon as the use of a car in a whole lifetime

● Many NLP models now require specialized hardware to train, and there’s a significant

environmental cost associated with leaving it running for hours or weeks at a time

● Generally, the energy used to train is non-renewable because not all locations have renewable

energy, and even if they did, most of it is not being allocated to model training

● The researchers aim to estimate the kilowatts of energy needed to train NLP models and the

resources required to tune existing models

● The conclusions outlined are that:

○ Time to retrain and sensitivity to hyperparameters should be reported for NLP machine

learning models

○ Academic researchers need equitable access to computational resources

○ Researchers should prioritize developing efficient models and hardware

Methods

● To measure the energy required for training, they trained off-the-shelf models using the default

settings and sample GPU and CPU power consumption during training

● They estimated the total time needed to train to completion using training times and hardware

from the original papers

● They calculated the total power required using the CPU, DRAM, and GPU power consumption as

well as the PUE

● From there, they converted the power to estimated carbon emissions

● 2.1 Models

○ The models analyzed include the Transformer, ELMo, BERT, and GPT-2

○ Details on the specifics of each model were covered

Related Work

● The author mentioned related work for models in computer vision, such as convolutional neural

networks for classification

○ This work measures average power draw required during inference on GPUs as a

function of the batch size

○ It doesn’t analyze recurrent or self-attention models, however

● During the time of writing, there wasn’t an analysis of the computation for R&D and

hyperparamter tuning in NLP

Priyadarshan 30

Experimental Results

● TPUs were more cost efficient than GPUs on workloads that make sense for the
hardware

● NAS cost $150,000 in on-demand compute time non-trivial carbon emissions for
marginal improvement in its BLEU score

● 4.2 Cost of development: Case study
○ For evaluating R&D costs, the researchers looked into the logs of training

required to develop LISA, a multi-task NLP model
○ LISA served as a representative NLP pipeline
○ The results indicated that while training a new model isn’t too expensive

financially or environmentally, tuning and developing one for a new dataset can
become extremely expensive

Conclusions

● Authors should report training time and sensitivity to hyperparameters
○ It would be beneficial to compare different model architectures and perform

cost-benefit analysis
○ Authors of models that are going to be fine-tuned for new tasks later on should report

training time and the computational resources required
○ For this to happen, they need

■ A standard, hardware-independent measurement of training time, such as
gigaflops required to convergence

■ A standard measurement of model sensitivity to data and hyperparameters,
such as variance with respect to hyperparameters searched

● Academic researchers need equitable access to computation resources
○ The costs associated with computational requirements are not accessible to everyone
○ The models trained in this paper required industry access to large-scale compute, but

limiting NLP research to industry labs hurts it
○ The cost of building in-house resources causes people to rely on cloud compute services,

such as AWS, Azure, and GCP
○ It is often more cost effective for researchers to pool resources and build shared

compute centers
○ A government-funded academic compute cloud would provide equitable access to all

researchers
● Researchers should prioritize computationally efficient hardware and algorithms

○ Promote research for more energy-efficient algorithms and hardware in NLP.

Priyadarshan 31

○ Encourage NLP software developers to prioritize efficient models
○ Advocate the use of efficient hyperparameter tuning techniques like random or Bayesian

search
○ Integrate these techniques into familiar NLP workflows for reduced energy consumption

Priyadarshan 32

Article #8 Notes: Training Compute-Optimal Large

Language Models

Source Title Training Compute-Optimal Large Language Models

Source citation (APA Format) Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,

Casas, D. de L., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland,

E., Millican, K., Driessche, G. van den, Damoc, B., Guy, A., Osindero, S.,

Simonyan, K., Elsen, E.,… Sifre, L. (2022). Training compute-optimal

large language models (arXiv:2203.15556). arXiv.

https://arxiv.org/abs/2203.15556

Original URL https://arxiv.org/abs/2203.15556

Source type Journal Article

Keywords Artificial Intelligence, Generative AI, Large Language Models, Transformers, Model
Scaling, DeepMind, Chinchilla, Gopher

#Tags #ai, #languagemodels, #generativeai, #deepmind

Summary of key points + notes
(include methodology)

Large language models have grown significantly in size, but often remain
undertrained due to improper scaling. This paper explored how optimal model
performance can be achieved under a given compute budget and the
corresponding allocation of parameters and tokens. It explored how model
performance can be scaled efficiently in lieu of solely increasing model size while
keeping the dataset constant. A significant benefit of training compute-optimal
models is reduced compute costs for fine-tuning and inference. The researchers
trained over 400 language models with varying sizes and tokens and identified the
importance of scaling the number of tokens with parameters. From there, they
tested their hypothesis by training and benchmarking Chinchilla, a
compute-optimal LLM, with the same compute budget as Gopher, a 280-billion
parameter model trained by Deepmind, with a quarter of the parameters and
significantly more tokens. The article starts by and continues citing the results of
research by Jared Kaplan and others that showed a power law relationship
between language models and model size, dataset size, compute amounts for
training, and other architectural details. From there, it explores three different
approaches to analyzing the relationship between model size and the number of
tokens under a given compute budget. It tries to fit an empirical estimator using

Priyadarshan 33

training curves from various models to determine optimal scaling for maximizing
performance and minimizing loss. Using this empirical estimator, they trained and
extensively evaluated Chinchilla.

Research Question/Problem/
Need

Given a fixed FLOPs budget, how should one trade-off model size and the number
of training tokens?

Important Figures

Overlaid projections from the approaches presented in the paper and Kaplan’s
research that demonstrate how other LLMs are much larger than they need to be

A table illustrating the size and number of tokens of various other LLMs and
Chinchilla, highlighting the disparity in training tokens and how other models don’t
have enough

The left graph illustrates all the different runs of training models ranging from 70M

Priyadarshan 34

to 10B parameters. The learning curves, especially the points with minimum loss
per FLOP, were used to find linear fits for approximating the optimal size (center)
and number of tokens (right) for a given FLOP budget.

The graph on the left shows the relationship between different numbers of tokens
and model size with a constant amount of final FLOPs. There are clear valleys in
loss, showing that there is an optimal model to train. The optimal model sizes and
number of tokens are projected using these valleys in the graphs in the center and
right.

A fit of the parametric modeling of the loss, display contour (left), and isoFLOP
slices (right).

Priyadarshan 35

Estimated optimal training FLOPs and training tokens for various model sizes.

Massive Multitask Language Understanding (MMLU). The average 5-shot
accuracy over 57 tasks with model and human accuracy comparisons taken from
Hendrycks et al. (2020).

Priyadarshan 36

MMLU results compared to Gopher.

VOCAB: (w/definition) Power law relationship: A functional relationship between two quantities, where a
relative change in one quantity results in a relative change in the other quantity
proportional to a power of the change, independent of the initial size of those
quantities

FLOPs: Floating Operations Per Second; a measure of computing performance

Loss: A mathematical function that quantifies the difference between predicted
and actual values in a machine learning model

Parameters: Numerical values that define the behavior of LLMs and neural
networks and contain the weights and biases

Tokens: Basic units of text that LLMs use to represent characters, words, subwords,
or other segments of text or code using numbers

Learning rate: A hyperparameter used to govern the pace at which an algorithm
updates or learns the values of a parameter estimate

Batch size: The number of samples processed before the model is updated

Cited references to follow up on

Priyadarshan 37

Follow up Questions How would training compute-optimal models affect carbon emissions?

Is there a quantifiable improvement in sustainability during finetuning and
inference?

Would the increase in tokens needed be an issue? (data leakage and just gathering
such immense amounts of data)

How does one scale a dataset?

How would the data be quality tested?

Does training with a larger dataset cause more carbon emissions during training?

Was there a reason Chinchilla did worse in certain tasks than Gopher?

Is a linear fit most appropriate for modeling optimal model sizes and the number
of tokens?

Priyadarshan 38

Notes (written with assistance from ChatGPT)

Introduction

● Introduction of Large Language Models (LLMs) with over 500 billion parameters and impressive

performance

● Acknowledgment of substantial compute and energy costs for training large language models

● Emphasis on the need to accurately estimate model hyperparameters for a given compute

budget

● Reference to the power law relationship between model parameters and performance

● Suggestion that large models should be trained for more training tokens than previously

recommended

● The common practice of training large models for approximately 300 billion tokens

● The central research question: How should one balance model size and the number of training

tokens within a fixed computational budget

● The optimization goal of minimizing pre-training loss under the constraint of a fixed FLOPs

budget

● Empirical estimation of optimal allocation functions based on over 400 models with varying

parameters and training horizons

● Prediction that a more compute-optimal model, Chinchilla, should be smaller and trained on

more tokens, leading to improved performance and reduced inference cost

● A reference to the energy cost of large language models and their benefits beyond immediate

performance improvements

● Table 1 showing details of current large dense transformer models and their training tokens,

introducing Chinchilla as a smaller model trained for an extended period

Related Work

● Acknowledgment of challenges in LLMs, including computational requirements and the need for

high-quality training data

● Importance of understanding scaling behavior and transfer properties in LLM development

● Reference to Kaplan et al. (2020) showing a predictable relationship between model size and loss

● Differences between the current analysis and Kaplan et al. (2020), including variable

hyperparameters and model sizes up to 16B parameters

● Mention of Clark et al. (2022) investigating scaling properties of Mixture of Expert language

models

● Consideration of hyperparameters beyond model size and training tokens, including learning

rate, batch size, and depth-to-width ratio

● Introduction of alternative model architectures such as conditional computation MoE models

and models with explicit retrieval mechanisms

Estimating the optimal parameter/training tokens allocations

● Three approaches to address the research question: How to balance model size and training

tokens within a fixed FLOPs budget

Priyadarshan 39

● Training a range of models with varying sizes and training tokens.

● Assuming a power-law relationship between compute and model size

● Similar predictions from all three methods, indicating that parameter count and training tokens

should increase proportionally with more compute

3.1. Approach 1: Fix model sizes and vary number of training tokens

● The first approach involves varying the number of training steps for a fixed set of models ranging

from 70M to over 10B parameters

● This approach helps estimate the minimum loss achieved for a given number of training FLOPs

● It includes details on training steps and interpolation of training loss curves

● The results are used to create mappings from FLOP count to optimal model size and number of

training tokens for any given amount of compute

● Power laws are fitted to estimate these mappings, resulting in values of 𝑎 = 0.50 and 𝑏 = 0.50, as

summarized in Table 2

● A head-to-head comparison at 1021 FLOPs demonstrates the advantage of the predicted model

size over the approach of Kaplan et al. (2020)

3.2. Approach 2: IsoFLOP profiles

● In the second approach, the model size is varied for a fixed set of 9 different training FLOP

counts, ranging from 6 x 10^18 to 3 x 10^21 FLOPs

● The focus is on determining the final training loss for each combination of model size and FLOP

budget

● Parabolas are fitted to the IsoFLOPs curves to identify the model size at which the minimum loss

occurs for each FLOP budget

● Power laws are then fitted to establish the relationship between FLOPs, loss-optimal model size,

and the number of training tokens

● The resulting exponents 𝑎 and 𝑏 are summarized in Table 2

3.3. Approach 3: Fitting a parametric loss function

● A parametric function is introduced to model the final losses from experiments in Approach 1

and 2, aiming to capture the relationship between model parameter count and the number of

seen tokens.

● The parametric function comprises three terms: the loss for an ideal generative process, the

performance of a perfectly trained transformer, and the effect of not training to convergence

● Parameters of the function (𝐴, 𝐵, 𝐸, 𝛼, 𝛽) are estimated by minimizing the Huber loss between

predicted and observed log loss using the L-BFGS algorithm

Priyadarshan 40

● The choice of Huber loss ensures robustness against outliers in the data

● Efficient computational frontiers are constructed by minimizing the parametric loss while

constraining FLOPs to scale with model size and data

● Figure 4 displays contour plots and isoFLOP slices that illustrate the fitted parametric loss

function. It also includes the efficient computational frontier represented by a blue line in log-log

space

● From this analysis, specific values for parameters 𝑎 and 𝑏 in the power-law form of the efficient

computational frontier are derived, with 𝑎 = 0.46 and 𝑏 = 0.54, as summarized in Table 2

3.4. Optimal model scaling

● The three approaches used in the study, despite employing different fitting methodologies and

models, consistently suggest that as the computational budget increases, model size and the

amount of training data should be scaled in roughly equal proportions

● Approach 1 and Approach 2 produce very similar predictions for optimal model sizes, while

Approach 3 predicts even smaller models to be optimal at larger compute budgets

● It's noted that points with lower training FLOPs have larger residuals, which can be attributed to

the empirically observed negative curvature in the optimal scaling frontier

● Table 3 presents estimated numbers of FLOPs and tokens required to train compute-optimal

models of various sizes, highlighting that many current large language models are considerably

over-sized given their compute budgets

● For example, a 175 billion parameter model should be trained with approximately 4.41 × 10^24

FLOPs and over 4.2 trillion tokens, and a 280 billion parameter model is optimal with

approximately 10^25 FLOPs and 6.8 trillion tokens

● The analysis underscores the importance of dataset collection in addition to engineering

improvements to achieve optimal model performance

● Further analyses on additional datasets (C4 and GitHub code) confirm the conclusion that model

size and the number of training tokens should be scaled proportionally

Chinchilla

● Based on the analysis, the optimal model size for the Gopher compute budget falls between 40

and 70 billion parameters

● To test this hypothesis, the study trained a model with 70 billion parameters, referred to as

Chinchilla, on 1.4 trillion tokens for efficiency reasons

● Chinchilla is compared to Gopher and other large language models, showing that Chinchilla's

smaller size leads to reduced memory footprint and inference cost while maintaining similar

performance

Priyadarshan 41

4.1. Model and training details

● Chinchilla is trained with a specific set of hyperparameters (detailed in Table 4) and shares the

same model architecture and training setup as Gopher with some exceptions

● Chinchilla is trained on the MassiveText dataset but with a slightly different subset distribution to

accommodate the increased number of training tokens

● The AdamW optimizer is used for Chinchilla instead of Adam, resulting in improved language

modeling loss and downstream task performance

● Chinchilla employs a modified SentencePiece tokenizer without NFKC normalization, which helps

improve the representation of certain content like mathematics and chemistry

● While the forward and backward passes are computed in bfloat16, Chinchilla stores a float32

copy of weights in the distributed optimizer state

● All models, including Chinchilla, are trained on TPUv3/TPUv4 using JAX and Haiku.

● Chinchilla's evaluation includes a range of language modeling and downstream tasks (see Table

5) for comparison with previous work

4.2. Results

● Performance on The Pile: Chinchilla consistently outperforms Gopher across various evaluation

sets in The Pile dataset, as indicated by bits-per-byte (bpb) improvements

● Language Modeling Benchmarks: Chinchilla achieves a lower perplexity (7.16) on Wikitext103

compared to Gopher (7.75), although it should be noted that Chinchilla is trained on significantly

more data, raising concerns of train/test set leakage

● Massive Multitask Language Understanding (MMLU): Chinchilla significantly outperforms

Gopher on the MMLU benchmark, with an average 5-shot accuracy of 67.6%, representing a

7.6% improvement over Gopher. Chinchilla also surpasses an expert forecast for June 2023

accuracy

● Task-Specific Performance: Chinchilla generally improves performance on a wide range of tasks

compared to Gopher. However, it falls short on a few tasks such as college_mathematics,

econometrics, moral_scenarios, and formal_logic

● Word Prediction and Reading Comprehension: Chinchilla achieves higher accuracy on the

LAMBADA word prediction dataset (77.4%) compared to Gopher (74.5%). It also significantly

improves performance on RACE-h and RACE-m reading comprehension tasks

● BIG-bench Tasks: Chinchilla outperforms Gopher on the majority of BIG-bench tasks, resulting in

an average performance improvement of 10.7%

● Common Sense Benchmarks: Chinchilla excels on common sense benchmarks, outperforming

both Gopher and GPT-3 on most tasks

● Closed-Book Question Answering: Chinchilla achieves new closed-book state-of-the-art (SOTA)

accuracies on the Natural Questions dataset, surpassing Gopher's performance by a substantial

margin. It also outperforms GPT-3 on TriviaQA

Priyadarshan 42

● Risks and Ethical Concerns: Chinchilla, like Gopher, carries risks such as biases, generation of

potentially offensive content, and privacy concerns. These concerns remain challenging to

address comprehensively

● Limitations: Chinchilla underperforms on certain tasks, and there are concerns about data

leakage due to its larger training dataset. Additionally, the study emphasizes the importance of

mitigating ethical risks associated with large language models

Discussion & Conclusion

● The trend in large language model training involves increasing model size without a proportional

increase in training tokens

● This trend may lead to underperformance compared to what could be achieved with the same

compute budget

● Three predictive approaches are proposed based on over 400 training runs, all indicating that

Gopher is oversized, and smaller models trained on more data would perform better

● Chinchilla, a 70B parameter model, was created and outperformed Gopher and larger models in

various evaluation tasks

● Limitations include the absence of intermediate-scale training runs, assumptions about the

relationship between compute budget, model size, and training tokens, and training runs with

less than one epoch of data

● There is a need for an increased focus on scaling datasets with a strong emphasis on quality

● Ethical and privacy concerns arise when training on trillions of tokens, necessitating dataset

introspection and research into the interaction between model performance and toxicity

● The trade-off between model size and data amount is likely applicable to other modalities

beyond language models

● The proposed methods for choosing optimal model size and training steps are considered

applicable and reproducible in various settings

Priyadarshan 43

Article #9 Notes: Cerebras-GPT: Open Compute-Optimal

Language Models Trained on the Cerebras Wafer-Scale

Cluster

Source Title Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras
Wafer-Scale Cluster

Source citation (APA Format) Dey, N., Gosal, G., Zhiming, Chen, Khachane, H., Marshall, W., Pathria, R., Tom,

M., & Hestness, J. (2023). Cerebras-GPT: Open compute-optimal

language models trained on the Cerebras wafer-scale cluster

(arXiv:2304.03208). arXiv. http://arxiv.org/abs/2304.03208

Original URL http://arxiv.org/abs/2304.03208

Source type Journal Article

Keywords Artificial Intelligence, Large Language Models (LLMs), Open Language Models,
Generative AI, Compute-Optimal AI, Cerebras

#Tags #ai, #llm, #opensource, #efficientscaling

Summary of key points + notes
(include methodology)

The article presents research that advances large language models through
efficient pre-training and scaling. It covers the training of Cerebras-GPT, a family of
open source compute-optimal language models scaled from 111M to 13B
parameters, trained on the Eleuther Pile dataset following scaling laws from
DeepMind’s Chinchilla. It also explores how Maximal Update Parameterization (μP)
can improve model scaling as well as Andromeda, the specialized supercomputer
used by Cerebras to train the model. The paper sheds light on the predictable
power-law scaling of these models and provides detailed instructions for
reproducing the results. The architecture of the Cerebras Wafer-Scale Cluster,
designed for large-scale parallel deep learning training, is described, with a
particular focus on the Cerebras Stack and the Weight Streaming mode, which
eliminates the need for complex data and model parallelism, enhancing
performance at small per-system batch sizes. After training the model, it
showcased Cerebras-GPT’s exceptional efficiency in both pre-training and
downstream tasks in comparison to other models. Finally, the researchers also
acknowledge the limitations of the model and identified research directions, such
as investigating position embeddings like RoPE and ALiBi, activation functions such

Priyadarshan 44

as SwiGLU, and training paradigms like denoising pre-training objectives,
instruction fine-tuning, and dataset cleaning.

Research Question/Problem/
Need

How can scaling techniques be applied to train a compute-optimal large language
model?

Important Figures

Pile test set loss given pre-training FLOPs s for Cerebras-GPT, GPT-J, GPT-NeoX, and
Pythia. Cerebras-GPT requires less training FLOPs (significantly less towards the left
of the graph) to achieve similar losses to the other models).

Cerebras-GPT model architecture and training algorithm details

Priyadarshan 45

Again, as highlighted by the graph on the left, Cerebras-GPT requires significantly
less training FLOPs to achieve similar loss on the Pile dataset as other models.
Additionally, Figure 3 shows that for optimal pre-training on the Pile, using
approximately 20 tokens per parameter is consistent with Chinchilla results on the
MassiveText dataset, as it indicates a predictable percentage loss increase
compared to the Cerebras-GPT frontier.

Figure 4 illustrates that Cerebras-GPT models establish the compute-optimal
frontier for downstream tasks, with the 13B model exhibiting the best average
results for models of comparable size, and it also demonstrates that downstream
accuracy is predictable by model size for models trained with fixed
tokens-per-parameter, implying competitiveness with GPT-NeoX 20B if scaled
accordingly.

Priyadarshan 46

Table 2 presents detailed comparisons of large models, highlighting the best
performers for various tasks and model sizes, including Pythia models trained on a
deduplicated Pile. Despite challenges in pre-training, Pythia models generally show
improved downstream task accuracy (1.8% on average), suggesting the potential
benefits of deduplication.

Figure 5 demonstrates that μP models exhibit more predictable scaling with an
average improvement of 0.43% in Pile test loss compared to Cerebras-GPT SP
models, along with substantially lower variance (0.04% vs. 0.66%), highlighting the
model's robustness and reliability

Priyadarshan 47

Table 3 demonstrates that μP models consistently enhance downstream
performance, with an average 1.7% relative improvement in tasks compared to SP
models, except for a specific 2.7B parameter model, where SP models unexpectedly
performed well, while the 2.7B + μP model remained competitive

Figure 6 highlights that most Cerebras-GPT models outperform Pythia models in
terms of Pile test loss per compute FLOP until a threshold of about 200B inference
tokens, suggesting a trade-off where models trained with token counts between
Cerebras-GPT and Pythia frontiers may offer better loss for the same compute
budget

Logical architecture of the Cerebras Wafer-Scale Cluster

Priyadarshan 48

Table 4 demonstrates that Andromeda achieves remarkable linear scaling, within
9%, for all model sizes and CS-2 system counts when applying a weak scaling
approach, where batch size increases proportionally with the number of systems,
as training steps progress, indicating impressive performance and scalability

Table 5 highlights that Andromeda maintains high utilization even during strong
scaling of batch sizes, where fixed batch sizes are distributed across different
numbers of Andromeda systems. The results indicate consistent performance
scalability for batch sizes commonly used with these models, demonstrating the
system's efficient utilization and adaptability to varying batch sizes

Table 6 shows consistent FLOP/s utilization across various model sizes, with
performance deviating by less than 8%, highlighting Andromeda's robust scalability
and consistent performance across different setups

VOCAB: (w/definition) Autoregressive Transformer Decoder Model: A neural architecture commonly used
for sequential data generation tasks, such as language generation and machine
translation, where it predicts tokens one at a time based on previously generated
tokens, making it well-suited for tasks involving ordered data.

Deduplication: A method of elimination duplicate copies of repeating data

Priyadarshan 49

Standard Parameterization: A commonly used initialization approach where model
weights are initialized with specific standard deviations, promoting stability and
predictable behavior during training and inference. It serves as a foundational
configuration for large models before further optimization or fine-tuning.

Maximal Update Parameterization: An initialization and hyperparameter tuning
approach for large language models that enhances training stability, control over
initialization, layer-wise learning rates, and activation magnitudes, ultimately
improving the transferability of training hyperparameters from smaller to larger
scale models. It addresses challenges faced by Standard Parameterization (SP)
when scaling large models, resulting in more stable and predictable training
behavior.

Pre-training: The initial phase of model training in which a neural network is
exposed to a massive amount of text data to learn general language understanding
and context. During this phase, the model learns to predict the next word or token
in a sentence, capturing linguistic patterns, semantics, and world knowledge,
which it can later apply to specific natural language processing tasks through
fine-tuning.

Scaling: The process of increasing the size, capacity, or complexity of a neural
network, typically by adding more data, parameters, layers, or computational
resources

Downstream Results: The model's performance and effectiveness when applied to
specific natural language processing tasks, such as text classification, language
translation, sentiment analysis, or question answering, after the initial pre-training
phase. These results assess how well the model can leverage its learned language
understanding to solve real-world language-related challenges.

Cited references to follow up on

Follow up Questions Is the Andromeda supercomputer and the Wafer-Scale cluster more energy
efficient than other training hardware?

What were the carbon emissions throughout the training lifecycle of

Priyadarshan 50

Cerebras-GPT?

How was the Pile Dataset scaled?

Are there environmental benefits to Maximal Update Parameterization (μP)?

How specifically can organizations and government better analyze training costs
and carbon emissions as mentioned in the paper?

Priyadarshan 51

Introduction

● Recent research shows advances that can vastly improve LLM quality and efficiency

○ Scaling laws

○ Training on more data

○ Maximal Update Parameterization

● The research community has trained and released many open-source models with

state-of-the-art efficiency for their size, but they aren’t compute-efficient

● Cerebras-GPT is an effort to combine efficient scaling techniques to produce compute-optimal

pre-trained models and the corresponding scaling laws

● Overall, the contributions of this work includes the following

○ Trained Cerebras-GPT compute-optimal models scaled from 111M to 13B parameters to

collect compute-efficient scaling laws

○ Showed that these models provide state-of-the-art pre-training efficiency on both

pre-training and downstream objectives compared to other open models

○ Provided detailed instructions how to reproduce results, including the use of μP

○ Documented the experience training on the Andromeda AI Cluster, comprising 16

Cerebras CS-2 systems

Methodology

Model Architecture

● Cerebras-GPT models have a GPT-3-like architecture, an autoregressive transformer decoder

model

● Unlike GPT-3, Cerebras-GPT uses dense attention in all decoder blocks

Pre-training Corpus

● Models are pre-trained on the Pile dataset, which consist of data from 22 sources

● The corpora is tokenized with byte-pair encoding and the GPT-2 vocabulary

● Deduplication wasn’t performed but it could further improve results

Model Training

● Model configurations

○ AdamW optimizer with (beta1, beta2) = (0.9, 0.95)

○ Epsilon 1e-8 for small models and 1e-9 for 6.7B and 13B parameter models

○ Weight decay of 0.1

○ Gradient norm clipping of 1.0

○ Learning rates and batch sizes consistent with prior works

○ Linear learning rate over cosine decay more often because it tends to perform better

● Cerebras-GPT was scaled following the DeepMind Chinchilla scaling methodology

● This paper is the first to estimate the compute-efficient tokens per parameter for the Pile dataset

● The models were trained with both FP16 mixed precision and bfloat16 precision

○ Bfloat16 more stable generally due to extra exponent range

Priyadarshan 52

Standard (SP) and Maximal Update Parameterization (μP)

● The main Cerebras-GPT models are configured with the common standard parameterization (SP)

approach

○ Weights initialized from normal distributions with constant standard deviation or

standard deviation based on the shape of each layer

○ Embedding and hidden layer weights are initialized with a truncated normal distribution

with standard deviation σ = 0.02

○ Standard deviation of for the last layer, following the GPT-2σ = 0. 02/ 2 · 𝑛
𝑙𝑎𝑦𝑒𝑟𝑠

initialization

● SP models tend to become unstable as they scale

Maximal Update Parameterization

● They trained a set of Cerebras-GPT models with Maximal Update Parameterization (μP) to

address the issues of SP

● μP increases training stability by controlling initialization, layer-wise learning rates, and

activation magnitudes and improves the transferability of training hyperparameters from smaller

to larger scale models (μTransfer)

● A smaller set of Cerebras-GPT models was trained using μP, and the tuned hyperparameters

were transferred along the μP scaling law to a 2.7B parameter model

Results

● Cerebras-GPT models are shown to define the state-of-the-art compute-optimal Pareto frontier

on both pre-training and downstream objectives

Pre-training Results

● They scaled and pre-trained Cerebras-GPT models from 111M-13B parameters on the Pile

dataset

● Refer to Figure 2 and Figure 3 annotations

Downstream Results

● Cerebras-GPT and other publicly-available models were evaluated on a suite of seven common

sense reasoning tasks using the EleutherAI evaluation harness

● Cerebras-GPT models form the compute-optimal Pareto frontier for downstream tasks as well

● Refer to Figure 4 annotations

Maximal Update Parameterization (μP) and μTransfer

● Scaling Cerebras-GPT models with SP resulted in challenges predicting appropriate

hyperparameters and substantial variance around their common scaling law

● μP models had an average of 0.43% improved Pile test loss and 1.7% higher average downstream

task accuracy compared to SP models; μP performance also scaled more predictably

● Refer to Figure 5 and Table 3 annotations

Priyadarshan 53

Trading Off Training and Inference FLOPs

● The analysis has primarily focused on compute-optimal pre-training, where compute cost is tied

to model size squared, but there is growing interest in considering model inference costs,

indicating that smaller models trained on more tokens can offer substantial loss improvements

and inference cost advantages proportional to their size

● They propose a technique to identify training and inference compute-optimal frontiers that

practitioners could use to estimate how models should be pre-trained considering deployment

costs

F is total compute cost, f represents FLOPs costs for full pre-training and per-token infer, ninfer_tokens is the

number of expected inference tokens, and p is the parameter count

● Organizations and governments can better assess the total costs when budgeting large-scale

training runs

● Simple analysis can be applied to monetary, energy, or carbon footprint costs as well

Cerebras Stack

● All studies were run on the Cerebras Wafer-Scale Cluster named “Andromeda”, which contains

16 Cerebras CS-2 systems

Andromeda AI Supercomputer

● Andromedia is a Cerebras Wafer-Scale Cluster with 16 CS-2 systems, each containing a WSE-2

processor with 40 GB of SRAM and 7.5 PetaFLOP/s peak throughput

● Andromeda’s architecture is designed for large-scale parallel deep learning training, with a total

peak throughput of 120 PFLOP/s

● Weights and command servers manage computation by broadcasting weights and control

instructions and collecting and reducing gradients

● Activation workers handle input data and activations, reading data from disk, creating

subbatches for training, and managing activation checkpointing when required

CSoft Platform and Weight Streaming Mode

● Andromeda uses the CSoft to run deep learning applications, with models written and trained in

both TensorFlow and PyTorch

● CSoft handles model compilation, orchestration, and optimizations like subbatch sizing, gradient

accumulation, activation recomputation, and data layouts for high performance

● The Weight Streaming mode, shown in Figure 7, enables training models limited only by the

memory capacity of weight servers, allowing testing beyond the GPT-3 175B parameter model

without additional changes

Priyadarshan 54

● Unlike existing accelerator execution modes, Weight Streaming eliminates the need for complex

data and model parallelism, offering solid performance at small per-system batch sizes by

moving weights to the wafer and gradients from the wafer

Performance Scalability

● Andromeda provides near-linear performance scaling up to the full 16 CS-2s

● Refer to annotations

Limitations

● This work focuses on training foundational models without exploring recent architectural

features, downstream task tuning procedures, or dataset cleaning methods used in

contemporary works

● Future research directions include investigating position embeddings like RoPE and ALiBi,

activation functions such as SwiGLU, and training paradigms like denoising pre-training

objectives and instruction fine-tuning

● Dataset cleaning is identified as a potential area for improvement, as demonstrated by Pythia

models showing enhanced downstream task accuracy when trained on deduplicated data

● Cerebras-GPT models have not undergone extensive testing in downstream tasks or real-world

applications, and further safety-related testing, mitigations, and output curation are necessary

before deployment

Priyadarshan 55

Article #10 Notes: Deduplicating Training Data Makes

Language Models Better

Source Title Deduplicating Training Data Makes Language Models Better

Source citation (APA Format) Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., &

Carlini, N. (2021). Deduplicating training data makes language models

better (arXiv:2107.06499). arXiv. http://arxiv.org/abs/2107.06499

Original URL https://arxiv.org/abs/2107.06499

Source type Journal Article

Keywords Artificial Intelligence, Large Language Models (LLMs), Datasets, Big Data,
Deduplication

#Tags #ai, #llm, #nlp, #nlg, #datasets, #bigdata

Summary of key points + notes
(include methodology)

Recently, large language models have been growing larger and larger in size. As
such, the corporas of text needed to train these models has grown significantly as
well. However, large datasets, especially those that span numerous terabytes in
size, are hard to create manually and quality test to ensure no biases and
high-quality data. This paper explored the specific effect of deduplication, or
removing repetitive and redundant training examples from a dataset. The
researchers observed various benefits, from reducing memorized data to more
efficient model training and sizes, and no downsides to deduplication. The paper
proceeds to outline how data was deduplicated with two primary methods and
examined the extent of duplicate content in the dataset and the effect of
deduplicated data on models. The first method of deduplicated detailed was using
a suffix array to remove duplicate substrings if they appear verbatim in more than
one example, and the second method detailed using n-gram similarity between all
pairs of examples and removing those that had high overlap. After carrying out
deduplication, various resultant metrics were provided.

Research Question/Problem/
Need

How does deduplicating training data affect language models?

Priyadarshan 56

Important Figures

Examples of near-duplicates identified by NearDup, the approximate matching
algorithm, from each dataset

The distribution of near-duplicate cluster sizes from running NearDup on C4

The fraction of examples identified by NearDup as duplicates

Priyadarshan 57

The fraction of examples identified by ExactSubstr as part of an exact duplicate
50-token substring

Impact of deduplicating the training set on validation perplexity of trained models

When generating 100k sequences with no prompting, over 1% of the tokens
emitted from a model trained on the original dataset are part of a 50-token long
sequence copied directly from the training dataset. This drops to 0.1% for the
deduplicated datasets.

Priyadarshan 58

The proportion of generations which have edit similarity above 0.8 with the
groundtruth continuation when using the LM to generate continuations for
32-token prompts identified by NEARDUP as either duplicated or unique.

For each model, the perplexity of the official validation set (Orig), valid set
examples which were identified by NEARDUP as matches of train set examples
(Dups), and valid set examples identified by NEARDUP as unique (Unique).

VOCAB: (w/definition) Exact substring matching: Exact substring matching is a process of identifying and
eliminating duplicated substrings within a dataset by comparing sequences to find
shared substrings of a minimum specified length, such as 50 BPE tokens in this
case, and then removing one occurrence of the shared substring. This technique is
used to reduce redundancy in text data.

Approximate full document matching: Approximate full document matching,
known as NEARDUP, involves using the MinHash algorithm to identify documents
that are nearly identical by comparing their n-gram sets and approximating the
Jaccard Index. If the Jaccard Index is high enough, the documents are considered
potential matches, and further similarity metrics, like edit similarity, can be
employed to filter and identify duplicates, making it suitable for handling
documents with slight variations.

Suffix array: A suffix array is a lexicographically-ordered list of all suffixes contained
in a given sequence of text, facilitating efficient computation of substring queries
and the identification of duplicated examples in linear time

Priyadarshan 59

MinHash: MinHash is an approximate matching algorithm that represents
documents using sets of n-grams and utilizes hash functions to estimate the
Jaccard Index, enabling the identification of potential matches between
documents. It creates document signatures by sorting n-grams with a hash
function, keeping the smallest hashed n-grams, and is commonly used in
large-scale deduplication tasks, including the identification of duplicate
documents.

N-gram: An n-gram is a collection of n successive items in a text document that
may include words, numbers, symbols, and punctuation

N-gram similarity: N-gram similarity refers to the measurement of the similarity
between two documents by comparing their sets of n-grams (contiguous
sequences of n items, often words or characters) to estimate the Jaccard Index,
which quantifies the overlap of n-grams between the documents, indicating their
approximate similarity

Jaccard Index: The Jaccard Index is a similarity measure used to assess the overlap
or similarity between two sets by dividing the size of their intersection by the size
of their union, producing a value between 0 and 1, where 1 indicates complete
overlap or similarity and 0 indicates no common elements

Train-test leakage: Train-test leakage, also known as data leakage, occurs when
information from the test dataset is inadvertently used during the training of a
machine learning model. This can lead to artificially inflated performance metrics
during training but results in poor real-world performance since the model has
gained knowledge it shouldn't have.

Model perplexity: Model perplexity is a measurement of how well the model
predicts a sequence of words. A lower perplexity score indicates that the model is
better at predicting the next word in a sequence, suggesting a better
understanding of the language.

Cited references to follow up on

Priyadarshan 60

Follow up Questions What is the specific impact of deduplicated datasets on training compute
efficiency?

What are some other methods of ensuring data quality?

What privacy concerns are associated with data memorization?

How do train-test overlap issues, as discussed in the article, affect the
performance and model selection in LLMs?

How do different language model architectures and dataset sources influence the
impact of deduplication on training efficiency and model performance?

Can deduplication methods be combined?

Priyadarshan 61

Notes (written with assistance from ChatGPT)

Introduction

● Recent progress in natural language processing is driven by large-scale text corpora used to train

language models

● These datasets have grown significantly in size over the past few years, from gigabytes to

terabytes

● Large datasets are challenging to curate manually, leading to potential quality issues and biases

in trained models

● Duplicated training examples are a common source of bias in NLP datasets.

● The paper proposes two techniques for detecting and removing duplicated training data: exact

substring matching and approximate full document matching

● Thorough deduplication of training data offers several advantages:

○ Reduces the rate of emitting memorized training data by a factor of 10×

○ Addresses train-test overlap issues, preventing overestimation of model accuracy and

biasing model selection

○ Makes training more efficient and cost-effective, with datasets being up to 19% smaller

○ Does not negatively impact perplexity and can even reduce it by up to 10%.

● Data deduplication has no observed disadvantages

● The paper outlines the framework for text deduplication and examines the extent of duplicate

content in common NLP datasets

● It also explores the impact of deduplication on test perplexity, the frequency of emitting

memorized content, and the skewing of perplexity in existing models due to train-test overlap

Related Work

● The section discusses the use of large language model datasets and focuses on

Transformer-based decoder-only language models used for open-ended text generation

● These models are typically trained on internet text, with examples like GPT-2 being trained on

WebText and CommonCrawl

● Various models are mentioned, including GPT-3, GROVER, and T5, each trained on different

variations of web data

● Some models are trained on curated internet sources, like Guo et al.'s model trained on

processed Wikipedia text

● Non-English models use different datasets, like PANGU-α, which is trained on a non-public

corpus of Chinese-language documents

● The section also highlights that some datasets are not publicly available

● It mentions deduplicating publicly available datasets, such as Wiki-40B, C4, RealNews, and the

One Billion Word Language Model Benchmark

● The section raises concerns about contamination of downstream tasks when models are trained

on internet datasets that overlap with evaluation datasets

Priyadarshan 62

● It discusses approaches to address contamination, such as removing overlapping documents

from training sets

● The focus of the research mentioned is on the impact of duplicate text in language model

training and validation sets on model perplexity and the presence of memorized content

● The section mentions the privacy risks associated with data memorization and highlights that

some models emit over 1% of memorized training data

● Finally, it briefly mentions previous studies on duplicate text in other domains, such as code

datasets and their impact on code understanding tasks

Language Modeling Datasets

● The section discusses the analysis of duplicate text in four datasets commonly used for training

natural language generation systems, creating pre-trained models, and benchmarking language

models

● The focus is on English datasets, but it's mentioned that similar issues could exist in non-English

datasets

● The datasets analyzed include:

○ Wikipedia (Wiki-40B): This dataset consists of multi-lingual cleaned Wikipedia text, but

the analysis focuses on the English portion. It contains 2.9 million Wikipedia pages with

an average length of 768 BPE tokens.

○ One-Billion Word benchmark (LM1B): LM1B contains 30 million sentences of news

commentary, with an average example length of 32 BPE tokens.

○ Colossal Cleaned Common Crawl (C4): C4 comprises 360 million web documents, with an

average length of 486 BPE tokens. It was pre-processed to remove duplicates through a

sophisticated deduplication process.

○ RealNews: RealNews is a subset of the Common Crawl containing articles from news

domains. It includes 31 million documents with an average length of 793 BPE tokens.

Deduplication in RealNews involved hashing the first 100 characters of each document

and excluding documents with hash collisions, similar to C4.

● The section highlights the deduplication methods used for each dataset and the removal of

duplicates based on various criteria like hash collisions and duplicate URLs

Methods for Identifying Duplicates

● Two complementary methods for deduplicating text data are introduced:

○ Exact Substring Duplication:

■ This method focuses on removing duplicate substrings from the dataset if they

appear verbatim in more than one example

■ A minimum matching substring length of 50 tokens is chosen based on statistical

analysis

Priyadarshan 63

■ To efficiently identify duplicated training examples, a Suffix Array is constructed

from the dataset, allowing for linear time substring queries

○ Approximate Matching with MinHash:

■ This method aims to remove entire duplicate examples from the dataset based

on approximate matching

■ MinHash, an algorithm for estimating n-gram similarity, is used. Each document

is represented by its set of n-grams, and hash functions are applied to

approximate the Jaccard Index

■ A signature of size 9,000 and 5-grams are used in the implementation

■ Documents are considered potential matches if their Jaccard Index is sufficiently

high, and further filtering is applied based on edit similarity

■ Clusters of similar documents are identified using a graph-based approach

● The section explains the principles and computational details of both deduplication methods

Deduplication Results

● The section presents the results of deduplication efforts on four datasets using two techniques

● Duplicate text across data splits was prioritized to be kept in the test or validation set and

removed from the train set

● Results of deduplication:

○ Using NEARDUP, web-scrape datasets contain between 3.04% (C4) and 13.63%

(RealNews) near duplicates. Wiki-40B has only 0.39% near duplicates in the train set

○ In C4, most near-duplicate clusters consist of single pairs, but some clusters have over

5,000 examples, with one cluster containing 250,933 examples

○ On average, EXACTSUBSTR removes more total content compared to NEARDUP, except

for LM1B, where EXACTSUBSTR removes 8× less data due to shorter document lengths

○ NEARDUP and EXACTSUBSTR remove similar content; 77% of training examples removed

by NEARDUP in C4 have at least one verbatim length-50 match found by EXACTSUBSTR

● Properties of duplicated text:

○ In C4 and Wiki-40B, much of the near-duplicated text appears to be

computer-generated, with differences mainly in names, places, businesses, products,

dates, etc

○ RealNews and LM1B, derived from news sites, have near-duplicates due to the same

news articles appearing on multiple sites with slight formatting differences

● Train/Test Set Leakage:

○ Both deduplication methods identify overlap between train and validation sets

○ For example, 4.6% of the C4 validation set and 14.4% of the RealNews validation set

have approximate duplicates in their respective training sets

○ This duplication poses problems for evaluation metrics, potentially inflating scores for

models better at memorizing their training data

○ The effect of this leakage on publicly released models is evaluated in Section 6.3

Priyadarshan 64

Impact on Trained Models

● 1.5B parameter "XL" models, similar to GPT-2, were trained on C4-ORIGINAL, C4-NEARDUP, and

C4-EXACTSUBSTR

● Three different random seeds of the 110M parameter "base" model were also trained on each of

the three datasets, resulting in nine base-sized models

● All models used a Byte Pair Encoding (BPE) vocabulary trained on C4-NEARDUP with a 50K token

budget

● Maximum sequence length during training was 512 tokens

● Model Perplexity:

○ Models' perplexity was computed on validation sets of LM1B, Wiki-40B, and subsets of

the C4 validation set

○ Models trained on deduplicated data had significantly higher perplexity on validation set

examples with duplicates in the training set compared to models trained on the original

C4

○ EXACTSUBSTR-deduplicated models showed higher perplexity than

NEARDUP-deduplicated models

○ Similar trends were observed for XL-sized models

● Generated Text:

○ Memorization tendencies were evaluated in text generation experiments with and

without prompts

○ Without prompts, over 1% of generated tokens from XL-ORIGINAL belonged to

memorized sub-sequences, while XL-EXACTSUBSTR and XL-NEARDUP had significantly

less memorization

○ When prompts were used, models still tended to copy ground-truth text more often

when the prompt came from a duplicate example, even for deduplicated models

● Impact on Existing Models:

○ Train-test leakage affected existing models, including Transformer-XL trained on LM1B

and GROVER trained on RealNews

○ The presence of near-duplicates of the evaluation set in the train set significantly

impacted model perplexity, with perplexity halving for some examples

○ Existing models also suffered from the issue of generating text from their train sets, with

a significant portion of tokens in their outputs being part of verbatim matches in their

training data

Discussion

● This paper focuses on analyzing data duplication in language model training datasets

● It quantifies the extent of data duplication, explores the impact of deduplication on model

perplexity, and examines the reduction of memorized content

Priyadarshan 65

● Privacy implications of memorized training data are noted, emphasizing the need for careful

consideration in dataset creation

● Different types of memorized text and potential negative consequences of deduplication are

discussed

● The role of memorization in language models varies based on data nature and application,

encouraging researchers to consider these factors

● The paper suggests future research directions, including methods to memorize or forget specific

sequences based on application requirements

Conclusion

● Future language model research is encouraged to perform dataset deduplication

● Researchers can use the deduplicated datasets and tools provided in this study or develop new

deduplication methods

● The specific deduplication technique used matters less than the act of performing stringent

deduplication

● Deduplication generally does not harm model perplexity and can even improve it, despite

smaller training datasets

● Avoiding duplicates between training and testing sets is crucial to prevent models from

memorizing training data

● Deduplication contributes to reducing privacy concerns related to language models memorizing

their training data

Priyadarshan 66

Article #11 Notes: Beyond Scale: the Diversity Coefficient

as a Data Quality Metric Demonstrates LLMs are

Pre-trained on Formally Diverse Data

Source Title Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates
LLMs are Pre-trained on Formally Diverse Data

Source citation (APA Format) Lee, A., Miranda, B., Sundar, S., & Koyejo, S. (2023). Beyond scale: The

diversity coefficient as a data quality metric demonstrates LLMs are

pre-trained on formally diverse data (arXiv:2306.13840). arXiv.

http://arxiv.org/abs/2306.13840

Original URL http://arxiv.org/abs/2306.13840

Source type Journal Article

Keywords Diversity Coefficient, Data Quality Metric, Large Language Models, Pre-training
Data, Publicly Available Datasets

#Tags #llm, #nlp, #datasets, #bigdata, #dataquality

Summary of key points + notes
(include methodology)

This article discusses the quality of pre-training data for Large Language Models
(LLMs) and how it is an important factor for training powerful LLMs. The authors
propose to ground the discussion of data quality through the diversity coefficient,
a data coverage metric that moves beyond scale alone. They extend the diversity
coefficient to formally quantify data diversity of publicly available datasets and
discover that LLMs are pre-trained on formally diverse data. The authors conclude
that the diversity coefficient is reliable and can be used to build useful diverse
datasets for LLMs. The methodology involves measuring the diversity coefficient of
publicly available pre-training datasets to demonstrate that their formal diversity is
high when compared to theoretical lower and upper bounds. The authors also
conduct interpretability experiments to build confidence in the diversity coefficient
and find that the coefficient aligns with intuitive properties of diversity, e.g., it
increases as the number of latent concepts increases

Research Question/Problem/
Need

How can the quality of pre-training data for LLMs be measured?

Priyadarshan 67

Important Figures

Diversity coefficients of LLM pre-training datasets
with 95% confidence intervals are 2.7-4.76 times higher than
the conceptual lower bound and more than half that of the
upper bound.

Cross Diversity coefficients of LLM pre-training
datasets with 95% confidence intervals are 3-5 times higher
than the conceptual lower bound and more than half that of
the upper bound

Priyadarshan 68

Distribution of pairwise batch distances reflect conceptual and semantic dataset
properties, therefore increasing trust in the diversity coefficient

Priyadarshan 69

Diversity coefficient of GINC datasets with varying number of latent concepts and
vocab sizes shows the diversity coefficient behaves as expected

Diversity coefficients of C4 computed using different task batch sizes show positive
and diminishing returns with increasing batch size (left). Diversity coefficients of C4
and WikiText-103 computed using different GPT-2 probe network configurations
show that random networks underestimate diversity vs. pretrained networks, and
non-finetuned networks overestimate diversity vs. finetuned networks (right).

VOCAB: (w/definition) Diversity coefficient: A formal metric used to quantify the quality of pre-training
data in the context of large language models (LLMs). It measures the diversity of

Priyadarshan 70

datasets by calculating the expected cosine distance between pairs of Task2Vec
embeddings of batches. A higher diversity coefficient indicates a more diverse and
informative dataset.

Generative IN-Context Learning dataset: Generative IN-Context Learning (GINC)
datasets are mixtures of Hidden Markov Models (HMMs) with varying numbers of
latent concepts. These datasets are employed to analyze and validate the diversity
coefficient, particularly in understanding its behavior with respect to the number
of latent concepts and vocabulary size.

Task2Vec: An embedding method used for sequence data, specifically designed to
compute the diversity coefficient. It involves computing embeddings using the
Fisher Information Matrix (FIM) derived from fine-tuning the final layer of a neural
network. The resulting embeddings serve as unique fingerprints for batches,
allowing the measurement of diversity in pre-training datasets.

Embeddings: Vector representations of data points in a high-dimensional space. In
the context of the paper, embeddings are generated using the Task2Vec method,
capturing information about batches in pre-training datasets. These embeddings
play a crucial role in computing the diversity coefficient, reflecting the intrinsic
variability of data batches.

Fisher Information Matrix: A matrix derived from tuning or fine-tuning the final
layer of a neural network. In the context of Task2Vec, the diagonal entries of the
FIM are interpreted as measures of information that parameters contain about the
generative distribution. These entries are utilized to generate embeddings for
batches in the dataset.

Cosine distance: A metric used to measure the angular similarity between vectors.
In the paper, cosine distance is applied to calculate the diversity coefficient by
assessing the expected cosine distance between pairs of Task2Vec embeddings of
batches. Higher cosine distances indicate greater diversity between batches.

Hidden Markov Models: Hidden Markov Models (HMMs) are statistical models
that assume an underlying hidden structure influencing observed data. In the
context of GINC datasets, HMMs with varying latent concepts are used to simulate
synthetic datasets for studying the behavior of the diversity coefficient with
different numbers of latent concepts.

Cited references to follow up on

Priyadarshan 71

Follow up Questions How does the diversity coefficient approach contribute to advancing discussions
on data quality, and in what ways does it provide a more nuanced understanding
compared to traditional measures in the context of large language models?

The paper emphasizes the importance of considering data diversity and quality in
the context of pre-training large language models. How might the findings impact
the development and evaluation of future language models, particularly in terms
of addressing biases and ensuring robust performance?

The experiments highlight the impact of varying batch size and network
parameters on the diversity coefficient. What practical recommendations can be
drawn from these results for researchers and practitioners aiming to optimize the
pre-training process for large language models?

Priyadarshan 72

Notes

Introduction

● With the focus on model and dataset scaling, the effectiveness of scaling the token counts of

models relies fundamentally on the quality and coverage of the pre-training data

● Data quality and coverage are often overlooked or discussed in vague or imprecise ways

● The paper proposes grounding the discussion of quality with the diversity coefficient

● They use the diversity coefficient to quantify the data quality of publicly available datasets

● The diversity coefficient is high for these datasets relative to conceptually well-motivated lower

and upper bounds

● The paper shows the following

1. The diversity coefficient increases as one concatenates more pre-training datasets of

different sources

2. The task embedding distances used in the diversity coefficient groups

3. As the number of latent concepts increases, the diversity coefficient increases

4. A larger, more diverse vocabulary leads to a higher diversity coefficient

● Key contributions include

1. A paradigm shift beyond dataset scale to a data-centric machine learning perspective

through a formal data quality metric – the diversity coefficient

2. Advancing discussions on data quality by measuring an aspect of quality–data

diversity–using the diversity coefficient

3. Validating the diversity coefficient by demonstrating its interpretability and correlation

with intuitive diversity properties aligned with human intuitions

4. Demonstrating the high diversity of public datasets for LLM pre-training

5. Studying properties of different parameters for computing the formal diversity and

therefore providing practitioners with simpler ways to evaluate the diversity coefficient

Methods

Task2Vec Embeddings for Sequence Data

● The Task2Vec diversity coefficient is used to compute the formal diversity of a dataset

● The first step is computing the embeddings, which is done according to the original Task2Vec

method using the entries of the Fisher Information Matrix that result from tuning fine-tuning the

final layer of a neural network

● The diagonal entries of the FIM can be an be interpreted as a measure of the information that a

given parameter contains about the generative distribution

○ It serves as a unique fingerprint, or feature vector, for a batch, which defines a task

distribution

Diversity Coefficient

Priyadarshan 73

● The Task2Vec diversity coefficient is calculated as the expected cosine distance d between pairs

of Task2Vec embeddings of batches

Cross Diversity Coefficient

● The cross diversity coefficient computes the expected cosine distances of embeddings of batches

by sampling a batch from the two data sets separately without mixing

Backbone Used and Further Explanation of the Diversity Coefficient

● By measuring the distance between FIMs, the diversity coefficient captures the average intrinsic

variability of batches in the underlying data distribution as a proxy for data coverage or

information contained in the dataset

● The dataset diversity reflects how different batches are from each other

Recipe for Establishing if a Diversity Coefficient is High via the Conceptual Lower and Upper Bounds

● To establish if a diversity coefficient is high or low, two conceptually well-motivated reference

values are used: the lower and upper bounds

● The conceptual lower bound is measured on a dataset with probability concentrated on an

arbitrary token

● Lower bound created with vocabulary size of 2, assigning probability weight to <eos> token and

a randomly selected non-special token

● Probability weight for <eos>: 1/{GPT-2 vocab size}, remaining weight for the non-special token

● Conceptual upper bound measured on a synthetic dataset with equal probability for all tokens in

GPT-2 tokenizer vocabulary

● High or maximum diversity dataset consists of random sequences with no underlying order in

semantics, formatting, etc

LLM Pre-training Datasets

● The publicly available language datasets used in the paper were outlined as follows

○ C4

○ WikiText-103

○ The Pile

○ Pile-CC

○ HackerNews

○ NIH ExPorter

○ PubMed Abstracts

○ USPTO Backgrounds

Experiments & Results

Diversity Coefficients of Pre-training Data shows LLMs are Pre-trained on Formally Highly Diverse Data

Priyadarshan 74

● The experiment evaluated the diversity coefficient of the eight public datasets and computed the

diversity coefficient of two concatenated datasets

● Results in Table 2 show diversity coefficients for eight LLM pre-training datasets and their

conceptually motivated lower and upper bounds

● Measured diversity coefficients for concatenation of various publicly available datasets are also

presented in Table 2

● Key observations:

○ Pre-training datasets generally have diversity coefficients 3-5 times greater than the

theoretical lower bound and, on average, half the upper bound

○ WikiText-103, C4, The Pile, and Pile-CC exhibit high diversity coefficients (0.21, 0.25)

○ Pile-CC has higher diversity than C4, suggesting a potentially more stringent

preprocessing method for Pile-CC from the Common Crawl corpus

○ Three sub-datasets of The Pile (NIH ExPorter, PubMed Abstracts, USPTO) show relatively

low diversity (0.15-0.17), about half of the upper bound (0.4), possibly due to their

specialized fields

○ Pile-CC and HackerNews have higher diversity, likely attributed to their broad topic

coverage

○ Pile-CC exhibits higher diversity, aligning with its heterogeneous content composition

Concatenation of Datasets of Different Sources Produces Higher Measured Diversity

● To show that the concatenation of different datasets produces high diversity, the paper

measures the diversity coefficient of C4 plus WikiText-103, as well as the diversity coefficient of

the five sub-datasets of The Pile in Table 2

● Key Observations:

○ Diversity coefficient for C4 and WikiText-103 concatenated dataset is 0.2711,

approximately +0.03-0.05 higher than each individual dataset

○ Diversity coefficient for concatenation of five sub-datasets of The Pile is 0.2939 (Table 2),

about +0.04-0.1 (Figure 1) higher than each individual dataset

○ Concatenation of five sub-datasets of The Pile achieves the highest diversity coefficient

in Table 2

○ Increase in diversity results from higher pairwise Task2Vec distances between batches

from different datasets (see Figure 1)

○ Diversity coefficient is an average of all pairwise Task2Vec distances, aligning with human

intuition that combining data from heterogeneous sources increases overall diversity.

Distribution of Pairwise Batch Distances Reflects Conceptual and Semantic Dataset Information

● To increase confidence in the diversity coefficient as a diversity metric, the distributions of the

Task2Vec distances used to compute the coefficient were studied

● In particular, the alignment of the grouping of these distances with human conceptual and

semantic understanding was noted

● Analyzed Task2Vec (cosine) distances between batches from five sub-datasets of The Pile

Priyadarshan 75

● Compared distances within individual sub-datasets and across different sub-datasets, visualized

in Figure 1

● Combined datasets show increased diversity coefficient compared to individual datasets

● Expect higher diversity for pairings of unrelated datasets than related datasets, observed in

Figure 1 (right)

● Pairings of conceptually unrelated datasets in concatenated C4 and WikiText-103 show higher

distances than individual datasets

● Concatenated sub-datasets of The Pile exhibit higher distances for unrelated datasets above the

dotted line, while related datasets group below

● Pile-CC and HackerNews anticipated to cover diverse topics due to their web-scale nature, with

highest individual diversities and increases when combined with other datasets

● Distances between Pile-CC and HackerNews batches are the lowest among pairwise distances of

concatenated datasets above the diversity coefficient, aligning with human intuition

● Findings reinforce trust in the diversity coefficient as a metric, as it aligns with human intuition in

interpreting Task2Vec distances

Diversity Coefficient Captures LLM Pre-training Data Distributional Properties

● To instill further confidence in the diversity coefficient, a correlation analysis with data

distributional properties was performed on a synthetic dataset, GINC

● Experiments:

○ GINC datasets, mixtures of HMMs with 1-10,000 latent concepts, analyzed

○ Diversity coefficient variation plotted as latent concepts increase (Figure 2, top)

○ Curve fitted for GINC datasets with fixed vocabulary sizes of 50 and 150

○ Fixed latent concepts at 5 and 5000, plotted diversity coefficient against increasing

vocabulary size (Figure 2, bottom)

○ Curve fitted for GINC datasets with 5 and 5000 latent concepts

● Results:

○ Diversity coefficient increases with a greater number of latent concepts (Figure 2, top)

■ Diminishing returns observed

■ High R2 values (0.952 and 0.898)

○ Diversity coefficient saturates as more latent concepts are added

■ Hypothesized due to marginal increases in variation from increased overlap

○ Diversity coefficient increases with larger vocabularies (Figure 2, bottom)

■ Exponential pace observed

■ High R2 values (0.993 and 0.984)

○ Hypothesis: Exponential growth due to scaling the number of tokens creating a more

diverse dataset

○ Results indicate the diversity coefficient successfully captures different distributional

sources of variation in the data

Using the Diversity Coefficient in Practice: Setting Batch Size and Network Parameters

● Experiments:

Priyadarshan 76

○ Tested sensitivity of computed diversity coefficient to changes in batch size and probe

network parameters

○ Varied batch size and observed impact on diversity coefficient for C4 (200 batches,

pretrained, fine-tuned GPT-2)

○ Tested various probe network configurations for C4 and WikiText-103 diversity

coefficient measurement

● Results:

○ Diversity coefficient increases with task batch size but with diminishing returns (Figure 3,

left)

○ Diminishing returns due to greater coverage in tokens, topics, document formats, etc.,

between batches

○ Using a random probe network underestimates diversity compared to pretrained

networks

○ Using a non fine-tuned network overestimates diversity

○ Trends in diversity coefficient estimation consistent across C4 and WikiText-103

● Recommendations:

○ Suggested using a batch size of 512 for faster computations and fewer memory issues

○ Proposed diversity coefficient computation using random and non fine-tuned networks

for efficiency, saving computational costs

○ Acknowledged absolute diversity coefficient values may differ but consistency in

network configuration is crucial

○ Further validation needed to determine if forgoing pre-trained and/or fine-tuned probe

networks can produce robust embeddings as the original Task2Vec method

Related Work

● Existing diversity metrics focused on GAN-produced data, using precision- and recall-based

frameworks

● Similar to Task2Vec, these metrics use embedding functions and argue that data quality is

distinct from diversity in GANs

● In the context of LLMs, data diversity considered a subset of data quality, important for

in-context learning

● Diversity metric sufficient to capture a crucial aspect of data quality, aiding coverage and task

inclusion in test datasets

● Large LLMs robust to noise; high diversity preferred, and evidence suggests current open LLM

datasets have this property

● A proposed diversity metric, Vendi Score, doesn't rely on embedding functions, but its benefits

are unclear. Computationally more expensive than Task2Vec

● Vendi Score assumes a suitable similarity function, lacking guidance on data representation

● Data representation fundamental to machine learning success; deep learning effective for

dataset/task embeddings

● Task2Vec's end-to-end approach learns effective embeddings, more general, flexible, and

scalable than Vendi Score

Priyadarshan 77

● Leave detailed comparison with Vendi Score for future work

Discussion

● Extending and validating Task2Vec diversity coefficient for natural language data, confirming

open LLMs pre-trained on formally diverse data

● Intuitive properties verified through experiments, instilling confidence in diversity coefficient

method

● Conceptually motivated lower and upper bounds aid understanding of diversity coefficient

magnitude

● Bounds apply to symbolic vocabulary sequence data; multi-modal embedding method can

address this limitation

● Method doesn't rely on activations from an arbitrarily selected layer; diversity coefficient

well-justified and extensively tested

● Deep learning representations suggested due to their success in various machine learning

domains

● Need for a data representation acknowledged; deep learning representations and open-source

pre-trained models recommended

● Explore random networks and models with no fine-tuning for accessibility

● Diversity coefficient deemed reliable and trustworthy, suggested for building quality diverse

datasets for capable LLMs

● Relationship between pre-training data diversity and LLM evaluation test performance explored,

showing a negative correlation between diversity and cross-entropy loss

● Positive relationship between diversity and model performance conjectured, but more extensive

experiments needed

● Experiment challenges due to the expensive nature of pre-training large language models

Priyadarshan 78

Article #12 Notes: A Pretrainer's Guide to Training Data:

Measuring the Effects of Data Age, Domain Coverage,

Quality, & Toxicity

Source Title A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain
Coverage, Quality, & Toxicity

Source citation (APA Format) Longpre, S., Yauney, G., Reif, E., Lee, K., Roberts, A., Zoph, B., Zhou, D., Wei, J.,

Robinson, K., Mimno, D., & Ippolito, D. (2023). A pretrainer’s guide to

training data: Measuring the effects of data age, domain coverage,

quality, & toxicity. (arXiv:2305.13169). arXiv.

https://arxiv.org/abs/2305.13169

Original URL https://arxiv.org/abs/2305.13169

Source type Journal Article

Keywords Language Model Performance, Data Curation Choices, Temporal Misalignment,
Toxicity and Quality Filters, Domain Composition Effects

#Tags #llm, #bigdata, #nlp, #modelperformance, #pretraining

Summary of key points + notes
(include methodology)

The study investigates the impact of data curation choices on large language
model (LM) performance, emphasizing the lack of documentation in model
development processes. Findings reveal that the age of the dataset, quality and
toxicity filters, and domain composition significantly affect LM behavior. Notably,
quality filtering increases toxic generation, while toxicity filtering trades toxic
generations for reduced generalization. The study also addresses temporal
misalignment, suggesting that the temporal properties of pretraining corpora are
crucial, especially for larger models. Additionally, the impact of domain
composition on downstream performance is explored, emphasizing the
importance of diverse data sources.The study involves a comprehensive
examination of 28 1.5B parameter LM models, spanning various data curation
decisions. Pretraining datasets include Common Crawl (C4) and The Pile, with
considerations for dataset age, domain filtering, and content filtering. Evaluation
encompasses tasks related to toxicity identification, toxic generation,
question-answering, and domain generalization. The study introduces measures
like Temporal Degradation to assess the effects of pretraining misalignment.
Filtering effects are analyzed using quality and toxicity filters, and the impact of

http://arxiv.org/abs/2306.13840

Priyadarshan 79

domain composition is evaluated through downstream performance on diverse
tasks, shedding light on crucial aspects of responsible LM development.

Research Question/Problem/
Need

What is the impact of data curation decisions on large language model
performance, and how can this understanding contribute to responsible and
effective model development?

Important Figures

A list of well-known language models and a quantitative breakdown of their
pretraining data

Feature differences across slices of the pretraining datasets

Priyadarshan 80

Temporal Misalignment between Pretraining and Evaluation causes performance
degradation

The mean relative performance over 5 datasets (y-axis) increases as temporal
misalignment (x-axis) approaches zero

Priyadarshan 81

Temporal Degradation due to pretraining is significant and persistent
across domains

Toxicity filtering the pretraining dataset decreases the ability of LM-XLto identify
toxicity and to generate toxic text

Quality filtering C4 increases LM-XL’s downstream performance on all QA task
domains, except for Books

Priyadarshan 82

Toxicity filtering C4 reduces LM-XL’s downstream performance on most QA task
domains

QA tasks are affected by removing domains when pretraining LM-XL

Effect of the Pile’s domain composition on toxicity identification and generation

VOCAB: (w/definition) Toxicity: The presence of harmful or offensive content, such as profanity, insults, or
threats, within textual data, evaluated using methods like the Perspective API to
assign toxicity scores

Domain compositions: The diverse sources or categories from which data is drawn,
influencing the makeup of the pretraining dataset and subsequently affecting the
behavior of language models in different domains

Heuristic filtering: The use of practical and experience-based rules or methods to
filter and curate datasets, often applied to identify and remove undesirable or
low-quality content

Rule-based classifiers: Algorithms or systems that classify data into predefined
categories based on explicit rules, frequently used for categorizing documents into
quality or toxicity levels in the context of language models

N-gram filter: A filtering technique based on the analysis of contiguous sequences
of n-grams (sets of n adjacent words), often employed to identify or eliminate
specific patterns or content in language datasets

Priyadarshan 83

PII: Sensitive information that can be used to identify individuals, such as personal
names, addresses, and emails, which is often removed or handled with care during
data curation

Temporal misalignment: A discrepancy between the time of dataset pretraining
and the time of evaluation, impacting language model performance due to
changes in language use over time

Temporal Degradation (TD): A measure introduced to assess the decline in
performance resulting from the time gap between pretraining and evaluation,
particularly relevant for larger language models

Pearson correlation: A statistical measure indicating the strength and direction of a
linear relationship between two variables, employed to analyze the correlation
between temporal misalignment and performance degradation

Wald test: A statistical test used to assess the significance of coefficients in
regression analysis, potentially applied to evaluate the significance of factors
influencing language model performance

SafeSearch filters: Filtering mechanisms designed to block or restrict access to
content that may be considered inappropriate, often used to improve the quality
of web-derived training data

Safety discriminators: Mechanisms or filters integrated into language models to
discern and mitigate unsafe or undesirable outputs, enhancing the model's safety
during generation

Presentist bias: The potential bias introduced when language models are
predominantly trained on recent data, leading to a skewed representation of
language that may not align with historical language use

Ablating: The process of selectively removing or excluding specific components, in
this context, certain domains or data sources during the analysis of language
model behavior and performance

Cited references to follow up on

Follow up Questions How might the findings of this study influence the development and deployment
of large language models, especially in industries where responsible data use and
ethical considerations are paramount?

Given the observed trade-offs in toxicity and quality filtering, what strategies or
tools can model developers employ to strike a balance between mitigating toxic

Priyadarshan 84

content generation and maintaining model generalization across diverse datasets?

In light of the temporal misalignment challenges highlighted, what are potential
solutions or recommendations for adapting language model training practices to
better align with evolving language use over time, particularly for larger models
that are more susceptible to degradation?

Priyadarshan 85

Notes (written with the assistance of ChatGPT)

Introduction

● Modern LMs' performance relies on self-supervised pretraining on massive text datasets

● Model developers decide dataset composition, filtering, and document collection protocols,

often undocumented

● Lack of documentation hinders responsible data use and effective model development

● This study systematically tests common data design decisions' impact on model performance

● Findings and recommendations presented for model developers

● Age of dataset affects performance, leading to degradation if evaluation data is before or after

pretraining data collection

● Quality and toxicity filters have significant but opposite effects on model behavior

● Quality filtering increases toxic generation and downstream performance; toxicity filtering trades

toxic generations for reduced generalization

● Inverse toxicity filters demonstrate targeted benefits

● Domain composition influences performance, with high-quality and heterogeneous data

contributing to toxic generation

● Benefits of training on diverse data often greater than collecting targeted domain-specific data

● Best-performing models use all data sources, recommending practitioners to include diverse

sources

● Experiments constitute the largest publicly documented LM data curation study, spanning 28

1.5B parameter models

● Findings justify computational cost and inform model developers training the next wave of LMs

Methodology

Pretraining Datasets

● The two datasets used in the study are

○ C4

○ The Pile

Data Curation Choices

● Dataset Age

○ New versions of C4 are created by regenerating snapshots of the Common Crawl from

different years

○ Multiple time-based collections are not available for the Pile

● Domain Filtering

○ Both C4 and the Pile draw from multiple distinct data sources

○ The Pile explicitly delineates 22 distinct sources from web pages, Wikipedia articles,

code repositories, online forums, legal texts, and research paper archives

Priyadarshan 86

○ Documents from different domains are selectively removed to control for the topical

content of the pretraining collection

● Content Filtering

○ Datasets from weakly curated internet sources tend to contain low-quality, toxic, or

offensive content

○ Various approaches to determining document appropriateness, including

negatively-defined filters (removing specific categories), positively-defined filters

(keeping specific categories), and features-based filters

○ Evaluation of the impact of two document-level, classifier-based filters for toxic content

and quality content

● Quality Filters

○ Language models create quality classifiers to distinguish between "high-quality" corpora

and other documents

○ The classifier assigns each document a score from 0 (high quality) to 1 (low quality)

○ Experimentation with removing documents above and below specified quality

thresholds

● Toxicity Filters

○ The Perspective API is used to identify toxic content, assigning toxicity scores based on

profanity, identity-based negativity, insults, or threats

○ Experimentation with removing documents above and below specified toxicity

thresholds

○ In addition to the classifier-based filter, experimentation with an n-gram based filter

used in the original version of the C4 dataset

Evaluation

● Measurement of effects of time, topic, and toxicity on pretrained models

● English-language tasks include toxicity identification, toxic generation, question-answering tasks

from diverse domains, and tasks with temporal annotations

● Comparison of general utility and performance on tasks influenced by dataset characteristics

● Finetuning of each pretrained model on relevant datasets for downstream tasks, evaluated on

the same testing data

● Downstream Task Performance

○ Evaluation of each pretrained model's performance on downstream tasks, attributing

systematic differences to pretraining variations

○ Reporting mean performance relative to a baseline, often models trained on an

unfiltered dataset

● Domain Generalization Evaluation

○ Assessment on the union of two question-answering benchmarks: Machine Reading for

Question Answering (MRQA) and UnifiedQA

○ 30 unique QA datasets spanning diverse domains, measuring the impact of topic

alignment

● Temporal Misalignment Evaluation

Priyadarshan 87

○ Investigation of the impact of dataset collection time on downstream model abilities

○ Evaluation on five datasets with varying domains to explore potential performance

variations between pretraining and evaluation time

● Toxic Generation Evaluation

○ Assessment of language model behavior in generating profane, sexually explicit,

insulting, or obscene text

○ Evaluation using prompts designed to elicit biased or toxic outputs related to gender,

race, and religion

○ Measurement of the fraction of generated continuations assigned a high toxicity score

by the Perspective API

○ Utilization of the RealToxicityPrompts dataset, consisting of labeled toxic text excerpts

● Toxicity Identification Evaluation

○ Assessment of the ability of language models to recognize toxic language

○ Importance for content moderation on communication platforms

○ Evaluation with various toxicity interpretations using train and test sets from Social Bias

Frames (SBF), DynaHate (DH), and Toxigen

Models

● Two sizes of decoder-only transformer, Transformer-based language models were used

○ LM-XL: 1.5B parameters

○ LM-SMALL: 20M parameters

Impact of Data Curation on Data Characteristics

● Observational Findings

○ The Pile's documents exhibit differences compared to C4

■ Longer, more readable, higher quality, but contain more personally identifiable

information (PII)

○ Books domain is an outlier with

■ Longest, most readable, most toxic, and most PII-filled documents

■ Contains high-quality text

○ High toxicity and low-quality documents show similarities in high PII amounts but differ

in average length and quality

○ More recent web-scraped text is more diverse and less toxic but also lower quality

● Data Analysis

○ Calculation of features for each document, including toxicity and quality metrics, PII

categories, and text statistics

○ Substantial interactions between curation choices impacting data features

○ Features include average word length, readability, type-token ratio, sentiment, and more

(details in Appendix D)

● C4 vs. Pile

○ Pile documents compared to C4

Priyadarshan 88

■ Longer (2.4x), more non-ASCII characters (1.9x), higher quality (1.2x), more

readable (1.8x)

■ Contain more PII, particularly personal names, addresses, and emails

● Toxicity and Quality Relationship

○ High toxicity does not necessarily correlate with low quality

○ High toxicity documents exhibit higher text quality than low toxicity documents

○ Little discernible difference in feature measurements for profanity, toxicity, and sexually

explicit content between low vs. high-quality content

● Domain Characteristics

○ Books domain stands out with more profane, toxic, and sexual content, yet greater

predicted quality

○ High toxicity documents in both C4 and Pile are longer, more profane, sexually explicit,

and toxic

○ Pile documents with high toxicity are more likely to have various kinds of PII

○ OpenWeb provides the most lexical and linguistic diversity, Wikipedia has the highest

quality text, technical domains score low on predicted quality

● Temporal Trends in C4

○ Increase in non-ASCII characters over recent years

○ Decline in measured text quality

○ Slight decrease in toxicity scores and increase in sentiment over time

Impact of Dataset Age on Pretrained Models

● Temporal Misalignment Findings

○ Both models and evaluation datasets become stale over time

○ Temporal misalignment persists even after finetuning

○ Effects of pretraining misalignment are more pronounced in larger models

● Observations and Context

○ Models are frequently updated with new finetuning data, but pretraining is expensive

○ Majority of downloaded models are static and rarely updated, constituting ~58% of all

downloads on HuggingFace

○ Language use changes over time, and temporal misalignment between finetuning and

evaluation datasets leads to performance degradation

● Experimental Setup

○ Pretrained four autoregressive language models on different C4 versions (2013, 2016,

2019, 2022)

○ Removed data scraped after the cutoff year

○ Evaluated impact of pretraining time on NLP using tasks split by year in News, Twitter,

and Science domains

● Temporal Degradation Metrics

○ Replicated performance degradation observed by Luu et al. (2021)

○ Introduced Temporal Degradation (TD) measure for pretraining time and evaluation time

differences

Priyadarshan 89

○ High correlation (average Pearson correlation of 0.61) between pretraining temporal

misalignment and performance degradation

○ Pretraining misalignment effects are non-trivial (0.4 on average for one year difference)

● Effect on Model Performance

○ Pretraining misalignment not overcome by significant finetuning

○ Asymmetric effects observed, with degradation steeper when evaluation year is after

pretraining year

○ Models and evaluations become stale, leading to performance differences between

older and newer models on respective evaluations

● Temporal Degradation Across Model Sizes

○ Greater temporal degradation for larger models (LM-XL with 1.5B parameters) compared

to smaller models (LM-Small with 20M parameters)

Impact of Quality & Toxicity Filters on Pretrained Models

● Filtering Effects Findings

○ Quality and toxicity filters have distinct impacts on model performance

○ Quality filters significantly enhance performance despite reducing training data

○ Effects of quality filtering are not easily predictable based on dataset characteristics

○ Toxicity filtering involves a trade-off between generalization, toxicity identification, and

risk of toxic generation

○ For toxicity identification tasks, an inverse toxicity filter is recommended

● Common Filter Usage in Language Models

○ Modern large language models use quality and/or toxicity filters in pretraining datasets

○ Examples include n-gram filters, SafeSearch filters, and "safety discriminators"

● Experimental Setup and Implementation of Filters

○ Implemented quality and toxicity filters at various thresholds on Pile and C4 datasets

○ Varied the quantity of toxic and low-quality text during pretraining

● Quality Filters Impact on Performance

○ Quality filters significantly improve performance across various tasks

○ Improvements observed in toxicity identification (2%) and most QA task categories

(1-6%)

○ Greater quality filtering outperforms the unfiltered baseline, even with 10%+ data

removal

○ Notable performance improvements persist beyond T = 0.975 for QA tasks

● Dataset Quality Characteristics and Filtering Effects

○ Dataset quality characteristics are not strong indicators of filtering effects

○ QA tasks in Books, Wikipedia, and Web categories benefit less from quality filtering

○ Academic and biomedical data, ranked lower in quality, benefit the most from quality

filtering

● Challenges with One-Dimensional Quality Measurement

○ Optimizing on one quality measure is insufficient to predict or improve performance

across domains

Priyadarshan 90

○ Wikipedia and Web QA tasks are negatively affected by the inverse filter

○ Both quality and inverse quality filters lead to models with higher toxic generation

tendencies

● Toxicity Filtering Trade-offs

○ Toxicity filtering involves a trade-off between toxic identification and toxic generation

goals

○ Models from heavily filtered datasets have less toxic generation but poorer toxicity

identification

○ Inverse toxicity filter performs best for toxicity identification across all datasets

○ Filtering strategy should align with the intended behavior of the model

Impact of Domain Composition on Pretrained Models

● Impact of Pretraining Source Domains on Downstream Performance

○ Common Crawl, OpenWeb, and Books have the most positive impact on downstream

performance

○ Data source heterogeneity is more crucial than data quality or size

○ Inclusion of as many pretraining data sources as possible is beneficial

● Experimental Setup

○ Grouped Pile data sources into nine domains

○ Pretrained LM-XL with the full dataset minus each domain

○ Evaluated downstream performance on 27 QA tasks from MRQA and UnifiedQA

○ Domains: Common Crawl (CC), OpenWeb, Wikipedia, Books, PubMed, Academic, Code &

Math, Legal, and Social

● Key Findings

○ Web-based domains like CC, Books, and OpenWeb have the strongest positive effects on

performance

○ Heterogeneity and quality are more important factors than the quantity of data

○ Domain heterogeneity is often more beneficial than targeted data, even for targeted

evaluations

○ Best-performing models utilize all pretraining data sources, except for targeted domains

like Code and Academic

○ Web and Books domains present a trade-off between toxic identification and generation

Discussion

● Guided by Intuition

○ Pretraining dataset curation often guided by intuitions, lacking thorough evaluation

○ Documentation debt is maintained, limiting knowledge sharing

● Impact of Curation Choices

○ Pretraining curation choices significantly impact models and cannot be fully mitigated by

finetuning

○ Dataset curation policies should be treated as hyperparameters

○ Better tools are needed to model the relationship between data and model capabilities

Priyadarshan 91

● Age of Pretraining Corpus

○ Staleness of pretraining data affects model performance, especially for larger, more

capable models

○ Finetuning on newer data may introduce a "presentist" bias, and the effect of staleness

is not overcome by ample finetuning data

○ Temporal properties of pretraining corpora are crucial for larger models and novel tasks

● Recommendations

○ Model creators should report the temporal distribution of pretraining data

○ Users need awareness of potential performance degradations on newer datasets

● Data Source Composition

○ Composition of the pretraining corpus significantly impacts downstream performance

○ Ablating any data source in diverse corpora like the Pile negatively affects generalization

to text-to-text tasks

○ Future work should focus on collecting more diverse web and books content

● Filtering for Toxicity and Quality

○ Filtering for toxicity and quality involves normative decisions that modify dataset bias

○ There's a trade-off between a model's generalization abilities and its tendency to

generate toxic content

○ Toxic identification should be prioritized over curbing toxic generation during pretraining

○ Quality filters, despite removing large portions of training data, significantly improve

performance across domains

Limitations

● Largest publicly documented LM pretraining data ablation study

● Spans 28 1.5B parameter models, surpassing other studies like GLaM, miniBertas, MultiBerts,

and Pythia

● Computationally and environmentally costly experiments

● Carefully curated experiments focused on age of corpora, quality filters, toxicity filters, and

source domains

● Limited multiple rounds of reflection and repetition, striking a balance between computational

costs and reproducible validity

● Use of Perspective's API for toxicity evaluation, with limitations on irreproducibility

● English datasets used, highlighting the importance of considering training composition for

multilingual and non-English models

● Focus on finetuned settings rather than zero- or few-shot prompting

● Findings may be correlated to prompted settings but not explicitly established

Related Work

● General-purpose models include ELMO, BERT, BERT's descendants, XLNet, T5, GPT-2, GPT-Neo,

OPT, LLaMA, Pythia, and BLOOM

● Publicly available models and proprietary models by companies like Alphabet and OpenAI

Priyadarshan 92

● Filtering techniques used to improve web-derived training data quality, including classifiers,

SafeSearch, and heuristics

● Pretraining data analysis studies by Dodge et al., Luccioni and Viviano, Kreutzer et al., Lee et al.,

Kaddour, and Zhao et al.

● Mixed findings on the effects of data detoxification techniques, such as data filters, on

underrepresented communities

● Instruction tuning and alignment tuning as methods to reduce unwanted toxic generation

● Language's distribution shift over time and its impact on model performance on new test sets

● Proposed remedies for temporal degradation include finetuning on more recent data,

adaptive/continuous pretraining, data augmentation, and modeling text with timestamps

● Exhaustion of high-quality text data on the web for training large language models

● Adaptation strategies for pretrained models to new downstream domains, including domain

adaptive pretraining, intermediate finetuning tasks, balancing data sources, data selection,

augmentation, and active learning

● Research on rebalancing mixtures of datasets, importance sampling for selecting useful subsets,

and benchmarking effects of intermediate finetuning tasks

● Exploration of scaling model size, pretraining data amount, and number of pretraining steps

● Investigation into how temporal pretraining misalignment varies on different model sizes

Priyadarshan 93

Article #13 Notes: Quality at a Glance: An Audit of

Web-Crawled Multilingual Datasets

Source Title Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets

Source citation (APA Format) Kreutzer, J., Caswell, I., Wang, L., Wahab, A., van Esch, D., Ulzii-Orshikh, N.,

Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S.,

Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez,

P. O.,… Adeyemi, M. (2021). Quality at a glance: An audit of

web-crawled multilingual datasets. (arXiv:2103.12028). arXiv.

https://arxiv.org/abs/2103.12028

Original URL https://arxiv.org/abs/2103.12028

Source type Journal Article

Keywords Multilingual datasets, NLP research, Data quality, Dataset mislabeling,
Downstream applications

#Tags #llm, #bigdata, #nlp, #dataquality, #multilingualdata

Summary of key points + notes
(include methodology)

The research focuses on enhancing access to multilingual datasets for NLP,
emphasizing web-derived collections like ParaCrawl, WikiMatrix, CCAligned,
OSCAR, etc. The study enabled the development of highly multilingual models but
highlighted the lower quality of automatically crawled datasets compared to
hand-curated collections. A manual data audit involving 230 per-language subsets
revealed significant challenges, leading to proposed solutions for effective,
low-effort auditing and an error taxonomy. The analysis uncovered issues like
mislabeled language codes, nonlinguistic content, and offensive material. The
study advocates for improved data quality through techniques such as automatic
filtering and emphasizes the importance of standardized language codes. The
research's methodology involved a diverse group of 51 non-expert participants
from the NLP community, who manually annotated a random sample of 100 lines
per language in each dataset. The audit results exposed severe quality issues
across datasets, especially for lower-resource languages, leading to valuable
recommendations for the NLP community's future data releases and evaluations.

Research Question/Problem/ How can the quality and reliability of multilingual datasets for natural language

https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 94

Need processing be enhanced, particularly addressing challenges such as mislabeled
language codes and low-quality content, to improve the effectiveness of NLP
research and applications?

Important Figures

Comparison of parallel and monolingual corpora extracted from web documents,
including their downstream evaluation task

Annotation codes for parallel data with sentence pair examples

Priyadarshan 95

Averages of sentence-level annotations across datasets and selected languages

Fraction of languages in each dataset below a given quality threshold

Percentage of sentences labeled as correct vs. log N sentences for all audited

Priyadarshan 96

languages

Rater evaluation for a subset of audits from CCAligned (translated from English)
measured by the accuracy (Acc-n) of annotations by non-proficient speaker against
annotations by proficient speakers

Rater evaluation for a subset of audits from OSCAR measured by the accuracy
(Acc-n) of annotations by non-proficient speaker against annotations by proficient
speakers

Examples of “parallel" data where the translation has a different meaning than the
source, but the form looks the same. (We added translations of the non-English
side.) Such data may encourage hallucinations of fake “facts"

VOCAB: (w/definition) Automatic language classification: A process utilized in the article to automatically
determine the language of web-derived datasets, aiding in the curation and
analysis of multilingual data

Low-resource languages: Languages with limited available linguistic resources,
which are a focus in the article due to their challenges in data curation and
evaluation

Error taxonomy: A systematic classification system used to categorize and analyze
different types of errors within datasets, as applied in the manual data audit

Priyadarshan 97

process

Web crawlers: Automated programs or algorithms designed to navigate the
internet and collect data, as mentioned in the article in the context of obtaining
web-derived collections for NLP research

LangID: A shorthand for Language Identification, referring to the process of
automatically determining the language of a given piece of text, discussed in the
article regarding its use in data curation

WMT benchmarks: Benchmarks from the Workshop on Machine Translation
(WMT), which may serve as reference points or standards in the field of machine
translation. The article does not explicitly mention WMT benchmarks, but it
discusses benchmarks and challenges in the context of evaluating datasets

Macro-average: An averaging technique used to calculate overall performance
metrics across different categories or languages, applied in the article to aggregate
labels and assess dataset quality

Micro-average: A method of averaging that provides a per-instance assessment,
employed in the article to offer a more detailed view of performance metrics on a
sentence-by-sentence basis

Correct codes: Refers to data labeled accurately in terms of language codes, as
discussed in the article concerning the assessment of correct sentences in the
auditing process

Spearman rank correlation: A statistical measure used in the article to evaluate the
correlation between different variables, such as the correlation between data
quality scores and translation performance in downstream applications

Priyadarshan 98

Cited references to follow up on

Follow up Questions How can the proposed solutions for effective, low-effort data auditing and error
taxonomy be practically implemented in the NLP community's current dataset
curation practices?

In the context of low-resource languages, what additional challenges and potential
solutions should be considered to ensure the quality and inclusivity of multilingual
datasets in future NLP research?

Considering the identified issues with mislabeled language codes and low-quality
content, what specific strategies and best practices can be recommended for the
improvement of automated filtering methods to enhance the overall quality of
multilingual datasets for NLP applications?

Priyadarshan 99

Notes (written with the assistance of ChatGPT)

Introduction

● Improved access to multilingual datasets for NLP research

● Web-derived collections available for download: ParaCrawl, WikiMatrix, CCAligned, OSCAR, etc.

● Enabled development of highly multilingual models like mT5, M2M-100, M4

● Curating datasets relies on website clues and automatic language classification (LangID)

● Automatically crawled datasets tend to have lower overall quality than hand-curated collections

● Quality is judged through improvements in downstream applications

● Promising for low-resource languages, but there's a lack of research on evaluating data

collections and crawling tools for such languages

● Manual data audit for 230 per-language subsets of five major crawled multilingual datasets

● Proposed solutions for effective, low-effort data auditing and an error taxonomy

● Quantitative analysis reveals surprisingly low amounts of valid in-language data and identifies

systematic issues

● Many datasets labeled with nontransparent or incorrect language codes

● Reflection on potential harm of low-quality data releases for low-resource languages

● Recommendations provided for future multilingual data releases

Related Work

● Corpora collected by web crawlers are noisy

● Issues with web crawls of lower-resource languages, especially with segment-level LangID

● Cleaning and filtering web crawls can enhance general language modeling and downstream task

performance

● Difficulty in validating automatically collected and curated datasets as ML research scales

● Focus on advancing methodologies and best practices for dataset validation

● Introduction of data statements by Bender and Friedman as a framework for dataset description

● Similar work in systematizing documentation in data science and machine learning

● Data quality implicitly documented by successes of filtering methods

● Literature on filtering data for various NLP tasks

● Analysis of a highly multilingual web crawl and LangID-related quality issues by Caswell et al.

● Brief analysis of the quality of OSCAR by Caswell et al., with focus on the presence of in-language

content

● Dodge et al. automatically documented and analyzed the contents and sources of C4, revealing

machine-translated contents and NLP benchmark data

Multilingual Corpora

● Table 1 overview of selected multilingual corpora

● Corpora selected for multilinguality and inclusion of under-studied languages in NLP

● Corpora derived from CommonCrawl (CC), except WikiMatrix and ParaCrawl

Priyadarshan 100

● CCAligned (El-Kishky et al., 2020): parallel dataset aligned with FastText LangID and cross-lingual

LASER embeddings

● Multilingual C4 (mC4) (Xue et al., 2021): document-level dataset for mT5, filtered and

deduplicated, language identification using CLD3

● OSCAR (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020): monolingual corpora from CC

snapshots, deduplicated, LangID at line-level

● ParaCrawl v7.1: parallel dataset with 41 language pairs, primarily aligned with English, mined

using Bitextor

● WikiMatrix (Schwenk et al., 2021): public dataset with 135M parallel sentences in 1620 language

pairs mined from Wikipedia

● Focus on language pairs with English on one side in the audit

Auditing Data Quality

Auditing Process

● Participants

○ 51 volunteers from NLP community, covering 70 languages

○ Each sentence annotated by one rater

○ Hypothesis tested with non-expert annotations

● Sample Selection

○ Random sample of 100 lines for each language in each dataset

○ Manual annotation based on error taxonomy

○ Focus on languages with the least sentences in each dataset

● Non-expert Labeling Strategies

○ Volunteers familiar with languages or used dictionaries/internet search

○ Emphasis on low-resource evaluation by non-proficient speakers

● Effort

○ Individual effort dependent on data quality and complexity

○ Effort varied based on annotator's knowledge of the language(s)

● Taxonomy

○ Error classes: Incorrect Translation (X), Wrong Language (WL), Non-Linguistic Content

(NL)

○ Correct sentences (C) further classified into single words/phrases (CS) and boilerplate

contents (CB)

○ Offensive/pornographic content flagged

Human Audit Results

● Interpretation of Results

○ Compute percentage of each label within 100 audited sentences for each language

○ Aggregate labels across languages: macro-average or weight them by dataset presence:

micro-average

○ Combined statistics for correct codes (CC, CB, CS) as C

Priyadarshan 101

○ Results based on a small sample partially annotated by non-experts

○ Capture ratio of languages (25–55%), tiny fraction of overall sentences

(0.00004–0.002%)

● Quality Issues Across Datasets

○ Macro-averaged results show varied ratio of correct samples (C) (24% to 87%)

○ Severe problems in CCAligned and WikiMatrix, with many languages having under 50%

correct sentences

○ Some datasets show a high percentage of misaligned/mistranslated sentences (X),

especially in WikiMatrix

● Reporting Issues and Imbalance

○ Macro-average gives equal weight to low and high-resource languages

○ Micro-average (per-sentence basis) provides a more optimistic view

○ Evaluation and tuning often focused on higher-resource languages, leading to

low-quality issues in underrepresented languages

● Nonlinguistic and Wrong Language Content

○ Nonlinguistic content more common than wrong-language content

○ CCAligned has the highest percentage of nonlinguistic content (31.42%)

○ mC4 has the highest ratio of sentences in incorrect languages (15.98% average)

● Language Confusion

○ Languages confused often related to higher-resource languages

○ Some "out-of-model cousin" cases where unsupported languages end up in

similar-seeming languages

● Quality and Size Correlation

○ Low-resource datasets tend to have lower human-judged quality

○ Positive correlation between quality (%C) and dataset size

● Languages with Lowest Quality

○ Poor quality for languages in romanized script (_rom/_latn) and African languages

○ Some languages have extremely low quality even within the same datasets

● Offensive and Pornographic Content

○ Overall, sampled sentences had low offensive content but notable amounts of

pornographic content in CCAligned for 11 languages

● Annotation Quality

○ Accuracy (Acc) of labels assigned by non-proficient speakers compared to proficient

speakers measured

○ Mean accuracy of 0.66 for CCAligned audits (6-class taxonomy) and 0.98 for OSCAR

audits

○ Significant drop of accuracy for finer-grained labels suggests room for improvement in

the error taxonomy

Automatic Filtering

● Given WL and NL frequency, tempting to use LangID for per-sentence filtering

● Sentence-level n-gram LangID filtering using CLD3 on CCAligned

Priyadarshan 102

○ Evaluation shows CLD3 average precision at 40.6%

● Sentence-level Transformer LangID filtering

○ Semi-supervised Transformer-based models outperform n-gram models

○ Transformer model applied to CCAligned data

○ Filtering noisy corpora (<50% correct) boosts median precision from 13.8% to 43.9%

○ Cost: 77.5% recall loss

○ Biggest winners: Lingala (8% to 80%), Oromo (2% to 33% in-language)

○ Cost: Lose 50% of correct in-language sentences, reduced from 22k to 3k and 1k

○ Moral: No one-size-fits-all approach for sentence-level LangID filtering

Dataset Mislabeling

● Standardized Language Codes

○ Importance for practical data use and exchange

○ BCP-47 standard widely used, based on ISO639-2 and ISO639-3 codes

○ Allows subtags for scripts and regional varieties

○ Enhances transparency and interoperability, especially with growing language diversity

in NLP

● Errors and Inconsistencies in Language Code Usage

○ Analysis includes JW300 dataset from jw.org

○ Find 8 nonstandard codes in CCAligned, 3 in OSCAR, 1 in mC4, 1 in WikiMatrix, and 70 in

JW300 (83 in total)

○ Excludes 59 codes affected by superset issues

● Inconsistent Language Codes

○ Using nonstandard or invented codes is a common issue

○ Examples: CCAligned uses only two-letter codes, OSCAR mislabels Tosk Albanian as

Allemannic

● False Sign Languages

○ 12% of JW300 carry sign language codes (48/417)

○ Instead of sign language transcripts, they contain texts in another high-resource

language

○ Example: en-zsl (Zambian sign language) data is actually English-English parallel data

● Mysterious Supersets

○ Difficulty determining specific language when datasets contain supersets of other

language codes

○ Example: WikiMatrix has Serbian (sr), Croatian (hr), Bosnian (bs), and Serbo-Croatian (sh)

as a superset

● Deprecated Codes

○ Deprecated codes used in datasets: sh in WikiMatrix, iw in mC4, sh and eml in Oscar, daf

in JW300

Risks of Low-Quality Data

● Low Quality in Downstream Applications

Priyadarshan 103

○ Text corpora crucial for downstream NLP applications like question answering and text

summarization

○ Flawed data for original systems can lead to failures in derived technology for languages

down the line

○ Calls for future studies considering data size, domain, language-specific phenomena, and

metric biases

● Impact on Translation Quality

○ Comparison of C% metric from audit with sentencepiece-BLEU (spBLEU) of M2M124

multilingual translation model

○ Positive correlation (Spearman) between data quality scores and spBLEU (ρ = 0.44, p =

0.041)

○ Correlation with data size is higher (ρ = 0.66, p = 0.00078)

○ Correlation between product of C% and data size is the highest (ρ = 0.73, p = 0.00013)

● Representation Washing

○ Datasets with many low-resource languages may create a false sense of progress and

equity

○ Low-quality datasets as benchmarks may exaggerate model performance or incorrectly

assume tasks are harder than they are

○ Risks redirecting effort away from tasks and languages that need attention

● Trust in Incorrect "Facts"

○ Instances of parallel-looking sentences structurally and semantically similar but not

factually correct

○ Models may produce plausible but incorrect translations, leading to algorithmic trust

○ Automation bias amplifies issues of inaccurate translations caused by misalignments

Future Work and Recommendations

● Severe Quality Issues in Multilingual Corpora

○ Evaluation of five multilingual corpora reveals consistent and severe quality issues,

especially in lower-resource languages

○ Samples of 205 languages rated, 87 with under 50% usable data, 15 at 0% in-language

○ Identified issues with mislabeled data and nonstandard language codes, particularly in

JW300 dataset

○ 83 affected corpora identified, at least 48 entirely spurious

● Lack of Reported Quality Issues

○ Majority of quality issues had not been reported or investigated in depth

○ Issues might go unnoticed for languages not represented in crawling methods

evaluation, causing harm in downstream applications

● Recommendations for Improvement

○ Improve ease and accuracy of human evaluation

○ Consider close dialects and develop a standard suite of automatic metrics for datasets

○ Address the estimated portion of a dataset generated by machine translation, language

models, or bots/templates

Priyadarshan 104

○ Strongly recommend looking at samples of any dataset before use or release

○ Explore techniques for data quality improvement, such as length-ratio filtering, LangID,

TF-IDF wordlists, dictionaries, and neural approaches like LM scoring

○ Documentation as an alternative to filtering, with per-language quality scores and notes

about known issues

● Importance of Continuing Evaluations

○ Encourage the community to continue conducting evaluations and audits of public

datasets, similar to system comparison papers

Priyadarshan 105

Article #14 Notes: A Survey of Large Language Models

Source Title A Survey of Large Language Models

Source citation (APA Format) Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,

Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li,

Y., Tang, X., Liu, Z.,…Wen, J.-R. (2023). A survey of large language

models. (arXiv:2303.18223). arXiv. https://arxiv.org/abs/2303.18223

Original URL https://arxiv.org/abs/2303.18223

Source type Journal Meeting

Keywords Language Model Pre-training, Data Processing and Quality, Model Architectures,
Decoding Strategies, Model Training Optimization

#Tags #llms, #nlp, #dataquality, #llmpretraining, #trainingoptimizatoin

Summary of key points + notes
(include methodology)

The article delves into the pre-training phase of large language models (LLMs),
emphasizing the critical elements of data collection, preprocessing, and the impact
of quality pre-training data on model performance. It explores diverse data
sources, including general and specialized text, and discusses challenges in filtering
and processing, especially with web data. The study also investigates various
model architectures, from traditional to emergent designs, shedding light on their
advantages and efficiency. Decoding strategies post-pre-training are addressed,
covering auto-regressive methods and strategies like greedy search and sampling.
The article concludes with insights into model training optimization, detailing
strategies for efficient batch training, learning rate, and scalable techniques such
as 3D parallelism. Overall, the methodology involves a comprehensive examination
of the key components in LLM pre-training, offering insights into both established
practices and emerging trends in the field.

Research Question/Problem/
Need

What are the key challenges and optimization strategies in the pre-training phase
of large language models, encompassing data collection, model architectures,
decoding strategies, and efficient training methodologies?

https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 106

Important Figures

Ratios of various data sources in the pre-training data for existing LLMs

An illustration of a typical data preprocessing pipeline for pre-training large
language models

Model cards of several selected LLMs with public configuration details

A comparison of the attention patterns in three mainstream architectures. Here,
the blue, green, yellow and grey rounded rectangles indicate the attention
between prefix tokens, attention between prefix and target tokens, attention
between target tokens, and masked attention respectively

Priyadarshan 107

Detailed formulations for the network configurations

The probability distribution over the vocabulary in descending order for the next
token of the context “I am sleepy. I start a pot of ”

Detailed optimization settings of several existing LLMs

VOCAB: (w/definition) Tokenization: In the context of the article, tokenization refers to the crucial step in
data preprocessing where raw text is segmented into individual tokens for input
into Large Language Models (LLMs). The article mentions various tokenization
methods, including Byte-Pair Encoding (BPE), WordPiece, and Unigram, with a
special emphasis on customized tokenizers using the SentencePiece library for
diverse corpora

SentencePiece: SentencePiece is highlighted as a library for customized
tokenization in the article. It is mentioned in the context of creating tailored

Priyadarshan 108

tokenizers, which proves beneficial for handling diverse corpora during the
tokenization process.

Double descent: The term "double descent" is not explicitly mentioned in the
provided article notes. However, in machine learning, double descent typically
refers to a phenomenon where, as model complexity increases, the test error first
decreases, then increases, and finally decreases again. This concept may be
indirectly related to discussions in the article about the quality of pre-training data
and its impact on the performance of Large Language Models

In-context learning: In-context learning is associated with the capability of certain
architectures, such as the Causal Decoder Architecture, to perform autoregressive
generation by attending only to past tokens and themselves. GPT-3, developed on
this architecture, is highlighted for its superior in-context learning capability

Unidirectional attention mask: The unidirectional attention mask is a component
of the Causal Decoder Architecture mentioned in the article. It limits the attention
of input tokens to past tokens and themselves, enabling autoregressive generation
and enhancing the model's in-context learning capability

MoE scaling: MoE Scaling refers to the application of a mixture-of-experts
approach in the scaling of neural network weights. This technique involves sparsely
activating a subset of weights for each input. The article mentions that models like
Switch Transformer and GLaM implement MoE scaling, leading to substantial
performance improvement with an increased number of experts or total
parameter size.

Parameterized state space models: Parameterized state space models are part of
the emergent architectures discussed in the article. These models include S4, GSS,
and H3, and they aim to address the quadratic computational complexity issues
associated with conventional Transformer architectures, allowing for more
efficient training and inference with long inputs.

Recursive update mechanisms: Recursive update mechanisms are mentioned in
the context of emergent architectures in the article. Architectures like RWKV,
RetNet, and others employ recursive update mechanisms, combining features of
both recurrent neural networks (RNNs) and Transformer-like architectures. This
enables highly parallel and efficient training with GPU parallelism techniques,
contributing to overall model efficiency.

Priyadarshan 109

Cited references to follow up on

Follow up Questions How do different decoding strategies balance output diversity and coherence, and
are there specific scenarios where one strategy is more effective?

In emerging architectures like parameterized state space models, how do
improvements in computational efficiency impact training and inference, and how
do these architectures address challenges in conventional Transformer models
with longer input sequences?

Considering the importance of data quality, how do proposed data preprocessing
techniques like privacy reduction and deduplication impact model performance,
and what potential biases may arise in classifier-based approaches, especially in
dialectal languages?

Priyadarshan 110

Notes (on relevant sections with the assistance of ChatGPT)

Pre-training

● Pre-training establishes essential language understanding and generation skills for LLMs

● Large-scale corpora critical for scale and quality of pre-training

● Model architectures, acceleration methods, and optimization techniques crucial for effective

pre-training

Data Collection

Data Source

● Pre-training Corpus Sources

○ Two broad categories: general data and specialized data

● General Text Data

○ Webpages: Diverse but requires careful filtering

○ Conversation Text: Enhances conversational competence; risk of misinterpretation

○ Books: Formal, long texts beneficial for learning linguistic knowledge

● Specialized Text Data

○ Multilingual Text: Improves multilingual abilities; models like BLOOM and PaLM

demonstrate strong performance

○ Scientific Text: Enhances understanding of scientific knowledge; relies on arXiv papers,

scientific textbooks, and math webpages

○ Code: Significant for program synthesis; two common sources are programming Q&A

communities (e.g., Stack Exchange) and public repositories (e.g., GitHub)

● Challenges

○ Filtering and processing are crucial for ensuring data quality, especially in web data

○ Risk of integrating dialogue data may lead to a decline in efficacy

○ Specialized datasets require specific tokenization and preprocessing techniques

Data Preprocessing

● Data Preprocessing

○ Essential after collecting large text data

○ Aim: Construct a high-quality pre-training corpus

● Quality Filtering

○ Two approaches: classifier-based and heuristic-based

○ Language, metric, statistic, and keyword-based filtering methods

○ Potential bias in classifier-based approaches, especially in dialectal languages

● Deduplication

○ Reduces corpus diversity issues

○ Perform at different granularities: sentence, document, and dataset-level

○ Essential to prevent dataset contamination

Priyadarshan 111

● Privacy Reduction

○ Remove personally identifiable information (PII) to mitigate privacy risks

○ Rule-based methods (e.g., keyword spotting) used for PII detection

● Tokenization

○ Crucial step for data preprocessing

○ Aims to segment raw text into individual tokens for LLM inputs

○ Different methods: Byte-Pair Encoding (BPE), WordPiece, and Unigram

○ Customized tokenizers with SentencePiece library are beneficial for diverse corpora

Effect of Pre-training Data on LLMs

● Iterative Pre-training

○ Usually infeasible for LLMs due to high computational demand

○ Emphasizes the need for a well-prepared pre-training corpus

● Mixture of Sources

○ Diverse sources provide distinct linguistic characteristics and semantic knowledge

○ Mixing sources enhances LLM's generalization capacity

○ Careful consideration of data distribution crucial for downstream task performance

○ Excessive data from one domain can impact generalization to other domains

● Amount of Pre-training Data

○ Sufficient high-quality data essential for effective LLM pre-training

○ Model size and data size scaling are interrelated for optimal performance

○ Neglecting data quantity can lead to sub-optimal training, affecting performance

● Quality of Pre-training Data

○ Low-quality corpus (noisy, toxic, duplicate) harms LLM performance

○ Quantity and quality of training data both crucial

○ Filtering and cleaning data improves LLM performance, prevents issues like "double

descent"

○ Duplicate data degrades LLMs' ability to copy from context, affecting generalization

○ Preprocessing methods essential for stability in training process and overall model

performance

Architectures

Typical Architectures

● Encoder-decoder Architecture

○ Vanilla Transformer model based on encoder-decoder architecture

○ Encoder uses multi-head self-attention layers to encode input

○ Decoder performs cross-attention on representations, autoregressively generates target

sequence

○ Effective for NLP tasks (e.g., T5 and BART)

○ Few LLMs built on this architecture (e.g., Flan-T5)

● Causal Decoder Architecture

Priyadarshan 112

○ Incorporates unidirectional attention mask in decoder

○ Input tokens attend only to past tokens and themselves

○ GPT-series models (e.g., GPT-3) developed on this architecture

○ GPT-3 shows superior in-context learning capability

○ Scaling plays a crucial role in increasing model capacity

○ Adopted widely by various LLMs (e.g., OPT, BLOOM, Gopher)

● Prefix Decoder Architecture

○ Also known as non-causal decoder

○ Revises masking mechanism to enable bidirectional attention over prefix tokens

○ Unidirectional attention on generated tokens

○ Shared parameters during encoding and decoding

○ Practical suggestion: Continually train causal decoders and then convert them into prefix

decoders

○ Representative LLMs based on prefix decoders include GLM-130B and U-PaLM

● Mixture-of-Experts (MoE) Scaling

○ Subset of neural network weights sparsely activated for each input

○ Implemented in models like Switch Transformer and GLaM

○ Substantial performance improvement with increased number of experts or total

parameter size

● Emergent Architectures

○ Conventional Transformer architectures suffer from quadratic computational complexity

○ Efficiency becomes crucial for training and inference with long inputs

○ New architectures include parameterized state space models (e.g., S4, GSS, H3), long

convolutions (e.g., Hyena), and Transformer-like architectures with recursive update

mechanisms (e.g., RWKV, RetNet)

○ Key merits: Recursive output generation like RNNs and parallel encoding of entire

sentences like Transformers

○ Enables highly parallel and efficient training with GPU parallelism techniques

Detailed Configuration

● Normalization Methods

○ LayerNorm: Original normalization method in vanilla Transformer, calculates mean and

variance per layer

○ RMSNorm: Introduced for faster training, scales activations with root mean square

(RMS), used in models like Gopher and Chinchilla

○ DeepNorm: Microsoft's method for stabilizing training in deep Transformers, adopted by

GLM-130B

● Normalization Position

○ Post-LN: Placed between residual blocks, tends to be unstable and rarely used alone

○ Pre-LN: Applied before each sub-layer, more stable than post-LN, commonly adopted

despite slightly decreased performance

Priyadarshan 113

○ Sandwich-LN: Adds extra LN before residual connections, aimed at preventing value

explosion, but may lead to training collapse

● Activation Functions

○ GeLU Activations: Widely used in existing LLMs for feed-forward networks

○ SwiGLU and GeGLU Variants: Variations of GLU activation used in recent LLMs like PaLM

and LaMDA, achieving better performance but with additional parameters

● Position Embeddings

○ Absolute Position Embedding: Employed in vanilla Transformer, includes sinusoidal and

learned position embeddings

○ Relative Position Embedding: Generated based on offsets between keys and queries,

facilitates extrapolation to longer sequences

○ Rotary Position Embedding (RoPE): Uses rotatory matrices based on absolute position,

widely adopted in recent LLMs like PaLM and LLaMA, improving translation invariance

and length extrapolation

○ ALiBi: Improves extrapolation by biasing attention scores with penalties based on

distances, stable in BLOOM

● Attention Mechanism

○ Full Attention: Original pairwise attention mechanism in vanilla Transformer, quadratic

complexity for all token pairs

○ Sparse Attention: Efficient variants like Factorized Attention adopted in GPT-3, allows

each query to attend to a subset of tokens

○ Multi-query/Grouped-query Attention: Shares linear transformation matrices, reducing

computation costs; explored in models like PaLM and StarCoder

○ FlashAttention: Optimizes speed and memory consumption on GPUs, utilizing different

levels of memory for improved efficiency

○ PagedAttention: Addresses GPU memory occupation issues by partitioning sequences

into subsequences, improving memory efficiency and throughput

Pre-training Tasks

● Language Modeling (LM)

○ Commonly used pre-training task for decoder-only LLMs like GPT-3 and PaLM

○ Objective is to autoregressively predict target tokens based on preceding tokens in a

sequence

○ Training objective maximizes the likelihood: LLM (x) = Σᵢ log P (xi | x<i) for a sequence x =

{x₁, ..., xn}

○ Decoder-only LLMs naturally transfer to certain tasks without fine-tuning, revealing

task-universal capabilities

○ Variant: Prefix Language Modeling

■ Designed for pre-training models with the prefix decoder architecture

■ Randomly selected prefix tokens excluded in computing the loss

■ Performs slightly worse than traditional language modeling due to fewer tokens

involved in pre-training

Priyadarshan 114

● Denoising Autoencoding (DAE)

○ Another widely used pre-training task, adopted by models like T5 and GLM-130B

○ Inputs x\˜x for DAE are corrupted text with randomly replaced spans

○ Language models trained to recover replaced tokens ˜x

○ Training objective: LDAE (x) = log P (˜x | x\˜x)

○ Implementation of DAE task is more complex than LM task, limiting its widespread usage

for large language models

● Mixture-of-Denoisers (MoD)

○ Unified objective introduced for pre-training language models, combining LM and DAE

objectives

○ Recognizes LM and DAE as different denoising tasks: S-denoiser (LM), R-denoiser (DAE,

short span and low corruption), and X-denoiser (DAE, long span or high corruption)

○ For sentences starting with different special tokens ({[R], [S], [X]}), corresponding

denoisers are optimized

○ Applied in the latest PaLM 2 model

Decoding Strategy

● Background

○ Post-pre-training, choosing an effective decoding strategy is crucial for generating

appropriate outputs from LLMs

● Auto-Regressive Decoding

○ For decoder-only LLMs pre-trained on language modeling tasks

■ Greedy Search

■ Predicts the most likely token at each step based on previously

generated tokens

■ Modeled as: xi = arg max P (x | x<i) for the token at the i-th step

■ Suitable for tasks where output depends heavily on input

■ In open-ended tasks, may lead to awkward and repetitive sentences

■ Sampling-Based Methods

■ Randomly selects the next token based on the probability distribution to

enhance randomness

■ Modeled as: xi ∼ P (x | x<i)

■ Enhances diversity during generation

● Decoding Improvements for Greedy Search

○ Beam Search

■ Retains sentences with the n (beam size) highest probabilities at each step and

selects the top probability response

■ Beam size configured within the range of 3 to 6

○ Length Penalty

■ Mitigates favoring shorter sentences in beam search

■ Normalizes sentence probability based on length (divided by an exponential

power α)

Priyadarshan 115

● Decoding Improvements for Random Sampling

○ Temperature Sampling

■ Modulates randomness of sampling by adjusting the temperature coefficient of

the softmax function

■ Reducing temperature increases the chance of selecting high-probability words

○ Top-k Sampling

■ Truncates tokens with lower probability and samples only from tokens with the

top k highest probabilities

○ Top-p Sampling

■ Gradually adds tokens from the vocabulary sorted by generative probability until

cumulative value exceeds p

● Efficient Decoding Strategies

○ Speculative Decoding

■ Uses a compact, efficient model (e.g., n-gram model) to generate short

segments, verified and corrected by the LLM

■ Achieves notable speedup without compromising quality

○ Token-Level Early-Exit Techniques

■ Enables generating a token at lower Transformer layers for greater speedup but

at the cost of quality

● Practical Settings

○ Various decoding strategies supported by existing libraries and public APIs

■ T5 [73]: Greedy search (default) and beam search (beam size 4) with length

penalty 0.6 for translation and summarization

■ GPT-3 [55]: Beam search (beam size 4) with length penalty 0.6 for all tasks

■ Alpaca [128]: Sampling-based strategies with top-k (k = 50), top-p (p = 0.9), and

temperature 0.7 for open-ended generation

■ LLaMA [57]: Greedy search for question answering, sampling with temperature

settings 0.1 (pass@1) and 0.8 (pass@100) for code generation

■ OpenAI API: Supports greedy search, beam search, temperature sampling, and

nucleus sampling, with additional parameters to control repetition degree

Model Training

● Optimization Setting

○ Commonly used settings for batch training, learning rate, optimizer, and training stability

● Batch Training

○ Language model pre-training often uses a large batch size (e.g., 2,048 examples or 4M

tokens) to enhance stability and throughput

○ Dynamic batch size increase during training, demonstrated in GPT-3, improves training

stability

● Learning Rate

○ Linear warm-up schedule (0.1% to 0.5% of steps) increases learning rate to maximum

(e.g., 5 × 10−5 to 1 × 10−4)

Priyadarshan 116

○ Cosine decay strategy follows, reducing learning rate to 10% of maximum until

convergence

● Optimizer

○ Adam optimizer and AdamW optimizer widely used (e.g., GPT-3)

■ Hyper-parameters: β1 = 0.9, β2 = 0.95, ϵ = 10−8
○ Adafactor optimizer (used in PaLM and T5) designed to conserve GPU memory

■ Hyper-parameters: β1 = 0.9, β2 = 1.0 − k−0.8
● Stabilizing the Training

○ Weight decay and gradient clipping commonly used to address training instability

■ Threshold of gradient clipping: 1.0, weight decay rate: 0.1

○ PaLM and OPT use a strategy to restart training from an earlier checkpoint before spikes

in training loss

○ GLM proposes shrinking the embedding layer gradients to alleviate abnormal gradients

● Scalable Training Techniques

○ Challenges with increasing model and data sizes necessitate efficient training strategies

○ Review of approaches: 3D parallelism, ZeRO, mixed precision training

● 3D Parallelism

○ Combination of data parallelism, pipeline parallelism, and tensor parallelism

■ Data parallelism: Replicates model parameters across GPUs for scalable training

■ Pipeline parallelism: Distributes layers into multiple GPUs, using techniques to

reduce inefficiencies

■ Tensor parallelism: Decomposes LLMs for multi-GPU loading, supported in

open-source libraries

● ZeRO

○ DeepSpeed's technique addresses memory redundancy in data parallelism

○ Retains only a fraction of data on each GPU, reducing memory usage without increasing

communication overhead

○ Three solutions: optimizer state partitioning, gradient partitioning, and parameter

partitioning

● Mixed Precision Training

○ Transition from 32-bit FP32 to 16-bit floating-point numbers (FP16) for reduced memory

usage and communication overhead

○ Some studies explore Brain Floating Point (BF16) for improved representation accuracy

during pre-training

● Overall Training Suggestion

○ Joint use of training techniques, including 3D parallelism, ZeRO, and mixed precision

training, to enhance throughput and model loading

○ Open-source libraries (e.g., DeepSpeed, Colossal-AI, Alpa) support parallel training

methods

○ Techniques like ZeRO, FSDP, and activation recomputation reduce memory redundancy

○ Early detection of issues and performance prediction facilitated by mechanisms like

GPT-4's predictable scaling

Priyadarshan 117

○ Leveraging supporting training techniques in mainstream deep learning frameworks

(e.g., PyTorch's FSDP) can enhance efficiency

Priyadarshan 118

Article #15 Notes: Data-Juicer: A One-Stop Data

Processing System for Large Language Models

Source Title Data-Juicer: A One-Stop Data Processing System for Large Language Models

Source citation (APA Format) Chen, D., Huang, Y., Ma, Z., Chen, H., Pan, X., Ge, C., Gao, D., Xie, Y., Liu, Z.,

Gao, J., Li, Y., Ding, B., & Zhou, J. (2023). Data-Juicer: A one-stop data

processing system for large language models. (arXiv:2309.02033). arXiv.

https://arxiv.org/abs/2309.02033

Original URL https://arxiv.org/abs/2309.02033

Source type Journal Article

Keywords Large Language Models (LLMs), Data-Juicer, Language Model Data Processing,
Operator Pool for Data Processing, Feedback-Driven Data Processing

#Tags #llms, #nlp, #pretraining, #distributeddataprocessing, #systemoptimization

Summary of key points + notes
(include methodology)

The article highlights the significance of Large Language Models (LLMs) in
achieving unprecedented intelligence, emphasizing their potential for artificial
general intelligence. It identifies challenges in LLM data processing, such as
heterogeneity, timely feedback, usability, customizability, and massive data
volume. The proposed solution, Data-Juicer, is introduced as a comprehensive data
processing system that addresses these challenges. The system features a
Standardized Operator Pool, Feedback-Driven Data Processing with a dynamic
feedback loop, Boosting Usability with Built-Ins, and Comprehensive System
Optimization. Data-Juicer's methodology involves a unified configuration
paradigm, a range of dedicated tools, and operator reordering for optimization.
The article concludes with a quantitative evaluation demonstrating the system's
superiority over a state-of-the-art baseline in terms of processing time, memory
utilization, and CPU efficiency, showcasing its effectiveness in enhancing data
quality and system scalability for LLMs.

Research Question/Problem/
Need

How can Data-Juicer address the challenges in Large Language Model data
processing, offering a unified and optimized solution to enhance usability, data
quality, and scalability in the pursuit of artificial general intelligence?

https://doi.org/10.48550/ARXIV.2309.02033
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 119

Important Figures

Overview of Data-Juicer

Overview of the operator (OP) pool in Data-Juicer, with a detailed list continuously
maintained at the official documentation:

The feedback loop of Data-Juicer

The demonstration of hyper-parameter optimization for data processing

Priyadarshan 120

The illustration of several interactive visualization features of Data-Juicer

The demonstration of data processing feedback of Data-Juicer, which helps to
generate better data recipes for LLMs

The OP fusion procedure for an OP list

Priyadarshan 121

Evaluation results of reference models trained with different datasets but the same
pre-training procedures

The average score of the pre-trained LLMs on 16 HELM core tasks

Results of pair-wise model comparisons using GPT4 scoring

Priyadarshan 122

Comparison of stand-alone processing performance, the marker size is proportional
to average CPU usage (↓)

Time comparison before and after OP fusion

Scalability of Data-Juicer

VOCAB: (w/definition) Heterogeneity: The presence of diverse and varied elements within LLM data,
requiring specialized processing methods to handle different formats and sources.

Priyadarshan 123

Data-Juicer: A proposed data processing system designed to address challenges in
LLM data processing, providing fine-grained abstraction, timely feedback, and
end-to-end configurability.

Operator Pool (OP): A collection of standardized operations in Data-Juicer,
categorized as Formatters, Mappers, Filters, and Deduplicators, offering flexibility
and user interaction in processing LLM data.

Hyper-Parameter Optimization (HPO): The tuning of parameters in Data-Juicer for
optimal data processing, tied to custom target metrics and visualization results for
effective optimization.

Checkpoint and Caching: Built-in mechanisms in Data-Juicer for resilient and
reliable data processing, allowing swift recovery during system restarts, mitigating
redundancy, and providing flexibility in space-time trade-offs.

Interactive Visualization: A feature in Data-Juicer integral to feedback stages,
enabling users to visually track the effects of individual operations, compare
results before and after processing, and enhance control over data processing.

Distributed Data Processing: The capability of Data-Juicer to work seamlessly with
distributed processing frameworks like Ray, Apache Beam, and Apache Flink,
translating single-node pipelines into multi-node clusters for accelerated
processing of large-scale LLM training data.

Cited references to follow up on

Follow up Questions How does Data-Juicer specifically handle the challenges of heterogeneity in LLM
data processing, and what mechanisms are in place to ensure efficient processing
of diverse data formats?

Can you provide more insights into the feedback-driven data processing aspect of
Data-Juicer, particularly how the dynamic feedback loop and interactive
visualization contribute to enhancing understanding and optimizing the system for
LLM data processing?

In the quantitative evaluation, what specific benchmarks and metrics were used to
compare Data-Juicer against the state-of-the-art baseline, and are there any
particular scenarios or use cases where Data-Juicer demonstrated superior
performance or faced challenges?

Priyadarshan 124

Notes (written with the assistance of ChatGPT)

Introduction

● Large Language Models (LLMs) achieve unprecedented intelligence, enabling applications

otherwise infeasible.

● LLMs are built through pre-training on large-scale general-purpose corpus and fine-tuning with

specific-purpose data.

● Challenges in LLM data processing include high heterogeneity, timely feedback, usability,

customizability, and massive data volume.

● Existing open-source projects contributing LLM training data are limited, hindering quantitative

understanding and enhancement.

● Data-Juicer is proposed as a one-stop data processing system addressing challenges in LLM data

processing.

● Data-Juicer offers fine-grained abstraction, timely feedback, and end-to-end configurability with

over 50 versatile operators and tools.

● Challenges addressed by Data-Juicer include heterogeneity, timely feedback, usability, and

massive data volume.

● Data-Juicer integrates with Huggingface-datasets library, Megatron-LM, HELM, Ray, and Beam for

comprehensive LLM data processing.

● Empirical evidence demonstrates Data-Juicer's ability to produce high-quality data recipes and

improve LLM performance.

● Contributions include the novel system, high-quality data recipes, integration with distributed

computing ecosystems, and user-centric interface designs.

● Data-Juicer's system, data recipes, and tutorials are publicly accessible on GitHub:

https://github.com/alibaba/data-juicer.

Background and Related Works

● Language modeling is crucial for achieving machine intelligence.

● Advancements in language models, especially pre-training and fine-tuning paradigms, have led

to exceptional performance in natural language processing tasks.

● The self-supervised Transformer architecture, highly parallelizable, has enabled significant

increases in model parameters and training corpus scales for Large Language Models (LLMs).

● LLMs show potential for artificial general intelligence, but challenges persist in processing LLM

data, whether for pre-training or fine-tuning.

● Pre-training data serves as the foundation for LLM intelligence, involving training on large

amounts of high-quality data from diverse sources.

● Fine-tuning, refining pre-trained LLMs with smaller task-specific datasets, enhances capabilities

and aligns models with human values.

● Challenges in processing pre-training data include filtering noise, redundancy, and toxicity, while

fine-tuning data needs effective processing for maximum usefulness and minimized risks.

https://github.com/alibaba/data-juicer
https://github.com/alibaba/data-juicer

Priyadarshan 125

● The symbiotic nature of pre-training and fine-tuning data involves shared properties such as

quality, diversity, and volume considerations.

● Quality is addressed through cleaning, deduplication, and detoxification in both pre-training and

fine-tuning data processing.

● Diversity is emphasized by mixing various types of data to achieve appropriate diversity in both

pre-training and fine-tuning data.

● The pursuit of quality and diversity often trades off with data volume, leading to challenges such

as increased noise and bias.

● Existing open-source LLM data processing projects like BLOOM, PromptSource, and RedPajama

have made progress but lack the abstraction and functionalities of Data-Juicer.

● Data-Juicer aims to address limitations by providing systematic and modular processing abilities

for managing heterogeneous data.

● Current works lack optimal usability and the ability to explore data insight, hindering adaptability

for diverse users and alternative usages.

● The focus of existing works is on functionality rather than system performance, leaving room for

enhancement in efficiency, space management, and scalability.

Standardized Operator Pool

● Standardized Operator (OP) pool devised to address heterogeneity of data recipes for LLMs.

● OPs organized into four categories: Formatters, Mappers, Filters, and Deduplicators, promoting

flexibility and user interaction.

● Unified Data Representation introduced through Formatter OPs, backed by Huggingface-datasets

and Apache Arrow.

● Versatile Data Processing in Data-Juicer, including Mappers for text editing, Filters for conditional

text filtering, and Deduplicators for dataset-level deduplication.

● Decoupling of computation for statistics and actual data processing in Filter and Deduplicator

OPs for effective reuse and streamlined processes.

● Composability of Data-Juicer's OPs, allowing users to effortlessly process a variety of data types

in a modular manner.

● Each OP designed for a distinct function and adaptable to different text fields, providing

immense flexibility.

● Configurable parameters such as number of tokens, filtering thresholds, and auxiliary models

enhance adjustability of OPs.

● OPs labeled with typical usage scenarios for easy navigation and operation, blending simplicity

with power in Data-Juicer's architecture.

Feedback-Driven Data Processing

● Dynamic Feedback Loop:

○ Challenge 2 addressed with a dynamic feedback loop in the data processing pipeline.

○ Enables effective data processing and understanding through extensive visualization

tools and automated tracking.

Priyadarshan 126

○ Holistic feedback loop for LLM data processing and training with interactive visualization

features.

● Hyper-Parameter Optimization (HPO) for Data Processing (Sec. 4.1):

○ Incorporation of hyper-parameter optimization (HPO) in Data-Juicer for data processing.

○ HPO tied to custom target metrics and visualization results for effective optimization.

○ Acceleration with Checkpoint and Caching:

■ Built-in checkpoint and caching management for resilient and reliable data

processing.

■ Swift recovery during system restarts or failures, mitigating processing

redundancy.

■ Flexibility in space-time trade-off with user-specified saving frequencies and

rules.

○ Auto-HPO:

■ Automated HPO tool integrated into Data-Juicer for finding optimal data

processing hyper-parameters.

■ Support for advanced HPO algorithms such as Bayesian optimization and

Hyperband algorithm.

■ Users can investigate correlations and importance scores of specific

hyper-parameters.

● Interactive Visualization (Sec. 4.2):

○ Interactive visualization integral to multiple feedback stages of Data-Juicer.

○ Tracer tool records sample changes after each operation for effective tracking.

○ Users can visually track the effects of individual OPs, enhancing control over the data

processing.

○ Comparative visualization before and after processing, aiding in statistical analysis.

● Feedback with LLM Ecosystem Integration (Sec. 4.3):

○ Integration of rich ecosystems of LLMs to support mainstream training libraries.

○ Facilitates timely assessment of model abilities across various metrics or benchmarks.

○ Supports state-of-the-art LLM benchmarks and extension of customized evaluation

benchmarks.

○ Dynamic expansion of evaluation metrics during training process for subsequent scaling

predictions.

○ Leaderboard-style comparison enhances visualization of model strengths and

weaknesses.

● Feedback Loop Showcase (Sec. 4.4):

○ Concrete example of the feedback loop with Data-in-the-LLMdev-Loop process.

○ Steps include analyzing the original dataset, refining parameters, processing, analyzing

refined dataset, training LLMs, and comparing results.

○ Innermost loop (steps 1 and 2) for data probe creation, middle loop (steps 1∼4) for

refining and processing, and outermost thorough feedback loop.

○ Users can flexibly leverage built-in tools or expand the loop based on specific needs.

Priyadarshan 127

Boosting Usability with Built-Ins

● Unified Configuration Paradigm (Challenge 3):

○ Challenge addressed: Supporting diverse user customization preferences and technical

expertise.

○ Unified and easy-to-use configuration paradigm for data recipes and extensive tools.

○ All-in-one configuration principle ensures reproducibility, traceability, and simplifies

specification changes.

○ Facilitates the formation of data recipes for refinement, reuse, quantitative exploration,

and automatic optimization.

● Configuring Your Data Recipe (Sec. 5.1):

○ End-to-end pipeline of data processing configurable in Data-Juicer.

○ Configuration includes processing environment parameters, OP lists, and tools.

○ Jsonargparse used for unified, flexible, and easy-to-use configuration capabilities.

○ Configuration items automatically registered for OPs and tools.

○ Users can build config files using "subtraction" or "addition" methodologies.

○ Extensive examples of pre-built data processing recipes provided for user reference.

● Dedicated Pluggable Tools (Sec. 5.2):

○ Extensible collection of powerful dedicated tools in Data-Juicer.

○ Quality Classifier:

■ Text quality classifier for culling high-quality text from heterogeneous sources.

■ Reproduced model based on GPT-3 quality scorer, expanded applicability to

Chinese text and various code types.

○ Enhanced Sampler for LLM data:

■ Advanced data sampling utilities for large-scale data chunk handling in LLMs.

■ Stratified sampling technique using metadata or statistical fields for varied

selection metrics.

○ Full Toolkit:

■ Includes analyzers, evaluators, and reference models, maintaining and evolving

toolkit in Data-Juicer.

● User-Friendly Experiences (Sec. 5.3):

○ Designed for adaptability, catering to users with diverse expertise.

○ Zero-Code Processing:

■ Ready-to-use data recipes and plug-in tools for novice users with no advanced

system knowledge.

○ Low-Code Customization:

■ Intermediate users can alter configurations, customize quality classifiers, and

refine data based on pre-developed recipes.

○ Advanced Extension:

■ Experienced users can introduce new OPs, derive from base classes, and

implement specific functions.

■ Decoupled design allows smooth incorporation of new tools at all stages of LLM

data processing.

Priyadarshan 128

○ Interactive Demos:

■ Series of interactive demos in Streamlit for hands-on learning and ease of

adoption.

Comprehensive System Optimization

● Operator Reordering for Optimization:

○ Reorder OPs after fusion to enhance computational efficiency.

○ Utilize commutativity of Filters to prioritize less time-consuming OPs.

○ Reduces processing time and handles fewer samples for time-consuming OPs.

○ Minimizes redundant computation and overhead of initializing multiple processes.

● Optimized Space Utilization - Caching OPs and Compression:

○ Design dedicated hashing method to bypass serialization issues in OPs.

○ Enables successful caching of each OP, ensuring optimal cache management.

○ Users can activate compression technologies (Zstandard, LZ4) to reduce cache data

storage.

○ Automatic compression and decompression of cache files reduce volume without

compromising speed.

● Optimized Scalability - Distributed Data Processing:

○ Data-Juicer compatible with distributed processing frameworks (Ray, Apache Beam,

Apache Flink).

○ Translates single-node data processing pipeline into multi-node cluster for accelerated

processing.

○ Adapts HuggingFace-datasets interfaces for Ray-datasets, allowing execution in

distributed mode.

○ Supports alternative back-ends like Flink, accelerating Mapper, Filter, and Deduplicator

OPs in a multi-node cluster.

○ Alleviates bottlenecks on a single node caused by memory capacity and IO throughput.

○ Enhances scalability for handling large-scale LLM training data while minimizing resource

requirements.

Quantitative Evaluation

● Data Quality Enhancement:

○ Data-Juicer focuses on comprehensive and flexible operability for LLM data processing.

○ Aims to generate high-quality, diverse datasets for improved LLM performance.

○ Deviates from traditional simplistic filtering for richer, more learnable information.

● Refined Pre-training Data Recipes:

○ Utilizes publicly available sources like RedPajama and the Pile for transparency.

○ Merges and enhances data quality, offering reproducible pre-training datasets.

○ LLMs pre-trained on Data-Juicer recipes consistently outperform alternatives.

○ Achieves higher performance with half the data volume compared to SOTA baselines.

Priyadarshan 129

● Refined Fine-tuning Data Recipes:

○ Labels subsets from Alpaca-CoT for “Instruct Fine-Tuning (IFT)” and performs data

mixing.

○ LLMs trained on Data-Juicer recipes consistently demonstrate high validity.

○ Outperforms competitive fine-tuning datasets (Alpaca, Belle) with higher win rates.

○ Effectiveness confirmed compared to trivial processing strategies with higher win rates.

● System Performance and Optimization:

○ Examines end-to-end performance of Data-Juicer against RedPajama, a state-of-the-art

baseline.

○ Data-Juicer demonstrates 55.6% less processing time, 63.0% less memory, and 52.2%

less CPU utilization.

○ Context management, OP fusion, and reordering save up to 24.91% total time and

42.04% for fusible OPs.

● System Scalability:

○ Tests scalability on multiple servers, showcasing effective performance on Ray with up to

87.4% time reduction.

○ Limited scalability on Beam due to constraints in data loading component.

○ Demonstrates enhanced scalability and efficiency in handling large datasets for LLMs.

Priyadarshan 130

Article #16 Notes: GLaM: Efficient Scaling of Language

Models with Mixture-of-Experts

Source Title GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Source citation (APA Format) Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y.,

Yu, A. W., Firat, O., Zoph, B., Fedus, L., Bosma, M., Zhou, Z., Wang, T.,

Wang, Y. E., Webster, K., Pellat, M., Robinson, K.,… Cui, C. (2021). GLaM:

Efficient scaling of language models with mixture-of-experts.

(arXiv:2112.06905). arXiv. https://arxiv.org/abs/2112.06905

Original URL https://arxiv.org/abs/2112.06905

Source type Journal Artic

Keywords Language Models, Efficient Scaling, Sparsely Activated MoE

#Tags #llms, #bigdata, #moe, #efficientscaling

Summary of key points + notes
(include methodology)

The article introduces the GLaM family of language models, addressing the
challenges of scaling in language models like GPT-3. GLaM achieves competitive
results with fewer parameters, demonstrating improved learning efficiency and
lower energy consumption compared to GPT-3. The study underscores the
significance of data quality in producing high-quality auto-regressive language
models and highlights GLaM's ability to close the performance gap between
stereotypical and anti-stereotypical examples. The GLaM models utilize sparsely
activated Mixture-of-Experts (MoE) layers, providing computational flexibility and
energy efficiency. The study evaluates GLaM on 29 public NLP benchmarks,
showcasing its superiority in zero, one, and few-shot learning scenarios.
Additionally, ethical considerations are discussed, emphasizing the potential
democratization of AI usage but also addressing challenges related to biases,
privacy concerns, and environmental impact. The evaluation methods include
analyses of data quality effectiveness, scaling trends, and ethical challenges, with
GLaM demonstrating efficiency and competitive performance.

Research Question/Problem/
Need

How can the GLaM family of language models address the challenges of scaling in
large language models like GPT-3, achieving competitive results with fewer
parameters and demonstrating improved learning efficiency and lower energy
consumption?

https://doi.org/10.48550/ARXIV.2112.06905
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 131

Important Figures

Comparison between GPT-3 and GLaM

An overview of the percentage change in predictive performance (higher is better)
of GLaM (64B/64E) versus GPT-3 (175B) in the (a) zero-shot, (b) one-shot, and (c)
few-shot setting across 7 benchmark categories with 29 public tasks in total

Data and mixture weights in GLaM training set

VOCAB: (w/definition) Pretrained Word Vectors: Word representations learned from large amounts of
unlabeled text, capturing semantic relationships between words.

Contextualized Word Vectors: Word embeddings that take into account the context
of a word within a sentence or document.

Mixture-of-Experts (MoE): A neural network architecture that combines multiple
expert models, with a gating mechanism selecting which expert to use for a given
input.

Sparse Decoder-Only Language Models: Models that focus on the decoding part of
the sequence generation process and leverage sparsely activated MoE layers.

Sharding Algorithm: A technique to partition large models into smaller,
manageable parts for efficient processing.

Priyadarshan 132

Pareto Distribution: A statistical distribution used for sampling to ensure a mix of
content quality and prevent bias in the training dataset.

Gated Linear Unit (GLU): An activation function used in place of the traditional
activation function in certain model sub-layers.

Positional Embedding: Representations added to input sequences to convey the
position of each token.

SentencePiece Subword Tokenizer: A tokenizer that breaks down words into
smaller subword pieces for language modeling.

Cited references to follow up on

Follow up Questions How can the GLaM family of language models contribute to mitigating ethical
challenges, such as representation bias and privacy concerns, associated with the
use of large language models, and what specific strategies does the article propose
for addressing these challenges?

Given the emphasis on data quality over quantity, what are the key insights and
methodologies employed in the study to ensure high-quality auto-regressive
language models, and how do these insights impact the performance and
efficiency of GLaM models compared to other large language models like GPT-3?

The article highlights the efficiency of GLaM models in terms of both learning and
energy consumption. Could the findings from this study inform future directions in
the development of large language models, particularly in terms of achieving
competitive performance with reduced computational resources, and what
implications might this have for the broader field of natural language processing?

Priyadarshan 133

Notes (written with the assistance of ChatGPT)

Introduction

● Language models have significantly contributed to the progress of natural language processing

(NLP) in the last decade.

● Pretrained word vectors and contextualized word vectors have been produced using variants of

language models for various NLP applications.

● The trend has shifted towards scaling with more data and larger models, allowing complex NLP

tasks with less labeled data.

● Models like GPT-3 and FLAN demonstrated the feasibility of in-context learning for few-shot or

zero-shot generalization, requiring very few labeled examples.

● However, further scaling is becoming expensive and energy-consuming.

● The proposed GLaM family of language models strikes a balance between dense and conditional

computation, achieving competitive results with fewer parameters.

● GLaM's largest version has 1.2T parameters, with 64 experts per MoE layer, and each token

activates only a subnetwork of parameters.

● GLaM outperforms GPT-3 on zero, one, and few-shot learning across 29 public NLP benchmarks,

with improved learning efficiency and lower energy consumption.

● The study emphasizes the importance of data quality over quantity, even for large models, in

producing high-quality auto-regressive language models.

● GLaM closes the performance gap between stereotypical and anti-stereotypical examples on the

WinoGender benchmark, suggesting reduced reliance on superficial statistical correlations.

● Sparse decoder-only language models, particularly those based on MoE, show promise in

achieving high-quality NLP models while saving energy costs.

● MoE is highlighted as a strong candidate for future scaling in the NLP community.

Related Work

● Language Models:

○ Neural language models, including word embedding models like word2vec and GloVe,

have proven useful for various natural language processing (NLP) tasks.

● Pre-training and Fine-tuning:

○ Abundance of compute and data allows training large models through unsupervised

pre-training, particularly using recurrent models and Transformers.

○ Transfer learning through pre-training and fine-tuning has demonstrated good

performance on downstream tasks, but it requires task-specific fine-tuning.

● In-Context Few-shot Learning:

○ GPT-3 and related work show that scaling up language models significantly improves

task-agnostic, few-shot performance without gradient updates.

● Sparsely Gated Networks:

○ Mixture-of-Experts (MoE) models, especially sparsely activated ones, offer advantages in

language modeling and machine translation.

Priyadarshan 134

○ Shazeer et al. demonstrated effective use of a large number of weights with only a small

subset of the computation graph at inference time.

○ Fedus et al. showcased results with a large 1 trillion parameter sparsely activated model

(Switch-C), which differs from GLaM in terms of architecture and evaluation

benchmarks.

● GLaM and Related Models:

○ GLaM is a family of decoder-only language models, while Switch-C is an encoder-decoder

sequence-to-sequence model.

○ GLaM and Switch-C both have one trillion trainable parameters, but GLaM excels in

few-shot settings without requiring fine-tuning, contrasting with Switch-C's focus on

fine-tuning benchmarks like SuperGlue.

○ Table 2 provides a summary of key differences between GLaM and related models

pre-trained on text corpora.

Training Dataset

● Dataset for Training:

○ A 1.6 trillion token dataset is curated, representing diverse language use cases primarily

sourced from web pages.

● Quality Classification:

○ A text quality classifier is developed to distinguish between high-quality and

lower-quality web content, using a feature hash-based linear classifier.

● Classifier Application:

○ The classifier rates webpages, and a Pareto distribution is used for sampling, ensuring a

mix of content quality and preventing bias.

● Dataset Composition:

○ The GLaM dataset combines web pages, books, Wikipedia, forums, news, and public

domain social media conversations.

● Mixture Weights:

○ Mixture weights are set based on component performance in smaller models to avoid

over-sampling smaller sources like Wikipedia.

● Overlap Analysis:

○ An analysis checks for data contamination by comparing the training set with evaluation

data, showing alignment with previous work (Brown et al., 2020).

Model Architecture

● Sparsely Activated MoE in GLaM Models:

○ GLaM models leverage sparsely activated Mixture-of-Experts (MoE) similar to GShard

MoE Transformer.

○ Feed-forward components of every other Transformer layer are replaced with an MoE

layer, each containing independent feed-forward networks as 'experts.'

● MoE Layer Structure:

Priyadarshan 135

○ Each MoE layer has a collection of experts, and a gating function, using softmax

activation, models a probability distribution over these experts.

○ Sparsity is maintained, activating only a limited subset of experts for a given input token,

enhancing model capacity while limiting computation.

○ In this architecture, the subset size is two, and the gating network dynamically selects

the best two experts for each token during inference.

● Computational Flexibility:

○ Each MoE layer offers O(E^2) combinations of feed-forward networks, providing

significantly more computational flexibility compared to the classic Transformer

architecture.

● Model Modifications:

○ Standard positional embedding is replaced with per-layer relative positional bias.

○ In non-MoE Transformer feed-forward sub-layers, the first linear projection and

activation function are replaced with the Gated Linear Unit and Gaussian Error Linear

Unit.

● Sharding Algorithm:

○ Large GLaM models are weight- and computation-partitioned using the 2D sharding

algorithm, detailed in Xu et al. (2021), for efficient processing.

Experiment Setup

● Training Settings for GLaM:

○ GLaM is a family of dense and sparse decoder-only language models.

○ Training variants of GLaM with hyperparameters specified for models ranging from 130

million to 1.2 trillion parameters.

● Hyperparameter Overview:

○ Key hyperparameters include E (number of experts), B (mini-batch size), S (input

sequence length), M (model and embedding dimension), H (hidden dimension), L

(number of layers), N (number of total devices), and more.

○ Dense models with comparable per-token FLOPs are included for reference.

● Training Procedure:

○ Common learning hyperparameters are used across all GLaM models.

○ Adafactor optimizer with specific decay schedules and threshold clipping is employed.

○ The MoE auxiliary loss is added to encourage expert load balancing.

○ Training employs SentencePiece subword tokenizer with float32 for model weights and

bfloat16 for activations.

○ Larger GLaM models, such as the 64B/64E, are trained on 1,024 Cloud TPU-V4 chips.

● Training Challenges and Strategies:

○ Training at the trillion parameter scale is expensive and allows little room for

hyperparameter tuning.

○ Smaller-scale models are trained first to expose potential issues in the dataset and

infrastructure early on.

Priyadarshan 136

○ Strategies include skipping weight updates for batches with NaNs or Infs and restarting

from an earlier checkpoint in case of fluctuations or NaN/Inf occurrences during training.

● Evaluation Setting:

○ Evaluation focuses on zero, one, and few-shot learning protocols.

○ Benchmarks are chosen to match GPT-3 evaluations, with 29 datasets grouped into

natural language generative (NLG) and natural language understanding (NLU) tasks.

● Benchmarks and Metrics:

○ Benchmarks include NLG tasks (e.g., TriviaQA, SQuADv2) and NLU tasks (e.g., MultiRC,

COPA).

○ Metrics involve accuracy, exact match (EM), and F1 scores, with normalization for

comparison.

○ Both NLG and NLU tasks are considered for the overall few-shot performance, and

results are reported in a standardized format.

Results

● Extensive Evaluation of GLaM Models:

○ Evaluation of GLaM models emphasizes advantages of sparsely activated models in

language modeling and their scaling trends.

○ Quantitative inspection of data quality effectiveness for language model training.

● Comparison between MoE and Dense Models:

○ GLaM (64B/64E) competes favorably with GPT-3 (175B) for zero, one, and few-shot

learning.

○ Outperforms GPT-3 in 6 out of 7 categories on average, demonstrating consistent

performance.

○ GLaM (64B/64E) activates fewer parameters than GPT-3, achieving similar performance

with half the compute FLOPs.

● Challenging Task: TriviaQA:

○ GLaM (64B/64E) excels in the challenging open-domain question-answer task TriviaQA,

surpassing GPT-3 and previous finetuned SOTA.

○ Demonstrates better one-shot performance, outperforming GPT-3 on the testing server.

● Impact of Data Quality:

○ Evaluation on the development set reveals the impact of data quality on few-shot

performance.

○ Filtering text on model quality using GLaM (1.7B/64E) indicates consistent improvement

in both NLG and NLU tasks, emphasizing the importance of pretraining data quality.

● Scaling Studies:

○ Scaling trends in dense models involve increasing depth and width, resulting in linear

growth in parameters.

○ GLaM MoE models scale differently, growing the size or number of experts in the MoE

layer.

○ MoE models consistently outperform dense models at larger scales, and additional

experts enhance predictive performance.

Priyadarshan 137

● Efficiency of GLaM:

○ GLaM MoE models require significantly less data than dense models for similar

performance in zero, one, and few-shot scenarios.

○ Computation efficiency and energy consumption analyses demonstrate that training

sparsely activated models consumes much fewer computational resources than training

dense models.

○ GLaM (64B/64E) achieves similar performance to GPT-3 with 1/3 of the energy cost

during training. Training time and energy consumption are notably reduced, showcasing

the efficiency of the MoE architecture.

Ethical Considerations

● Zero and Few-shot Inference Capabilities:

○ Large language models exhibit exciting capabilities in zero and few-shot inference.

○ Enables intuitive control of model behavior with natural language and small datasets,

lowering the barrier for prototyping and application development.

○ Potential to democratize AI usage by reducing the need for specialist knowledge.

● Ethical Challenges and Considerations:

○ The versatility and power of large language models emphasize ethical challenges:

■ Representation bias.

■ Proper selection and handling of training data.

■ Documentation of training data.

■ Privacy concerns.

■ Environmental impact.

● Focus on Unintended Biases:

○ Research emphasizes unintended biases learned by language models, including

correlations between gender and profession, negative sentiment about racial and

religious groups, and biases related to people with disabilities.

○ Rigorous evaluation methods are essential for assessing the encoding of harmful

stereotypes.

● Assessment Metrics and Methods:

○ Inspiration taken from GPT-3 for evaluation methods.

○ Examination of co-occurrence in generated text referencing identity terms.

○ Analysis of the WinoGender benchmark for coreference errors.

○ Evaluation of toxicity degeneration using the RealToxicityPrompts dataset and

Perspective API.

● Co-occurrence Prompts Analysis:

○ Analysis of commonly co-occurring words in generated text for prompts related to

gender, religions, racial, and ethnic identity.

○ Utilizes top-k sampling and an off-the-shelf POS tagger.

○ Results indicate associative biases and patterns in the generated text.

● WinoGender Benchmark:

Priyadarshan 138

○ Assessment of gendered correlations and coreference errors using the WinoGender

benchmark.

○ GLaM (64B/64E) achieves a new state-of-the-art accuracy of 71.7%.

○ Remarkably close accuracy between 'he' and 'she' examples, as well as between

stereotypical and anti-stereotypical examples.

● Toxicity Degeneration Evaluation:

○ Toxicity degeneration is assessed using the RealToxicityPrompts dataset and Perspective

API.

○ Relationship between Toxicity Probability of the Prompt (TPP) and the Toxicity

Probability of the Continuation (TPC) is analyzed.

○ Model's TPC closely follows TPP, indicating the model's influence by the prompt.

○ Distribution of toxicity probabilities for batches of continuations is examined.

● Consideration of Ethical Challenges in Language Models:

○ Despite exciting capabilities, ethical challenges remain, requiring ongoing research and

evaluation.

○ Emphasis on measurement methods and criteria for assessing general-purpose large

language models.

○ The importance of assessing models on a range of metrics given their versatility and

power.

Priyadarshan 139

Article #17 Notes: Subword Regularization: Improving

Neural Network Translation Models

Source Title Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates

Source citation (APA Format) Kudo, T. (2018). Subword regularization: Improving neural network translation

models with multiple subword candidates. (arXiv:1804.10959). arXiv.

https://arxiv.org/abs/1804.10959

Original URL https://arxiv.org/abs/1804.10959

Source type Journal Article

Keywords Neural Machine Translation (NMT), Subword Regularization, Open Vocabulary,
Empirical Experiments

#Tags #llms, #nmt, #nlp, #subwordregularization

Summary of key points + notes
(include methodology)

The article discusses the challenges in Neural Machine Translation (NMT) models
related to fixed word vocabularies and the resulting open vocabulary issue. It
introduces Subword Regularization as a method to address this problem by
breaking rare words into subword units, specifically using Byte-Pair-Encoding
(BPE). The methodology involves integrating multiple segmentation candidates
during on-the-fly data sampling in the training process. The experiments,
conducted on various corpora, demonstrate significant improvements in
translation accuracy and robustness, especially in open-domain settings. Subword
regularization is highlighted as an effective approach across different NMT
architectures, providing a flexible solution to enhance the performance of NMT
models.

Research Question/Problem/
Need

How can the accuracy and robustness of Neural Machine Translation models be
enhanced in open vocabulary settings, addressing the limitations of fixed word
vocabularies and increasing translation quality in the presence of unknown words?

https://doi.org/10.48550/ARXIV.1804.10959
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 140

Important Figures

Multiple subword sequences encoding the same sentence “Hello World”

Details of evaluation data set

Main Results (BLEU(%))

Comparison of different segmentation algorithms (WMT14 en→de)

VOCAB: (w/definition) Neural Machine Translation (NMT): A paradigm in machine translation that utilizes

Priyadarshan 141

neural networks to learn and generate translations, capturing complex linguistic
patterns.

Byte-Pair-Encoding (BPE): A subword tokenization technique that breaks down rare
words into smaller units, enhancing the model's ability to handle open vocabulary.

Recurrent Neural Network (RNN): A type of neural network designed for sequence
modeling, commonly used in predicting subwords in NMT.

Maximum Likelihood Estimation (MLE): An approach in training neural networks
that maximizes the likelihood of the observed data, often used as an objective
function in NMT training.

Dropout: A regularization technique in deep learning where random units are
omitted during training to prevent overfitting and enhance model generalization.

Denoising Auto-Encoders (DAEs): Models that introduce noise to input data during
training, aiming to make the model robust to variations and improve
generalization.

BLEU Score: A metric used to evaluate the quality of machine-generated
translations by comparing them to reference translations, measuring precision and
recall of n-grams.

Hyperparameters: Configurable settings in a machine learning model that are not
learned from the data, requiring manual tuning for optimal performance.

Moses Tokenizer: A tool used for text tokenization, commonly employed before
training subword models to preprocess data in NMT.

Ensemble Training: A concept involving training multiple models on different
subsets of data and combining their predictions to enhance overall performance.

Cited references to follow up on

Follow up Questions How does the Subword Regularization method compare to other approaches for
handling open vocabulary issues in Neural Machine Translation, and are there
specific scenarios where it excels or falls short?

Given the success of Subword Regularization in improving translation accuracy and
robustness, how transferable is this approach to other natural language processing
tasks beyond NMT, and what considerations should be taken when applying it to
different domains?

Priyadarshan 142

The article highlights the impact of hyperparameters on the effectiveness of
Subword Regularization. What further research or experimentation is needed to
better understand the optimal hyperparameter settings for different corpora and
language pairs, and how can these settings be generalized or fine-tuned for
broader applications in NMT?

Priyadarshan 143

Notes (written with the assistance of ChatGPT)

Introduction

● Neural Machine Translation (NMT) Models:

○ Operate with fixed word vocabularies (Bahdanau et al., 2014; Luong et al., 2015; Wu et

al., 2016; Vaswani et al., 2017).

○ Vocabulary size crucial for training and inference.

○ Limiting vocabulary increases unknown words, affecting translation accuracy in open

vocabulary settings.

● Open Vocabulary Issue and Subword Units:

○ Common approach: Break up rare words into subword units.

○ Examples: Byte-Pair-Encoding (BPE) (Sennrich et al., 2016).

○ BPE offers a balance between vocabulary size and decoding efficiency, addresses

unknown words without special treatment.

● BPE Segmentation and Ambiguity:

○ BPE encodes sentences into unique subword sequences.

○ Illustration (Table 1): Multiple subword sequences encoding the same sentence, causing

spurious ambiguity.

○ Variants treated as different inputs in NMT, affecting decoding.

● Subword Regularization Method:

○ Aim: Improve accuracy and robustness of open-vocabulary NMT.

○ Components:

■ Integration of Multiple Segmentation Candidates:

■ Implemented as an on-the-fly data sampling during NMT training.

■ Not specific to NMT architecture, applicable to any NMT system without

changing the model structure.

■ New Subword Segmentation Algorithm:

■ Based on a language model.

■ Provides multiple segmentations with probabilities, emulating noise

generated during actual data segmentation.

● Empirical Experiments and Results:

○ Multiple corpora, different sizes, and languages used.

○ Subword regularization demonstrates significant improvements over single subword

sequence methods.

○ Robustness improvement shown through experiments with out-of-domain corpora.

● Conclusion:

○ Subword regularization emerges as an effective method for enhancing the accuracy and

robustness of open-vocabulary NMT models through the integration of multiple

subword segmentations during training.

Priyadarshan 144

Neural Machine Translation with multiple subword segmentations

● NMT Training with On-the-Fly Subword Sampling:

○ Given source sentence X and target sentence Y, segmented into subword sequences x

and y.

○ NMT models translation probability P(Y|X) as a sequence model generating target

subwords.

○ Recurrent Neural Network (RNN) commonly used for predicting subwords.

○ Subword regularization is not limited to RNN architecture; applicable to various NMT

architectures (e.g., Vaswani et al., 2017; Gehring et al., 2017).

● Standard Maximum Likelihood Estimation (MLE) Training:

○ Training objective: Maximize log-likelihood L(θ) of parallel corpus D.
○ Objective function: L(θ) = Σ log P(y(s)|x(s); θ) for each sentence pair in D.

○ Assumption: Source and target sentences can be segmented into multiple subword

sequences with probabilities P(x|X) and P(y|Y).

● Subword Regularization Objective:

○ Optimize parameter set θ with marginalized likelihood (Lmarginal) considering multiple

subword segmentations.

○ Exact optimization not feasible; approximate with finite k sequences sampled from

P(x|X) and P(y|Y).

○ Objective function: Lmarginal(θ) ∼= (1/k^2) Σ Σ Σ log P(yj|xi; θ) for each sentence pair in

D, where xi and yj are sampled subword sequences.

● Training Process:

○ Online training with iterative optimization of θ on mini-batches from D.

○ Subword sampling executed on-the-fly for each parameter update, yielding a good

approximation of the objective function.

● Decoding in NMT:

○ For decoding, only raw source sentence X is available.

○ One-best decoding: Translate from the best segmentation x* maximizing P(x|X).

○ N-best decoding: Use n-best segmentations of P(x|X) to consider multiple segmentation

candidates.

○ Scoring function: score(x, y) = log P(y|x)/|y|λ, penalizing shorter sentences with

parameter λ.
○ Parameter λ optimized with development data.

● Conclusion:

○ Describes the training process with on-the-fly subword sampling in NMT, emphasizing

the flexibility of subword regularization across various NMT architectures. Additionally, it

outlines decoding approaches, including one-best and n-best decoding strategies.

Related Work

● Regularization by Noise in Deep Neural Networks:

Priyadarshan 145

○ Dropout (Srivastava et al., 2014) is a well-known example, randomly turning off hidden

units during training.

○ Ensemble training concept, where different models are trained on different subsets of

data.

○ Subword regularization considered a variant of ensemble training, introducing

randomness to data inputs.

● Noise Injection in Denoising Auto-Encoders (DAEs):

○ DAEs (Vincent et al., 2008) add noise to inputs, training the model to reconstruct original

inputs.

○ (Lample et al., 2017; Artetxe et al., 2017) independently propose DAEs in

sequence-to-sequence learning, altering word order for compositionality.

○ Word dropout (Iyyer et al., 2015) drops words from a bag-of-words representation

before averaging word embeddings.

○ (Belinkov and Bisk, 2017) explore character-based NMT with synthetic noise altering

character order.

● Motivation and Similarities with Subword Regularization:

○ Subword regularization shares motivation with previous work: increasing robustness by

injecting noise to input sentences.

○ Previous approaches often rely on heuristics for synthetic noises, not always reflecting

real noises.

○ Subword regularization generates synthetic subword sequences using an underlying

language model for better emulation of noises and segmentation errors.

○ Can be applied to both source and target sentences due to invertible conversion.

● Data Augmentation Perspective:

○ Subword regularization viewed as data augmentation.

○ Converts input sentence into multiple invariant sequences, similar to data augmentation

in image classification tasks (e.g., random flipping, distorting, cropping).

● Segmentation Ambiguities in Language Modeling:

○ Latent Sequence Decompositions (LSDs) (Chan et al., 2016) marginalize over all possible

segmentations, similar to subword regularization.

○ Subword regularization injects multiple segmentations with a separate language model

through on-the-fly subword sampling.

○ LSDs and subword regularization handle segmentation ambiguities without assuming

predetermined segmentations, with subword regularization being simple and

independent of NMT architectures.

● Lattice-to-Sequence Models:

○ Extension of sequence-to-sequence models, representing input uncertainty through

lattices (Su et al., 2017; Sperber et al., 2017).

○ Lattice encoded with a variant of TreeLSTM (Tai et al., 2015), requiring a change in model

architecture.

○ Unlike subword regularization, lattice-to-sequence models do not handle target side

ambiguities.

● Mixed Word/Character Model (Wu et al., 2016):

Priyadarshan 146

○ Addresses out-of-vocabulary problem with a fixed vocabulary.

○ Out-of-vocabulary words not collapsed into a single UNK symbol, converted into a

sequence of characters with special prefixes.

○ Similar to BPE, encodes a sentence into a unique fixed sequence, without considering

multiple segmentations.

Experiments

● Experiment Overview:

○ Experiments conducted using various corpora with different sizes and languages.

○ Evaluation data summarized in Table 2.

● Corpora Details:

○ IWSLT15/17 and KFTT:

■ Small corpora with diverse languages and linguistic properties.

■ Evaluate language-agnostic property of subword regularization.

○ ASPEC and WMT14 (en↔de):

■ Medium-sized corpora.

○ WMT14 (en↔cs):

■ Large corpus with over 10M parallel sentences.

● NMT System Used:

○ Implementation: GNMT (Wu et al., 2016).

○ Settings and training procedures followed (Wu et al., 2016) with adjustments based on

corpus size.

● Hyperparameters:

○ Settings varied according to corpus size (see Table 2).

○ Common settings: Dropout probability 0.2, Adam and SGD for parameter estimation,

length normalization, converge penalty parameters set to 0.2, decoding beam size set to

4.

● Data Preprocessing:

○ Moses tokenizer used before training subword models.

○ Chinese and Japanese processed with characters and KyTea, as Moses tokenizer does not

segment sentences into words for these languages.

● Evaluation Metric:

○ Case-sensitive BLEU score (Papineni et al., 2002) used.

● Baseline System:

○ BPE segmentation used as the baseline system.

○ Three test systems evaluated with different sampling strategies.

● Sampling Strategies Evaluated:

○ Unigram language model-based subword segmentation without subword regularization

(l = 1).

○ With subword regularization (l = 64, α = 0.1).

○ (l = ∞, α = 0.2/0.5) - 0.2 for IWSLT, 0.5 for others.

● Comparison and Decoding:

Priyadarshan 147

○ One-best decoding and n-best decoding compared.

○ 7 systems evaluated for each language pair.

● Main Results:

○ Table 3 shows translation experiment results.

○ Subword regularization (l > 1) significantly boosts BLEU scores, especially in lower

resource settings (IWSLT and KFTT).

○ (l = ∞ α = 0.2/0.5) slightly outperforms (l = 64, α = 0.1) on IWSLT corpus.

● Results with Out-of-Domain Corpus:

○ Systems evaluated with out-of-domain in-house data (Web, patents, query logs).

○ Subword regularization achieves larger improvements (+2 points) in every domain

compared to in-domain evaluations (Table 4).

○ Significant improvements even on large training datasets (WMT14), supporting the claim

that subword regularization is more useful for open-domain settings.

● Comparison with Other Segmentation Algorithms:

○ Table 5 compares different segmentation algorithms.

○ Unigram language model with subword regularization achieves the best BLEU score

(25.04), demonstrating the effectiveness of multiple subword segmentations.

● Impact of Sampling Hyperparameters:

○ Figure 1 shows BLEU scores for various hyperparameters on IWSLT15 (en→ vi) dataset.

○ Optimal hyperparameters depend on sampling size (l).

○ α = 0.0 leads to performance drops, suggesting biased sampling with a language model

helps emulate real noise in translation.

○ Larger l allows more aggressive regularization, more effective for low-resource settings.

○ Optimal hyperparameters challenging to determine, open question for subword

sampling.

● Results with Single Side Regularization:

○ Table 6 summarizes BLEU scores with subword regularization on either source or target

sentence.

○ Single side regularization has positive effects, although BLEU scores are lower than full

regularization.

○ Suggests applicability of subword regularization to other NLP tasks beyond

encoder-decoder architectures.

Priyadarshan 148

Article #18 Notes: Extracting Training Data from Large

Language Models

Source Title Extracting Training Data from Large Language Models

Source citation (APA Format) Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K.,

Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., & Raffel, C.

(2020). Extracting training data from large language models.

(arXiv:2012.07805). arXiv. https://arxiv.org/abs/2012.07805

Original URL https://arxiv.org/abs/2012.07805

Source type Journal Article

Keywords Language models, Attack methodologies, Memorization, Data privacy, Mitigation
strategies

#Tags #llms, #nlp, #bigdata, #dataprivacy, #privacyleakage

Summary of key points + notes
(include methodology)

The paper investigates the practical threat of extraction attacks on language
models (LMs), challenging the notion that state-of-the-art LMs do not significantly
memorize training examples. Demonstrating that even large LMs memorize and
leak individual training examples, the study proposes a black-box query-based
attack methodology to extract verbatim sequences from an LM's training set. The
attacks, applicable to various LMs, including GPT-2, identify memorized content
through diverse sample generation, likelihood ranking, and membership inference.
The results reveal significant memorization even in LMs with minimal overfitting,
highlighting the impact of model size on memorization and emphasizing the need
for privacy mitigation strategies. The study employs a two-step attack process,
generating text samples from the LM and predicting memorized text through
membership inference. The initial approach, utilizing top-n sampling, reveals
memorized content but exhibits weaknesses. The improved attack introduces
enhanced sampling methods, including random sampling and conditioning on
internet text, alongside refined membership inference strategies. Evaluation
involves datasets with varying sample generation strategies and automated
de-duplication. Manual inspection, categorization, and correlation analyses
contribute to understanding the nature of memorized content and the
effectiveness of different attack strategies. The study concludes with insights into
mitigating privacy leakage in LMs.

Research Question/Problem/ How can the threat of privacy leakage posed by language models, particularly their

https://doi.org/10.48550/ARXIV.2012.07805
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 149

Need significant memorization of training data, be effectively addressed to ensure the
responsible and secure deployment of these models in real-world applications?

Important Figures

Workflow of extraction attack and evaluation

Manual categorization of the 604 memorized training examples that we extract
from GPT-2, along with a description of each category

Priyadarshan 150

The zlib entropy and the perplexity of GPT-2 XL for
200,000 samples generated with top-n sampling

Examples of k = 1 eidetic memorized, high entropy content that we extract from
the training data. Each is contained in just one document. In the best case, we
extract a 87-characters-long sequence that is contained in the training dataset just
10 times in total, all in the same document.

VOCAB: (w/definition) Differential Privacy (DP): A privacy notion ensuring individual records in a training
dataset remain private during model training.

Priyadarshan 151

DP-SGD Algorithm: A differentially private stochastic gradient descent algorithm,
widely implemented for training private machine learning models.

Top-n Sampling: A text generation method where the model samples from the
top-n likely tokens.

Membership Inference: An attack predicting if a sample was present in the training
data.

Entropy: A measure of uncertainty or disorder in a set of data.

Beam Search: A decoding method that explores multiple possible sequences
during text generation.

Prompting: Providing input to a language model to generate desired output.

Privacy Leakage: Unintended exposure of private information by a machine
learning model.

Memorization Spectrum (k-eidetic memorization): The range of memorization
levels based on the frequency (k) of repeated instances in training data.

Context-Dependent Memorization: The phenomenon where memorized content is
influenced by the model's context during prompt input.

Audit Models: Empirical assessment of a model's behavior, including privacy levels.

Vetting Training Data: Scrutinizing training datasets to identify and filter sensitive
content.

Cited references to follow up on

Follow up Questions How can the proposed strategies for mitigating memorization in language models
be practically implemented in real-world applications, considering the trade-offs
between privacy and model utility?

In light of the demonstrated challenges in discovering memorization and the
context-dependent nature of the extracted content, what additional techniques or
approaches could be explored to enhance the detection and understanding of
memorization in large language models?

As language models continue to evolve and grow in size, what implications and
considerations arise for privacy leakage, and what are the potential advancements

Priyadarshan 152

in model architectures or training methodologies to address these challenges?

Priyadarshan 153

Notes (written with the assistance of ChatGPT)

Introduction

● Language models (LMs) are statistical models that assign probabilities to sequences of words

and are crucial for various natural language processing tasks.

● Modern neural-network-based LMs use large model architectures (e.g., 175 billion parameters)

and train on massive datasets (e.g., nearly a terabyte of English text).

● Scaling improves the fluency of natural language generation and allows LMs to be applied to

various tasks without parameter updates.

● Machine learning models, including LMs, are known for exposing information about their

training data, potentially compromising privacy.

● Privacy leakage is often associated with overfitting, where a model memorizes examples from its

training set.

● State-of-the-art LMs, trained on massive de-duplicated datasets for a single epoch, exhibit little

to no overfitting, leading to the assumption that they do not significantly memorize training

examples.

● The paper challenges this assumption, demonstrating that large LMs do memorize and leak

individual training examples.

● The proposed attack involves extracting verbatim sequences from an LM's training set using

black-box query access.

● The attack generates a diverse set of high-likelihood samples, ranks them based on likelihood

ratios, and identifies memorized training examples.

● The attacks apply to any language model, including those trained on sensitive and non-public

data, with experiments using the GPT-2 model.

● A quantitative definition of memorization is provided, and results show that a significant

percentage of candidate samples are verbatim training examples.

● The paper explores the impact of model size and string frequency on memorization and analyzes

how different attack configurations extract data.

● Practical strategies to mitigate privacy leakage are discussed, including differentially-private

training and recommendations for de-duplicating documents.

● While differentially-private training is theoretically effective, it can lead to longer training times

and reduced utility.

● Recommendations, such as careful de-duplication of documents, are suggested to empirically

mitigate memorization but may not prevent all attacks.

Background & Related Work

● Introduction to Language Models and Data Privacy Attacks:

○ Large neural network-based language models (LMs) with billion parameters play a crucial

role in natural language processing.

○ Introduction to data privacy attacks in the context of LMs.

● Language Modeling:

○ Language models are fundamental for natural language processing pipelines.

Priyadarshan 154

○ Training objectives often involve a "next-step prediction" approach.

○ State-of-the-art LMs use neural networks, particularly Transformer LMs.

○ Training involves minimizing the loss function over a training dataset.

○ Despite the potential for memorization, LMs trained on massive datasets typically

exhibit minimal memorization.

● Text Generation with Language Models:

○ LMs can generate new text by iteratively sampling tokens based on probability

distributions.

○ Variations in text generation methods, including greedy sampling and top-n sampling.

○ Focus on the GPT variant of Transformer LMs, particularly GPT-2 with different model

sizes.

● GPT-2 Model Details:

○ GPT-2 model family trained on data scraped from the public Internet.

○ Description of the training dataset collection process and model architecture.

○ GPT-2 does not overfit, with the training loss only around 10% smaller than the test loss.

● Training Data Privacy:

○ Undesirability of models remembering specific details about potentially private training

data.

○ Overview of privacy attacks, including membership inference, model inversion, and

training data extraction attacks.

○ Training data extraction attacks aim to reconstruct verbatim training examples, posing a

greater risk.

● Privacy Protection Measures:

○ Discussion of differentially-private training techniques as an approach to minimize

memorization.

○ Challenges associated with differentially-private mechanisms, including reduced

accuracy and increased training time.

○ Notable state-of-the-art LMs, such as GPT-2, GPT-3, and T5, do not currently apply these

privacy-preserving techniques.

Threat Model and Ethics

● Training Data Extraction Attacks:

○ Commonly viewed as theoretical or academic, not seen as practically exploitable.

○ Prevailing belief links privacy leakage to overfitting, and state-of-the-art LMs exhibit

minimal overfitting.

○ The paper challenges this view, demonstrating the practicality of training data extraction

attacks.

○ Defines "memorization" precisely and introduces the threat model and attack objectives.

● Defining Language Model Memorization:

○ Memorization is essential for LMs but needs a formal definition.

○ Introduces "eidetic memorization" as data memorized in a small set of training

instances.

Priyadarshan 155

○ Formalizes the definition with concepts of model knowledge extraction and k-eidetic

memorization.

○ Defines memorization as a spectrum based on the value of k and the length of

memorized strings.

● Threat Model:

○ Considers an adversary with black-box access to a language model.

○ Adversary can compute probabilities of sequences but cannot inspect individual weights

or hidden states.

○ Highly realistic threat model, applicable to many LMs accessible through black-box APIs.

● Risks of Training Data Extraction:

○ Discusses privacy risks, including data secrecy, contextual integrity of data, and small-k

eidetic risks.

○ Focuses on small-k memorization for more impactful extraction attacks.

○ Acknowledges that LMs output memorized data even without an explicit adversary.

● Ethical Considerations:

○ Raises ethical concerns about discussing specific memorized content, especially when it

contains personal information.

○ Minimizes ethical concerns by using public data and attacking a publicly available model.

○ Ethical considerations remain, and the paper masks personally-identifying information

when disclosed.

○ Acknowledges potential harms and emphasizes the benefits of publicizing attacks for

discussions on ethics.

○ Notes responsible disclosure efforts, including contacting individuals whose information

is disclosed and informing OpenAI.

Initial Training Data Extraction Attack

● Strawman Baseline for Training Data Extraction:

○ A two-step procedure:

■ Step 1: Generate Text

■ Unconditionally sample a large quantity of data from the language

model.

■ Step 2: Predict Memorized Text

■ Use a membership inference attack to remove generated samples

unlikely to contain memorized text.

○ Corresponds to extracting model knowledge (Definition 1) and predicting k-eidetic

memorization (Definition 2).

● Initial Text Generation Scheme (Section 4.1):

○ Initialize the language model with a one-token prompt.

○ Repeatedly sample tokens in an autoregressive fashion.

○ Sample sequences that the model considers "highly likely."

○ Concretely, sample exactly 256 tokens for each trial using the top-n strategy with n = 40.

● Initial Membership Inference (Section 4.2):

Priyadarshan 156

○ Training data extraction reduces to membership inference: predict whether each sample

was present in the training data.

○ Use perplexity as a natural likelihood measure, measuring how well the LM predicts

tokens in a sequence.

○ Perplexity formula:

P=exp (−1n∑i=1nlog fθ(xi∣x1,...,xi−1))P=exp(−n1 ∑i=1n logfθ (xi ∣x1 ,...,xi−1)).
● Initial Extraction Results (Section 4.3):

○ Generate 200,000 samples using the GPT-2 XL model (1558M parameters) following the

text generation scheme.

○ Sort samples based on model perplexity and investigate those with the lowest

perplexity.

○ Baseline attack finds various memorized content, including entire licenses and popular

individuals' Twitter handles or email addresses.

○ Identifies memorization but is not k-eidetic for low values of k; content likely appeared

many times in the training dataset.

● Weaknesses of Initial Approach:

○ Low diversity of outputs in the sampling scheme, leading to several hundred duplicates.

○ Baseline membership inference strategy has a high number of false positives.

○ False positives often contain "repeated" strings, despite being highly unlikely, due to

incorrect likelihood assignments by large LMs.

Improved Training Data Extraction Attack

● Improved Training Data Extraction:

○ Low precision and recall in the proof-of-concept attack.

○ Improved methods for sampling from the model (Section 5.1) and membership inference

(Section 5.2).

● Improved Text Generation Schemes (Section 5.1):

○ Random Sampling:

■ Randomly sample from the language model.

○ Sampling With A Decaying Temperature:

■ Flatten the probability distribution with a decaying temperature.

■ Temperature starts at t=10t=10 and decays to t=1t=1 over the first 20 tokens.

○ Conditioning on Internet Text:

■ Seed the model with prefixes from Internet scrapes.

■ Use a subset of Common Crawl data to reduce intersection with the model's

training data.

■ 50 MB dataset, 5-10 tokens sampled for context.

● Improved Membership Inference (Section 5.2):

○ Filtering Samples:

■ Low-likelihood samples filtering has poor precision.

■ Two categories of high-likelihood failures: trivial memorization and repeated

substrings.

Priyadarshan 157

○ Comparison to Other Models:

■ Use a second LM to filter samples where GPT-2's likelihood is unexpectedly high.

■ Second model trained on disjoint data or smaller GPT-2 models (Small, Medium

variants).

○ Comparison to zlib Compression:

■ Use zlib entropy of the text for a baseline method.

■ Ratio of GPT-2 perplexity and zlib entropy as a membership inference metric.

○ Comparison to Lowercased Text:

■ Measure perplexity ratio before and after lowercasing the sequence.

○ Perplexity on a Sliding Window:

■ Use the minimum perplexity averaged over a sliding window of 50 tokens to

handle confidence issues in the model.

Evaluating Memorization

● Methodology (Section 6.1):

○ Three datasets of 200,000 samples (256 tokens each) using different strategies: Top-n,

Temperature, Internet.

○ Ordered datasets by six membership inference metrics.

○ Selected 100 samples from the top-1000 samples for each configuration, resulting in

1,800 potential memorized content samples.

○ Applied automated fuzzy de-duplication based on trigram-multiset similarity.

● Evaluation (Section 6.1):

○ Manual inspection by four authors to determine if the sample contains memorized text.

○ Validation on the original training data obtained with limited query access to GPT-2

authors.

● Results (Section 6.2):

○ Identified 604 unique memorized training examples out of 1,800, with a 33.5%

aggregate true positive rate.

○ Categorized memorized content into various types.

● Categories of Memorized Content (Section 6.2):

○ Personally Identifiable Information:

■ Individual names, phone numbers, addresses, social media accounts.

■ 46 examples of names, 32 examples of contact information.

○ URLs:

■ 50 examples of memorized URLs correctly resolving to live webpages.

○ Code:

■ 31 samples with snippets of memorized source code.

○ Unnatural Text:

■ 21 instances of random number sequences with at least 50 bits of entropy.

○ Data From Two Sources:

■ Samples containing two or more unrelated snippets of memorized text.

○ Removed Content:

Priyadarshan 158

■ Memorized content that has been removed from the Internet.

● Extracting Longer Verbatim Sequences (Section 6.4):

○ Investigated extending the length of memorized sequences by applying a

beam-search-like decoding method.

○ Extended many memorized samples to longer verbatim snippets.

● Memorization is Context-Dependent (Section 6.5):

○ Memorized content highly depends on the model's context.

○ Memorized examples are context-dependent, and the true amount of content

memorized is likely underestimated due to simple prompts.

● Efficacy of Different Attack Strategies (Section 6.2):

○ Internet conditioning is the most effective for identifying memorized content.

○ All generation schemes, including baseline top-n sampling, reveal significant memorized

content.

○ Comparison-based metrics (e.g., zlib) are more effective at predicting memorized

content than direct LM perplexity.

○ Different extraction methods find different types of memorized content (e.g., zlib finds

non-rare text, lowercase detects irregular capitalization, Small and Medium strategies

find rare content).

Correlating Memorization with Model Size & Insertion Frequency

● Memorization of Naturally Occurring Canaries:

○ Language models (LMs) can memorize verbatim training strings, even with few training

epochs and small train-test accuracy gaps.

○ Investigating how many times a string must appear for memorization (k in Definition 2).

○ Prior work used synthetic canaries; here, naturally occurring canaries are studied.

● Study Setup:

○ Consider a memorized content piece with a specific prefix involving a Reddit URL.

○ The URL format is located in a single document on pastebin.com, appearing multiple

times in the GPT-2 training dataset.

● Methods:

○ Two approaches to extract URLs:

■ Directly prompt each GPT-2 variant with the prefix and use top-n sampling

(10,000 extensions).

■ Provide GPT-2 with an additional 6-character token from the URL, use beam

search for sampling.

● Results (See Table 4):

○ Difficult Approach:

■ XL (1.5 billion parameters) memorizes URLs inserted 33 times or more.

■ Medium (345 million parameters) memorizes half of the URLs.

■ Small (117 million parameters) memorizes none of the URLs.

○ Easier Approach (Additional Context and Beam Search):

■ Medium model emits four more URLs.

Priyadarshan 159

■ Small model emits one URL inserted 359 times.

● Key Lessons:

○ Larger models memorize significantly more training data.

○ Larger model complete memorization occurs after just 33 insertions.

○ Any potentially sensitive information repeated a non-trivial amount of times is at risk for

memorization, even if repeated within a single training document.

Mitigating Privacy Leakage in LMs

● Mitigation Strategies for Memorization Threats:

○ Training With Differential Privacy:

■ Differential privacy (DP) is a robust privacy notion for training ML models.

■ DP-SGD algorithms can be used for training, providing privacy guarantees.

■ Tradeoffs exist between privacy and utility; DP may limit capturing long tails of

the data distribution.

○ Curating the Training Data:

■ Manual vetting of large training datasets is impractical.

■ Strategies to limit sensitive content presence, such as identifying and filtering

personal information or content with restrictive terms of use.

■ Importance of careful de-duplication at more granular levels than document or

paragraph to address repeated occurrences of sensitive content.

■ Careful sourcing of training data to avoid domains known for hosting sensitive

content.

○ Limiting Impact on Downstream Applications:

■ Downstream applications, like dialogue systems and summarization models,

often fine-tune language models on task-specific data.

■ Fine-tuning may cause the model to forget memorized data from the

pre-training stage.

■ Fine-tuning could introduce its own privacy leaks if the task-specific data

contains private information.

■ Future work could explore how memorization is inherited by fine-tuned models.

○ Filtering Memorized Content in Downstream Applications:

■ Downstream applications can attempt to filter out generated text containing

memorized content.

■ Various membership inference strategies can be employed for reliable detection.

○ Auditing ML Models for Memorization:

■ After implementing mitigation strategies, it's crucial to audit models to

empirically assess their privacy level.

■ Auditing complements theoretical upper bounds on privacy leakage.

■ Proposed methods and existing attacks can be used for model auditing.

Lessons and Future Work

● Practical Threat of Extraction Attacks:

Priyadarshan 160

○ Prior work indicates smaller language models potentially memorize data.

○ State-of-the-art LMs practically memorize training data.

○ Extraction attacks are practical even with a few occurrences of a sequence.

○ Our attacks, interacting as a black-box, reveal at least 604 memorized instances among

600,000 generated samples.

○ This is likely a loose lower bound; more candidates could uncover additional memorized

content.

● Memorization and Overfitting:

○ Common belief: preventing overfitting reduces memorization.

○ Large LMs show no significant train-test gap but still memorize verbatim examples.

○ Anomalously low losses for some training examples contribute to memorization.

○ Understanding this phenomenon is an important problem for future research.

● Impact of Model Size on Memorization:

○ Larger language models consistently memorize more training data.

○ For example, a 1.5 billion parameter GPT-2 model memorizes over 18× compared to a

124 million parameter model.

○ Privacy leakage likely to increase with the growing size of LMs.

● Challenges in Discovering Memorization:

○ Extracted training data often discovered through specific prefixes.

○ Current strategy relies on high-quality prefixes; improved selection strategies might

reveal more memorized data.

● Mitigation Strategies:

○ Several directions discussed for mitigating memorization, including training with

differential privacy, vetting training data, limiting downstream application impact, and

auditing LMs.

○ These avenues are promising but have weaknesses; comprehensive solutions are needed

for addressing memorization in modern LMs.

○ Essential to address as new generations of LMs emerge and integrate into real-world

applications.

Priyadarshan 161

Article #19 Notes: The Troubling Emergence of

Hallucination in Large Language Models – An Extensive

Definition, Quantification, and Prescriptive Remediations

Source Title The Troubling Emergence of Hallucination in Large Language Models – An
Extensive Definition, Quantification, and Prescriptive Remediations

Source citation (APA Format) Rawte, V., Chakraborty, S., Pathak, A., Sarkar, A., Tonmoy, S. M. T. I., Chadha,

A., Sheth, A. P., & Das, A. (2023). The troubling emergence of

hallucination in large language models—An extensive definition,

quantification, and prescriptive remediations. (arXiv:2310.04988). arXiv.

https://arxiv.org/abs/2310.04988

Original URL https://arxiv.org/abs/2310.04988

Source type Journal Article

Keywords LLMs, Hallucinations, Mitigation Methods, Datasets, OpenAI

#Tags #llms, #nlp, #hallucinations, #datasets, #mitigation

Summary of key points + notes
(include methodology)

The article explores the challenges and advancements in Large Language Models
(LLMs), focusing on the issue of hallucination. It introduces a comprehensive
categorization of hallucination, including two primary orientations (Factual Mirage
and Silver Lining) and six types, such as Acronym Ambiguity and Numeric
Nuisance. A novel dataset, HallucInation eLiciTation (HILT), and the Hallucination
Vulnerability Index (HVI) are introduced to quantify and rank LLMs based on their
susceptibility to producing hallucinations. The methodology involves annotating
75,000 text passages generated by 15 contemporary LLMs, utilizing Amazon
Mechanical Turk and the MACE tool for inter-annotator agreement. The HVI
calculation incorporates damping factors for comparative ranking, providing a
scaled comparative spectrum. The study also explores mitigation strategies,
including black-box and gray-box methods, with approaches like reranking sample
responses and factuality checks. The article underscores the need for a nuanced
evaluation of LLMs and their vulnerability to hallucination for informed AI-related
policy-making.

Research Question/Problem/ How can the susceptibility of Large Language Models (LLMs) to hallucination be

https://doi.org/10.48550/ARXIV.2310.04988
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 162

Need quantified and mitigated, addressing concerns and informing AI-related
policy-making?

Important Figures

Hallucination: orientation, category, and degree

Statistics of the HILT dataset

Priyadarshan 163

HVI for different hallucination categories across various LLMs

The HVI scale illustrates the hallucination tendencies exhibited by various LLMs

A hallucination example pre- and post-mitigation. A - hallucinated fragments, B -
high entropy fragments, C - replaced text, D - highlighted text for no information
found, and E - refuted text fragments by textual entailment.

VOCAB: (w/definition) Hallucination: The generation of misinformation or content deviating from factual
accuracy by Large Language Models (LLMs).

Factual Mirage (FM): A category of hallucination orientation characterized by
deviations from factual information.

Silver Lining (SL): Another category of hallucination orientation involving
hallucinations related to incorrect or non-factual information.

Acronym Ambiguity: A type of hallucination involving imprecise expansions for
acronyms.

Numeric Nuisance: A type of hallucination characterized by inconsistent numeric
values related to past events.

Generated Golem: A type of hallucination involving the fabrication of an imaginary
personality related to a past event.

Virtual Voice: A type of hallucination where quotations are generated without

Priyadarshan 164

sufficient evidence.

Time Wrap: A type of hallucination characterized by the fusion of events from
different timelines.

HallucInation eLiciTation (HILT) dataset: A dataset constructed for evaluating
hallucination, containing 75,000 samples generated by 15 LLMs with human
annotations.

Hallucination Vulnerability Index (HVI): A comparative spectrum introduced to rank
LLMs based on their vulnerability to producing hallucinations.

Cited references to follow up on

Follow up Questions How can the findings from the HallucInation eLiciTation dataset and the
Hallucination Vulnerability Index (HVI) be practically applied to improve the safety
and reliability of Large Language Models (LLMs) in real-world applications?

Are there specific types of hallucinations, as categorized in the article, that pose
higher risks or challenges in terms of misinformation and potential societal impact,
and how can targeted mitigation strategies be developed to address these risks?

Considering the diverse set of contemporary LLMs evaluated in the study, what
implications do the variations in hallucination vulnerability have on the
development and deployment of future LLMs, and how can the industry leverage
this knowledge to enhance the responsible use of generative AI models?

Priyadarshan 165

Notes (written with the assistance of ChatGPT)

Abstract

● Introduction to Large Language Models (LLMs):
○ Recent advancements in LLMs have gained widespread acclaim for their

emerging capabilities.
○ However, the issue of hallucination has emerged as a concern, and there's a

need for nuanced categorization and mitigation methods.
● Profiling Hallucination:

○ Hallucination is categorized based on degree, orientation, and category.
○ Two overarching orientations: Factual Mirage (FM) and Silver Lining (SL).
○ Further sub-categorized into intrinsic and extrinsic, with three degrees of severity

(mild, moderate, alarming).
○ Six types of hallucination: Acronym Ambiguity, Numeric Nuisance, Generated

Golem, Virtual Voice, Geographic Erratum, and Time Wrap.
● Dataset and Evaluation:

○ Introduction of HallucInation eLiciTation dataset (75,000 samples) generated
using 15 contemporary LLMs with human annotations.

○ Proposal of Hallucination Vulnerability Index (HVI) for quantifying and ranking
LLMs based on their vulnerability to producing hallucinations.

● Mitigation Strategies:
○ Two proposed solution strategies for mitigating hallucinations.
○ Recognition of the risks associated with large generative AI models and the need

for improved controls on hallucination.
● Industry Responses and Incidents:

○ Mention of the open letter in March 2023 calling for a moratorium on advanced AI
systems.

○ The response from OpenAI emphasizing AI safety and controls on hallucination
in future GPT iterations.

○ Incidents with Google's Bard leading to a market value wipeout and a lawsuit
related to ChatGPT.

● Legal and Regulatory Perspectives:
○ The US Copyright Office's statement on AI-generated content lacking human

authorship.
○ OpenAI's commitment to AI safety and controls in response to societal pressure.
○ Introduction of NeMo Guardrails by NVIDIA as an open-source toolkit to address

hallucinations.
● Alternative Terminology and Dissatisfaction:

○ Mention of dissatisfaction within the AI community regarding the term
"hallucination."

○ Prof. Christopher Manning's preference for an alternative term, and Prof. Gary
Marcus's advocacy for "confabulation."

Priyadarshan 166

○ Decision to uphold the use of the term "hallucination" in the paper.
● Positive Perspectives on Hallucination:

○ Proposal that hallucinations in LLMs could have positive implications for text
summarization.

○ Examples of potential benefits of factual hallucinations in certain cases.
● Governmental Involvement and Regulatory Framework:

○ The United States and the European Union's initial proposals for the regulatory
framework of AI.

○ Importance of understanding LLM vulnerability to hallucination for policymakers
in assessing risks.

● Conclusion:
○ Emphasis on the need for a quantifiable spectrum (HVI) to evaluate and rank

LLMs in terms of hallucination vulnerability.
○ Acknowledgment of the role of HVI in AI-related policy-making.

A Holistic View of the Hallucination Spectrum: its Types and Scales

● Background and Context:
○ Issue of hallucination explored as early as (Maynez et al., 2020).
○ Growing size of LLMs correlates with increased susceptibility to hallucination.
○ Research community shows interest in understanding and mitigating

hallucination.
● Previous Research on Hallucination:

○ Early exploration of factual vs. non-factual prompts (Lee et al., 2022).
○ Categorization into intrinsic and extrinsic classes in a survey (Maynez et al.,

2020).
○ Exploration of name-nationality category hallucination (Ladhak et al., 2023b).
○ Task-specific categories explored in various papers (Raunak et al., 2021; Maynez

et al., 2020).
○ Preliminary examination of factual vs. non-factual prompts (Lee et al., 2022).

● General Approach to Studying Hallucination:
○ Avoidance of task-specific confinement to study hallucination nuances.
○ Emphasis on a thorough examination based on fundamental principles of text

generation.
○ Findings applicable and extendable to various NLP tasks.

● Comprehensive Categorization of Hallucination:
○ Introduction of two primary orientations: Factual Mirage (FM) and Silver Lining

(SL).
■ FM further subdivided into Intrinsic Factual Mirage (IFM) and Extrinsic

Factual Mirage (EFM).
■ SL further divided into Intrinsic Silver Lining (ISL) and Extrinsic Silver

Lining (ESL).
● Categories of Hallucination:

Priyadarshan 167

○ Numeric Nuisance (NN): Inconsistent numeric values related to past events.
○ Acronym Ambiguity (AA): Imprecise expansion for an acronym.
○ Generated Golem (GG): Fabrication of an imaginary personality related to a past

event.
○ Virtual Voice (VV): Generation of quotations without sufficient evidence.
○ Geographic Erratum (GE): Generation of incorrect location associated with an

event.
○ Time Wrap (TW): Fusion of events from different timelines.

● Degrees of Hallucination:
○ Annotation of hallucination degree: Mild (0), Moderate (1), Alarming (2).

■ Mild: Superficial impact.
■ Moderate: Introduction of fictitious or tangential facts.
■ Alarming: Radical dissemblance from the topic fed via the prompt.

● Visual Representation:
○ Reference to Figure 1 for a visual representation of the comprehensive

categorization of hallucination.

HILT: HallucInation eLiciTation dataset

● HILT Dataset Overview:
○ HILT is a first-of-its-kind publicly available hallucination dataset.
○ Constructed using two primary sources of data as prompts: NYTimes tweets

(factually correct – FM) and Politifact dataset (factually incorrect – SL).
○ Utilized 15 LLMs to generate a total of 75,000 text passages, with each LLM

producing 5,000 entries (2,500 each for FM and SL).
○ Text prompts included tweets from NYTimes and headlines from the Politifact

dataset.
○ Detailed statistics about HILT provided in Table 1.

● Choice of LLMs: Rationale and Coverage:
○ Selection of 15 contemporary LLMs with exceptional results in various NLP tasks.
○ Chosen LLMs include GPT-4, GPT-3.5, GPT-3, GPT-2, MPT, OPT, LLaMA,

BLOOM, Alpaca, Vicuna, Dolly, StableLM, XLNet, T5, and T0.
○ Appendix C.1 discusses additional details behind the selection criteria.
○ HVI benchmark leaderboards will remain accessible for continuous updates and

contributions.
● Annotating Hallucination:

○ Amazon Mechanical Turk used for annotating the 75,000 text snippets.
○ Sentence-level annotations for hallucination orientations and categories.
○ Four annotations recorded per sentence.
○ MACE tool (Hovy et al., 2013) employed to assess inter-annotator agreement

and aggregate data.

Priyadarshan 168

○ MACE demonstrated superior performance compared to majority voting (cf.
Appendix B).

Hallucination Vulnerability Index (HVI)

● Introduction to HVI:
○ With the increasing use of LLMs and their tendency to hallucinate, there is a lack

of a uniform evaluation metric for measuring hallucinations.
○ Addressing this gap, the Hallucination Vulnerability Index (HVI) is introduced as a

comparative spectrum for evaluating and ranking LLMs based on their
vulnerability to producing hallucinations.

● HVI Calculation Equation (Eq. 1):
○ HVIx = 100 / U∗2 ∑U [(N(x) − N(EFM)) ∗ (1 − P(EFM) + δ1) + (N(x) − N(ESL)) ∗

(1 − P(ESL) + δ2)] (1)
● Factors Considered in HVI Calculation:

○ U: Total number of sentences, N(x): Total number of hallucinated sentences by
an LLM.

○ Consideration of the ratio of actual hallucinated sentences to the total number of
sentences.

○ Capture of LLM characteristics, including higher EFM or ESL tendencies, and
varying overall hallucination levels.

○ Introduction of damping factors, δ1 and δ2, for comparative ranking based on μ ±
rankx × σ.

○ Exclusion of variations of intrinsic hallucinations in HVI calculation due to their
relatively minor impact.

● HVI Ranking and Scaling:
○ Initial calculation of HVI for all 15 LLMs with δ1 and δ2 as zero.
○ Mean (μ) and standard deviation (σ) calculated from initial HVIs.
○ Recalculation of HVIs for all LLMs using damping factors, resulting in a ranked

and scaled comparative spectrum.
○ Scaling of HVI between 0 and 100 for ease of interpretability.
○ Similarities to z-score normalization and/or min-max normalization methods.

● Visualization:
○ Presentation of the comparative spectrum in Fig. 3.
○ HVI provides a comparative measure for ranking LLMs based on their

vulnerability to hallucination.

HVI vs. LLMs size for different LLMs: An insight from HILT

● Observations on LLMs and Hallucination:
○ General observation suggests that LLMs may have a higher tendency to

generate hallucinations or outputs deviating from factual information.
○ Emphasizes that the relationship between LLM size and hallucination is not a

direct correlation but influenced by factors like:

Priyadarshan 169

■ (a) Quality of training data.
■ (b) Lack of explicit training on facts.
■ (c) Overconfidence in generated responses.

● Impact of RLHF on Hallucination:
○ Noteworthy pattern: LLMs without Reinforcement Learning from Human

Feedback (RLHF) tend to exhibit a higher tendency for hallucination.
○ Acknowledgment of the need for further investigation into this phenomenon in the

future.
● Examination of Size's Effect on HVI:

○ Attempt to examine the effect of LLM size on HVI.
○ Observation that several other factors contribute to HVI behavior, as depicted in

Fig. 6.
○ Implication that size alone does not fully explain the variation in hallucination

vulnerability.

Hallucination Mitigation Strategies

● Approaches to Address Hallucination:
○ Two classes of approaches proposed:

■ (i) Preventing LLMs from hallucinating during training and/or generation.
■ (ii) Mitigating hallucination after generation.

○ (Manakul et al., 2023) introduced a classification taxonomy: black-box and
gray-box methods.

■ Black-box methods involve factuality checks during/after generation
without external resources.

■ Gray-box methods use external resources for factuality checks.
● Hallucination Mitigation Techniques:

○ Reranking sample responses (Dale et al., 2022).
○ Improving beam search (Sridhar and Visser, 2022).
○ Recent techniques (Li et al., 2023; Mündler et al., 2023; Pfeiffer et al., 2023;

Chen et al., 2023; Zhang et al., 2023b,a; Ladhak et al., 2023a; Manakul et al.,
2023; Agrawal et al., 2023) show initial attempts at reducing hallucination.

● Directions for Mitigation:
○ Exploration of two plausible directions for mitigation: automatic and

human-in-the-loop.
■ Automatic (black-box): Identify high-entropy words in hallucinated text and

replace them with predictions from a lower-HVI LLM.
■ Human-in-the-loop (gray-box): Sentence-level fact-checking using textual

entailment techniques.
● ENTROPYBB: High Entropy Word Spotting and Replacement (Black-box):

○ Detection of high entropy words in hallucinated text by utilizing open-source
LLMs.

○ Replacement of detected words with predictions from lower-HVI LLM.

Priyadarshan 170

○ Effective strategy, particularly for hallucinations related to Generated Golem or
Acronym Ambiguity.

● Lowering Concreteness of Language:
○ Proposal to substitute high entropy points with less concrete words to prevent

hallucinations.
○ Concrete words are simpler to comprehend than abstract ones, based on

concreteness ratings.
● FACTUALITYGB: Factuality Check of Sentences (Gray-box):

○ Utilization of Google Search API to search for a given prompt and retrieve top 20
documents.

○ Validation of each sentence of AI-generated text using RoBERTa Large for
textual entailment.

○ Sentences with higher scores in refute and not enough information categories are
flagged for additional human checking.

○ Empirical alert rate of 26%, implying 26% of the text requires rewriting for
mitigation.

● Performance Comparison:
○ Comparative analysis of ENTROPYBB vs. FACTUALITYGB presented in Fig. 5.
○ ENTROPYBB addresses simpler hallucinations, while FACTUALITYGB handles

more complex cases.
○ A balanced combination of black-box and gray-box approaches is suggested as

the future avenue.

Priyadarshan 171

Article #20 Notes: RoBERTa: A Robustly Optimized BERT

Pretraining Approach

Source Title RoBERTa: A Robustly Optimized BERT Pretraining Approach

Source citation (APA Format) Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized

BERT pretraining approach. (arXiv:1907.11692). arXiv.

https://arxiv.org/abs/1907.11692

Original URL https://arxiv.org/abs/1907.11692

Source type Journal Article

Keywords RoBERTa, Language Models, Pre-training, Performance Results

#Tags #llms, #optimization, #nlp, #bert

Summary of key points + notes
(include methodology)

The paper introduces and compares various self-training methods, including ELMo,
GPT, BERT, XLM, and XLNet, highlighting challenges such as determining impactful
aspects and computational expenses. It conducts a replication study of BERT
pre-training, evaluating hyperparameter tuning and training set size effects,
revealing BERT's significant undertraining. The paper introduces RoBERTa, an
improved BERT model, with modifications such as longer training duration, larger
batches, more extensive data, and the removal of the next sentence prediction
objective. RoBERTa achieves state-of-the-art results on multiple benchmarks,
presenting important design choices, training strategies, and the introduction of a
novel dataset (CC-NEWS). The paper releases the RoBERTa model, pretraining, and
fine-tuning code. The experimental setup involves diverse English-language
corpora, and the training procedure analysis explores model configuration,
dynamic masking, input formats, large batches, and text encoding. RoBERTa's
configuration, evaluation setup, and results demonstrate significant improvements
over BERT, emphasizing the impact of design choices. The study raises questions
about the importance of model architecture and pretraining objectives compared
to data size, diversity, and training time. Related work discusses pretraining
objectives, common approaches, recent advances, and the importance of model
size and training data. The paper's motivation is to replicate, simplify, and better
tune BERT training, serving as a reference point for understanding the relative
performance of pretraining methods.

https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.2103.12028

Priyadarshan 172

Research Question/Problem/
Need

How can the performance of language models be improved by refining key design
choices in pretraining methodologies, as demonstrated through the introduction
and evaluation of RoBERTa, with an emphasis on understanding the relative impact
of model architecture, pretraining objectives, and data size on downstream task
performance?

Important Figures

Development set results for base models pretrained over BOOKCORPUS and
WIKIPEDIA

Perplexity on held-out training data (ppl) and development set accuracy for base
models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (bsz)

Priyadarshan 173

Development set results for RoBERTa as we pretrain over more data (16GB→
160GB of text) and pretrain for longer (100K→ 300K→ 500K steps)

Results on GLUE. All results are based on a 24-layer architecture. BERTLARGE and
XLNetLARGE results are from Devlin et al. (2019) and Yang et al. (2019),
respectively

Results on SQuAD. † indicates results that depend on additional external training
data

Results on the RACE test set

VOCAB: (w/definition) Self-training methods: Techniques for training language models, including ELMo,
GPT, BERT, XLM, and XLNet.

Priyadarshan 174

BERT (Bidirectional Encoder Representations from Transformers): A pivotal
self-training method with bidirectional context representations and masked
language modeling.

RoBERTa: An enhanced version of BERT, incorporating modifications like longer
training, larger batches, and the removal of next sentence prediction.

GLUE (General Language Understanding Evaluation): A benchmark comprising nine
datasets to evaluate natural language understanding systems.

SQuAD (Stanford Question Answering Dataset): A benchmark task requiring
models to answer questions based on provided contexts.

RACE (ReAding Comprehension from Examinations): A comprehensive reading
comprehension dataset, particularly focused on English examinations in China.

Byte-Pair Encoding (BPE): A text compression technique used in language models,
serving as a hybrid between character- and word-level representations.

Mixed precision floating-point arithmetic: A computation technique utilizing both
low- and high-precision floating-point numbers for efficiency in the training
process.

Finetuning: The process of adapting a pre-trained model to a specific task or
dataset.

Model architecture: The structure and design of a neural network, crucially
explored in the context of BERT and RoBERTa.

Cited references to follow up on

Follow up Questions Exploration of Training Efficiency: How do the modifications introduced in
RoBERTa, such as longer training durations and larger batches, impact the
efficiency of the training process, and what are the potential trade-offs in terms of
computational resources?

Generalization to Other Languages: Given the focus on the CC-NEWS dataset and
English-language corpora, how well does RoBERTa generalize to languages other
than English, and what considerations should be taken into account for
cross-lingual applications?

Fine-tuning Strategies: The article mentions task-specific finetuning approaches for

Priyadarshan 175

certain benchmarks. Could further insights be provided into the specific strategies
employed for tasks like QNLI and WNLI, and how transferable are these strategies
to other diverse tasks or domains?

Priyadarshan 176

Notes (written with the assistance of ChatGPT)

Introduction

● Self-training methods:
○ ELMo (Peters et al., 2018)
○ GPT (Radford et al., 2018)
○ BERT (Devlin et al., 2019)
○ XLM (Lample and Conneau, 2019)
○ XLNet (Yang et al., 2019)

● Challenges with self-training methods:
○ Difficulty in determining the most impactful aspects
○ Computational expense of training
○ Limited tuning due to computational constraints
○ Use of private training data with varying sizes

● Replication study of BERT pre-training:
○ Evaluation of hyperparameter tuning and training set size effects
○ Observation of BERT being significantly undertrained

● Introduction of RoBERTa:
○ Improved training recipe for BERT models
○ Modifications:

1. Longer training duration
2. Larger batches
3. More extensive data
4. Removal of next sentence prediction objective
5. Training on longer sequences
6. Dynamic masking pattern on training data

● Dataset:
○ Collection of a new dataset (CC-NEWS) comparable in size to privately used

datasets
○ Aims to better control for training set size effects

● Performance results:
○ RoBERTa achieves a score of 88.5 on the public GLUE leaderboard
○ Establishes a new state-of-the-art on 4/9 GLUE tasks: MNLI, QNLI, RTE, and

STS-B
○ Matches or exceeds the performance of post-BERT methods
○ Matches state-of-the-art results on SQuAD and RACE

● Contributions of the paper:
○ Presentation of important BERT design choices and training strategies
○ Introduction of alternatives leading to improved downstream task performance
○ Use of a novel dataset, CC-NEWS, confirming that more data for pre-training

enhances performance on downstream tasks

Priyadarshan 177

○ Demonstration that under certain design choices, masked language model
pretraining (BERT) is competitive with recently published methods

● Release:
○ The paper releases the model, pretraining, and fine-tuning code implemented in

PyTorch (Paszke et al., 2017).

Background

● Overview of BERT Pretraining Approach:
○ BERT (Devlin et al., 2019) pretraining approach discussed
○ Subsequent examination of training choices outlined

● Setup (Input Representation):
○ Input consists of concatenation of two segments (sequences of tokens), x1, . . . ,

xN and y1, . . . , yM
○ Segments presented as a single input sequence to BERT with special tokens

([CLS], [SEP], [EOS])
○ Constraint: M + N < T, where T is the maximum sequence length during training

● Architecture:
○ BERT utilizes the transformer architecture (Vaswani et al., 2017)
○ Transformer architecture with L layers, each block with A self-attention heads

and hidden dimension H
● Training Objectives:

○ Two objectives during pretraining: masked language modeling (MLM) and next
sentence prediction (NSP)

○ Masked Language Model (MLM):
■ Randomly selects 15% of input tokens for possible replacement
■ Replaces 80% with [MASK], 10% left unchanged, and 10% replaced by a

randomly selected vocabulary token
■ Original implementation involves one-time random masking, but in

practice, data is duplicated to vary the mask for each training sentence
○ Next Sentence Prediction (NSP):

■ Binary classification loss predicting whether two segments follow each
other in the original text

■ Positive examples from consecutive sentences, negative examples from
segments of different documents

■ Positive and negative examples sampled with equal probability
■ NSP objective designed to improve downstream tasks requiring reasoning

about relationships between pairs of sentences
● Optimization:

○ Optimized with Adam (Kingma and Ba, 2015) using specific parameters
○ Learning rate warmed up over the first 10,000 steps, then linearly decayed
○ Training with a dropout of 0.1 on all layers and attention weights, GELU

activation function

Priyadarshan 178

○ Pretraining for S = 1,000,000 updates, mini-batches with B = 256 sequences of
maximum length T = 512 tokens

● Data:
○ BERT trained on a combination of BOOKCORPUS (Zhu et al., 2015) and English

WIKIPEDIA
○ Totaling 16GB of uncompressed text used for training

Experimental Setup

● Implementation:
○ BERT reimplementation in FAIRSEQ (Ott et al., 2019)
○ Primarily follows original BERT optimization hyperparameters
○ Tuning of peak learning rate, warmup steps, Adam epsilon term, and β2 for

stability with large batch sizes
○ Pretraining with sequences of at most T = 512 tokens
○ Utilizes mixed precision floating-point arithmetic on DGX-1 machines with 8 ×

32GB Nvidia V100 GPUs interconnected by Infiniband
● Data:

○ Five English-language corpora used for BERT-style pretraining, totaling over
160GB of uncompressed text

○ Text corpora include:
■ BOOKCORPUS plus English WIKIPEDIA (16GB)
■ CC-NEWS from CommonCrawl News dataset (76GB after filtering)
■ OPENWEBTEXT, an open-source recreation of WebText corpus (38GB)
■ STORIES, a dataset filtered to match story-like style (31GB)

● Evaluation:
○ Evaluation on downstream tasks using three benchmarks

■ GLUE (General Language Understanding Evaluation):
■ Collection of 9 datasets for evaluating natural language

understanding systems
■ Tasks framed as either single-sentence or sentence-pair

classification
■ Evaluation on development sets after finetuning pretrained models

on corresponding single-task training data
■ Public leaderboard used for test set results in Section 5, with

task-specific modifications described
■ SQuAD (Stanford Question Answering Dataset):

■ Provides a paragraph of context and a question
■ Task is to answer the question by extracting the relevant span

from the context
■ Evaluation on two versions: V1.1 (context always contains an

answer) and V2.0 (some questions not answered in the provided
context)

Priyadarshan 179

■ Different prediction methods for V1.1 and V2.0
■ RACE (ReAding Comprehension from Examinations):

■ Large-scale reading comprehension dataset with over 28,000
passages and nearly 100,000 questions

■ Collected from English examinations in China for middle and high
school students

■ Each passage associated with multiple questions, requiring
selection of one correct answer from four options

■ Significantly longer context than other popular reading
comprehension datasets, with a high proportion of questions
requiring reasoning

Training Procedure Analysis

● Model Configuration:
○ Fixed model architecture similar to BERTBASE (L = 12, H = 768, A = 12, 110M

params)
● Static vs. Dynamic Masking (Section 4.1):

○ Original BERT used static masking with duplicated data for varied masking
○ Dynamic masking introduced, generating the masking pattern every time a

sequence is fed to the model
○ Dynamic masking comparable or slightly better than static masking, chosen for

efficiency benefits in subsequent experiments
● Model Input Format and Next Sentence Prediction (Section 4.2):

○ Comparison of different training formats:
■ SEGMENT-PAIR+NSP: Original BERT input format with NSP loss
■ SENTENCE-PAIR+NSP: Each input contains a pair of natural sentences

with NSP loss
■ FULL-SENTENCES: Each input packed with full sentences, NSP loss

removed
■ DOC-SENTENCES: Similar to FULL-SENTENCES but may not cross

document boundaries, NSP loss removed
○ Results show variations in performance; FULL-SENTENCES chosen for

subsequent experiments for easier comparison
● Training with Large Batches (Section 4.3):

○ Training with larger batches explored for optimization speed and end-task
performance improvement

○ Comparison of perplexity and end-task performance with increasing batch sizes
○ Larger batches improve perplexity and end-task accuracy, also easier for

parallelization
○ Training with batches of 8K sequences chosen for later experiments

● Text Encoding (Section 4.4):

Priyadarshan 180

○ Introduction of Byte-Pair Encoding (BPE) as a hybrid between character- and
word-level representations

○ Radford et al. (2019) introduced byte-level BPE vocabulary as an alternative
○ Original BERT used character-level BPE vocabulary of size 30K
○ Consideration of training BERT with a larger byte-level BPE vocabulary

containing 50K subword units
○ Slight differences observed, but universal encoding scheme preferred for

advantages, chosen for subsequent experiments

RoBERTa

● RoBERTa Configuration:
○ Trained with dynamic masking (Section 4.1)
○ Utilizes FULL-SENTENCES without NSP loss (Section 4.2)
○ Large mini-batches employed (Section 4.3)
○ Larger byte-level BPE used (Section 4.4)

● Evaluation Setup:
○ Model architecture follows BERTLARGE (L = 24, H = 1024, A = 16, 355M

parameters)
○ Pretraining conducted for 100K steps over a BOOKCORPUS plus WIKIPEDIA

dataset
○ Exploration of the impact of data size and diversity, training passes, and longer

pretraining durations
● Results (Table 4):

○ RoBERTa shows significant improvement over BERTLARGE, affirming the
importance of the explored design choices

○ Further improvements observed with increased data size and diversity
○ Longer pretraining durations (300K and 500K steps) result in significant gains

without apparent overfitting
● Evaluation on GLUE, SQuAD, and RACE (Sections 5.1 to 5.3):

○ GLUE Benchmark:
■ RoBERTa achieves state-of-the-art results on all 9 GLUE task

development sets
■ Outperforms both BERTLARGE and XLNetLARGE, questioning the

importance of architecture and pretraining objective
■ Submission to GLUE leaderboard yields state-of-the-art results on 4 out

of 9 tasks and highest average score
○ SQuAD Benchmark:

■ Finetuning on SQuAD conducted only with provided training data,
simplifying the approach

■ RoBERTa matches state-of-the-art on SQuAD v1.1 and sets a new
state-of-the-art on SQuAD v2.0

Priyadarshan 181

■ Top-performing among systems not relying on data augmentation in the
public SQuAD 2.0 leaderboard

○ RACE Benchmark:
■ RoBERTa achieves state-of-the-art results on both middle-school and

high-school settings in RACE test sets
● Task-Specific Modifications (Sections 5.1 and 5.2):

○ Task-specific finetuning approaches adopted for QNLI and WNLI tasks to align
with competitive leaderboard results

● Overall Implications:
○ RoBERTa consistently outperforms its BERT-based counterparts, emphasizing

the impact of modifications in the pretraining procedure
○ Questions raised about the relative importance of model architecture and

pretraining objective compared to data size, diversity, and training time.

Related Work

● Overview of Pretraining Objectives:
○ Different pretraining objectives employed, including language modeling, machine

translation, and masked language modeling.
○ Language modeling sources include works by Dai and Le (2015), Peters et al.

(2018), Howard and Ruder (2018).
○ Machine translation used as a pretraining objective (McCann et al., 2017).
○ Introduction of masked language modeling in works like Devlin et al. (2019) and

Lample and Conneau (2019).
● Common Approaches in Recent Papers:

○ Common practice involves finetuning models for specific end tasks after
pretraining (Howard and Ruder, 2018; Radford et al., 2018).

○ Pretraining often involves variants of masked language model objectives.
● Recent Advances in Pretraining Methods:

○ Recent methods have demonstrated improved performance through:
■ Multi-task fine-tuning (Dong et al., 2019).
■ Incorporating entity embeddings (Sun et al., 2019).
■ Introducing span prediction (Joshi et al., 2019).
■ Exploration of autoregressive pretraining variants (Song et al., 2019;

Chan et al., 2019; Yang et al., 2019).
● Importance of Model Size and Training Data:

○ Consistent performance improvement observed by training larger models on
more data (Devlin et al., 2019; Baevski et al., 2019; Yang et al., 2019; Radford et
al., 2019).

● Motivation for the Study:
○ Goal is to replicate, simplify, and better tune the training of BERT.

Priyadarshan 182

○ Serves as a reference point for understanding the relative performance of various
pretraining methods.

Priyadarshan 183

Article #21 Notes: Unified Vision and Dialogue

Transformer with BERT

Source Title Unified Vision and Dialogue Transformer with BERT

Source citation (APA Format) Wang, Y., Hoi, C. H., & Joty, S. R. (2021, July 29). Unified Vision and

Dialogue Transformer with BERT. Google Patents.

https://patents.google.com/patent/US20210232773A1/en

Original URL https://patents.google.com/patent/US20210232773A1/en

Source type Patent

Keywords Visual Dialogue Model, Transformer Encoder Network, Unified Contextualized
Representation, Encoded Visual Dialogue Input, Self-Attention Mask

#Tags #nlp, #transformers, #bert, #multimodal, #attention

Summary of key points + notes
(include methodology)

A unified transformer vision and dialogue BERT (unidirectional transformer
encoder) is proposed. The model receives an image and text input, including a
dialogue history between the model and a human user. The model then generates
an encoded visual dialogue input, which includes a position level encoding and a
segment level encoding. The model further generates a unified contextualized
representation using a transformer encoder network. Finally, the model generates
an answer prediction using a first self-attention mask associated with
discriminative settings of the transformer encoder network or a second
self-attention mask associated with generative settings of the transformer encoder
network.

Research Question/Problem/
Need

How can a unified transformer vision and dialogue BERT (unidirectional
transformer encoder) be used for answering questions about images and
dialogue?

Priyadarshan 184

Important Figures

A diagram of the unified transformer vision and dialogue BERT model

A diagram of the ranking module

Priyadarshan 185

A diagram of the dense annotation fine-tuning.

VOCAB: (w/definition) Transformer Vision and Dialogue BERT: A neural network model that jointly
encodes visual and linguistic information to answer questions about images and
dialogue

Unified Contextualized Representation: A representation of the image and
dialogue that captures the relationships between the different elements of the
input

Position Level Encoding: An encoding that represents the position of each word in
the input sequence

Segment Level Encoding: An encoding that represents whether each word belongs
to the image input or the dialogue input

Self-Attention Mask: A mask that is used to control the attention of the
transformer encoder

Discriminative Settings: Settings of the transformer encoder that are used to
answer questions

Generative Settings: Settings of the transformer encoder that are used to generate
text

Visual Encoder: A component of the model that encodes the image input

Dialogue Encoder: A component of the model that encodes the dialogue input

Response Prediction: The process of generating an answer to a question

Cited references to follow up on There were no cited references throughout the patent

Priyadarshan 186

Follow up Questions What are some potential applications of this model beyond answering questions
about images and dialogue? This question encourages broader thinking about the
model's capabilities and potential impact.

How does this model compare to other approaches to visual question answering?
This question invites a deeper exploration of the patent's innovation and
positioning within the field.

What are the ethical considerations involved in developing and using models that
can generate text? This question prompts reflection on the broader implications of
the technology, which is particularly valuable given the potential for misuse of
AI-generated language.

Priyadarshan 187

Notes (written with the assistance of ChatGPT)

Background

● Visual dialogue systems aim to enable natural and engaging conversations about
images.

● These systems typically combine visual and linguistic information to provide informative
and relevant responses to user queries.

● Traditional visual dialogue systems have relied on separate visual and linguistic models,
which can limit their ability to effectively understand and respond to complex queries.

● The proposed unified transformer vision and dialogue BERT model addresses these
limitations by jointly encoding visual and linguistic information using a single transformer
encoder.

Description of the Invention

● The proposed unified transformer vision and dialogue BERT model receives an image
and text input, including a dialogue history between the model and a human user.

● The model then generates an encoded visual dialogue input, which includes a position
level encoding and a segment level encoding.

● The model further generates a unified contextualized representation using a transformer
encoder network.

● Finally, the model generates an answer prediction using a first self-attention mask
associated with discriminative settings of the transformer encoder network or a second
self-attention mask associated with generative settings of the transformer encoder
network.

Examples

● The model can be used to answer questions about images, such as "What is the color of
the dog in the image?".

● The model can also be used to follow instructions in dialogue, such as "Describe the
image to me.".

Advantages

● The proposed unified transformer vision and dialogue BERT model has several
advantages over traditional visual dialogue systems.

● The model is able to jointly encode visual and linguistic information, which allows it to
better understand and respond to complex queries.

● The model is also able to fine-tune on a variety of tasks, which makes it more versatile
and applicable to a wider range of applications.

Conclusion

Priyadarshan 188

● The proposed unified transformer vision and dialogue BERT model is a powerful new
tool for answering questions about images and dialogue.

● The model has several advantages over traditional visual dialogue systems, and it is
well-suited for a variety of applications.

● Future work could focus on further improving the model's accuracy and efficiency, as
well as expanding its capabilities to new tasks.

Priyadarshan 189

Article #22 Notes: Multi-task knowledge distillation for

language model

Source Title Multi-task knowledge distillation for language model

Source citation (APA Format) Liu, L., & Xiong, C. (2023, April 4). Multi-task knowledge distillation for
language model. Google Patents.
https://patents.google.com/patent/US11620515B2/en

Original URL https://patents.google.com/patent/US11620515B2/en

Source type Patent

Keywords Multi-task Knowledge Distillation, Language Model, Shared Layers, Task Layers,
Teacher Model

#Tags #nlp, #dl, #knowledgedistillation, #ml, #multitasklearning

Summary of key points + notes
(include methodology)

This patent describes a method for training language models using multi-task
knowledge distillation. The method involves training a larger teacher model on a
large corpus of text data, and then training a smaller student model on a smaller
corpus of data. The student model is trained to mimic the predictions of the
teacher model, and is also trained on the task-specific data for the specific tasks
that the student model is intended to perform. This method allows for the transfer
of knowledge from the teacher model to the student model, which can improve
the performance of the student model on the task-specific data. The patent also
describes a specific architecture for the teacher and student models. The teacher
model has a number of shared layers that are responsible for extracting common
features from the input data. The student model also has a number of shared
layers, but the student model also has a number of task-specific layers that are
responsible for performing the specific tasks that the student model is intended to
perform. The shared layers are initialized with the weights of the corresponding
shared layers in the teacher model. The patent also describes a method for
training the student model. The student model is first trained on the task-specific
data using a standard backpropagation algorithm. The student model is then
fine-tuned on the task-specific data using a method that takes into account the
predictions of the teacher model. The fine-tuning process involves adjusting the
weights of the student model's task-specific layers so that the student model's
predictions more closely match the predictions of the teacher model. The patent
claims that the method described in the patent can improve the performance of
language models on a variety of tasks. The patent also claims that the method can
be used to train language models that are smaller and more efficient than
traditional language models.

Priyadarshan 190

Research Question/Problem/
Need

How can we train language models more efficiently by transferring knowledge
from a larger model to a smaller model?

Important Figures

Diagram of the computing workflow

Priyadarshan 191

Diagram of the layers

Priyadarshan 192

The workflow and inputs, outputs, pooling, and mechanisms of the various layers

VOCAB: (w/definition) Multi-task learning: Training a model to perform multiple tasks simultaneously, like
summarizing text and answering questions about it.

Knowledge distillation: Transferring knowledge from a larger, "teacher" model to a
smaller, "student" model, improving the student's performance.

Shared layers: Layers in a neural network that both the teacher and student
models use, extracting common features from data.

Task-specific layers: Layers in a neural network specific to the tasks the student
model is designed for (e.g., translation, question answering).

Fine-tuning: Further training a model on specific data to improve performance on
those tasks.

Backpropagation: An algorithm used to adjust weights in a neural network based
on its errors, helping it learn.

Corpus: A large collection of text data used for training language models.

Feature extraction: Identifying and highlighting important characteristics of data.

Parametric model: A model with a limited set of adjustable parameters (weights)
that determine its predictions.

Priyadarshan 193

Non-parametric model: A model with more flexible structures that adapt to data
automatically, not relying solely on fixed parameters.

Cited references to follow up on

Follow up Questions The patent mentions the potential for smaller, more efficient language models.
Can you think of any specific applications where this could be beneficial, like in
chatbots or virtual assistants? How might these models impact our daily lives?

While the patent highlights the advantages of multi-task learning, are there any
potential drawbacks or limitations to this approach? For example, could focusing
on multiple tasks compromise the model's performance on any specific one?

The patent represents one approach to training language models. Can you imagine
any other innovative techniques or advancements that could be developed in the
future? How might this field continue to evolve in the coming years?

Priyadarshan 194

Notes (written with the assistance of ChatGPT)

Background:

● What problem is being addressed by the patent?
● What existing solutions are there, and why are they not ideal?
● What are the key terms and concepts introduced in this section?

Summary of the Invention:

● What is the main innovation described in the patent?
● How does it work? What are the key steps or components?
● What are the potential benefits of this invention?

Detailed Description:

● Break down the section into smaller parts (e.g., figures, specific techniques).
● Note down key points for each part, focusing on specific details and technical terms.
● Draw diagrams or flowcharts if helpful to visualize the process.

Claims:

● What are the legal claims protecting the invention?
● What features or aspects of the invention are considered unique and novel?
● How do the claims relate to the technical details described earlier?

Conclusion:

● What are the main takeaways from this patent?
● How does it contribute to the field of language models?
● What are the potential future applications or directions based on this work?

Priyadarshan 195

Article #23 Notes: Adversarial pretraining of machine

learning models

Source Title Adversarial pretraining of machine learning models

Source citation (APA Format) Liu, X., Cheng, H., Wang, Y., Gao, J., Chen, W., He, P., & Poon, H. (2023,
October 31). Adversarial pretraining of machine learning models.
Google Patents.
https://patents.google.com/patent/US11803758B2/en

Original URL https://patents.google.com/patent/US11803758B2/en

Source type Patent

Keywords Machine learning models, Pretraining, Natural language processing, Transformer
encoder, Self-supervised learning

#Tags #mlmodels, #nlp, #transformers, #adversarialtraining

Summary of key points + notes
(include methodology)

This article dives into a new technique called adversarial pretraining, designed to
make machine learning models better at understanding language. It works by
adding a bit of "fuzz" to the initial understanding of training examples, then using
that to train the model itself. Think of it like giving a language learner scrambled
sentences to practice with, making them better at deciphering real language later.
This approach, called noise-adjusted first representations, has been shown to
boost the model's performance on various language tasks, like figuring out what
words go together or grasping the meaning of a sentence. It even outperforms
other training methods in some cases! Overall, adversarial pretraining with
noise-adjusted representations seems like a promising way to train language
models, potentially leading to more accurate and versatile language processing
tools in the future.

Research Question/Problem/
Need

Can adding "fuzz" to training examples improve the performance of machine
learning models for natural language processing tasks?

Priyadarshan 196

Important Figures

This figure shows the architecture of the proposed adversarial pretraining method

Priyadarshan 197

An encoding/embedding/output workflow

This figure shows the results of the experiments on the MNLI benchmark

VOCAB: (w/definition) Adversarial Pretraining: A method of training machine learning models by adding
noise to the training data and then using a self-supervised learning process to
learn to predict the original data from the noisy data.

Machine Learning Models: Models that are trained on data to learn to perform a
specific task, such as recognizing objects in images or generating text.

Pretraining: A process of training a machine learning model on a large corpus of
data before using it for a specific task.

Natural Language Processing (NLP): A field of computer science that deals with the
interaction between computers and human language.

Transformer Encoder: A neural network architecture that is commonly used for
NLP tasks.

Noise-Adjusted First Representations: The representations of the training data that

Priyadarshan 198

are obtained after adding noise to the original representations.

Self-Supervised Learning: A type of machine learning that learns to perform a task
without the need for labeled data.

Mapping Layers: The layers of a neural network that are responsible for mapping
the input data to a higher-dimensional representation.

Pretraining Examples: The individual pieces of data that are used to train a
pretraining model.

Neural Language Models: A type of machine learning model that is specifically
designed for NLP tasks.

Cited references to follow up on

Follow up Questions The article focuses on improving model performance on benchmark tasks. Can you
think of some specific real-world scenarios where this type of adversarial
pretraining might be used to improve language understanding in practical
applications, like chatbots or virtual assistants?

While the article shows impressive results, are there any potential limitations or
risks associated with using adversarial pretraining? For example, could the "fuzz"
introduced during training lead to unintended biases or errors in the model's
output?

The research presented here represents a significant step forward in NLP. What are
some promising research directions or open questions that this work could lead
to? Could this technique be applied to other types of data beyond text, or could it
be used to improve other areas of machine learning besides natural language
processing?

