A W N P

s";
5
6
7

8

import React, { useEffect, useRef, useState } from "react";

import { fromUrl } from "geotiff";

import ScreenControls from "./ScreenControls";

import VirusControls, { DEFAULTS as VIRUS_DEFAULTS } from "./VirusControl

import "../CSS/index.css";

// LiveSim: main component!
// — Takes the population geotiff file and turns it into a visual (dots are

multiplied by population to get size).

9

circles

10
11

// — Polls a binary RGB frame (sim_frame.bin) and paints population-scaled

// — Handles zoom
// Has a virus panel (values are lifted into this component so they stay

there when panels toggle and don't reset)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

export default function LiveSim() {
const canvasRef = useRef(null);

useRef(null);
useRef (null);
useRef(1);

const simBufRef
const popResRef
const maxPopRef

const rafIdRef = useRef(null);
const pollIntervalRef = useRef(null);
const pollAbortRef = useRef(null);

const zoomRef = useRef(1);
const offsetRef = useRef({ x: 0, y: 0 });

const drawStepRef = useRef(2);

const globalMultRef = useRef(1);

const compressExpRef = useRef(0.7);
const percentileCapRef = useRef(0.95);
const minRadiusRef = useRef(0.1);
const maxRadiusRef = useRef(0.9);

const startedRef = useRef(false);
const listenersAddedRef = useRef(false);

const BASE_W
const BASE_H

1440;
720;

const [loading, setlLoading] = useState(true);
const [error, setError] = useState(null);
const [openPanel, setOpenPanel] = useState(null);

const [controls, setControls] = useState({
drawStep: 2,
globalMultiplier: 1,
compressExp: 0.7,
percentileCap: 0.95,

48 minRadius: 0.1,

49 maxRadius: 0.9,

50 });

51

52 const [virusValues, setVirusValues| = useState(() => VIRUS_DEFAULTS);

53

54 const togglePanel = (p) => {

55 setOpenPanel((v) => (v === p ? null : p));

56 ¥

57

58 // Load & resample population

59 // I fetch a GeoTIFF and use it in it the fixed BASE_W x BASE_H grid used
for rendering.

60 // This simplifies mapping between population values and canvas pixels so
sizing remains predictable.

61 useEffect(() => {

62 let alive = true;

63

64 const load = async () => {

65 try {

66 const tiff = await fromUrl("/population.tif");

67 const img = await tiff.getImagel();

68 const w = img.getWidth();

69 const h = img.getHeight();

70 const ras = await img.readRasters({ interleave: true });

71

72 // convert to single-band float array (assume first band is populat
ion)

73 const spp = ras.length / (w *x h);

74 const raw = new Float32Array(w * h);

75 for (let 1 = 0; 1 <w *x h; i++) raw[i] = ras[i * sppl || O;

76

77 // simple nearest-neighbor downsample to our base sim grid

78 const resized = new Float32Array(BASE_W * BASE_H);

79 for (let y = 0; y < BASE_H; y++) {

80 const sy = Math.floor((y / BASE_H) * h);

81 for (let x = 0; x < BASE_W; x++) {

82 const sx = Math.floor((x / BASE_W) * w);

83 resized(y * BASE_W + x| = raw[sy *x w + sx] || 0;

84 }

85 b

86

87 popResRef.current = resized;

88

89 // compute a percentile-based max for nicer radius scaling

920 const sorted = Array.from(resized).sort((a, b) == a - b);

91 const idx = Math.floor(sorted.length * percentileCapRef.current);

92 maxPopRef.current = sorted[idx] || 1;

93

94 if (alive) setlLoading(false);

95 } catch (e) {

9% if (alive) {

97 setError(e.message || String(e));

98 setLoading(false);

99 b

100 b

101 +;

102

103 load();

104

105 return () => {

106 alive = false;

107 ¥

108 o 0);

109

110 // Main render loop

111 // Reads latest binary RGB frame and paints circles

112 // — Uses exponent used to compress circles so that they get larger with
increased population but don't get too too big

113 useEffect(() => {

114

115 const canvas = canvasRef.current;

116 const ctx = canvas.getContext("2d");

117

118 canvas.width = BASE_W;

119 canvas.height = BASE_H;

120

121 const draw = () => {

122 const sim = simBufRef.current;

123 const pop = popResRef.current;

124

125 if (sim && pop) {

126 ctx.clearRect(@, @, BASE_W, BASE_H);

127

128 // apply zoom and offset so zoom is anchored to user interactions

129 const z = zoomRef.current;

130 const off = offsetRef.current;

131 ctx.setTransform(z, @, @, z, off.x, off.y);

132

133 const step = drawStepRef.current || 1;

134 const maxPop = maxPopRef.current;

135 const minR = minRadiusRef.current * globalMultRef.current;

136 const maxR = maxRadiusRef.current *x globalMultRef.current;

137 const exp = compressExpRef.current;

138

139 // iterate over the downsampled grid and draw a colored circle wher
e population exists

140 for (let y = 0; y < BASE_H; y += step) {

141 for (let x = 0; x < BASE_W; x += step) {

142 const idx =y * BASE_W + Xx;

143 const p = poplidx];

144 if (!p) continue;

145

146 // normalize with a log scale then apply compression exponent

147 let n = Math.log(p + 1) / Math.log(maxPop + 1);

148 if (n <@ || !'isFinite(n)) n = 0;

149

150 const r = minR + Math.pow(n, exp) * (maxR - minR);

151

152 const o = idx * 3;

153 ctx. fillStyle = “rgb(${simlo]},${simlo + 1]}, ${simlo + 2]})";

154 ctx.beginPath();

155 ctx.arc(x + 0.5, y + 0.5, r, 0, Math.PI % 2);

156 ctx. fill();

157 ¥

158 b

159 b

160

161 rafIdRef.current = requestAnimationFrame(draw);

162 ¥

163

164 if (!startedRef.current) {

165 startedRef.current = true;

166 rafIdRef.current = requestAnimationFrame(draw);

167 }

168

169 return () => {

170 if (rafIdRef.current) cancelAnimationFrame(rafIdRef.current);

171 rafIdRef.current = null;

172 startedRef.current = false;

173 Y

174 Fo M)

175

176 // Poll the backend for the latest simulation frame (binary interleaved R
GB)

177 // We want to change this to pull directly from receiver in the future in

stead of the sim_frame file, but we don't know if that's possible.
178 useEffect(() => {

179 const poll = async () => {

180 if (pollAbortRef.current) pollAbortRef.current.abort();

181 const ac = new AbortController();

182 pollAbortRef.current = ac;

183

184 try {

185 const r = await fetch("/sim_frame.bin?cb=" + Date.now(), {
186 signal: ac.signal,

187 });

188 if (!'r.ok) return;

189 const buf = await r.arrayBuffer();

190 const u8 = new Uint8Array(buf);

191 // basic validation: expect width x height * 3 bytes

192 if (u8.length === BASE_W * BASE_H * 3) simBufRef.current = u8;
193 } catch {}

194 pollAbortRef.current = null;

195 ¥

196

197 poll();

198 pollIntervalRef.current = setInterval(poll, 250);

199

200 return () => {

201 clearInterval(pollIntervalRef.current);

202 pollIntervalRef.current = null;

203 if (pollAbortRef.current) pollAbortRef.current.abort();

204 +;

205 Yo 0);

206

207 // Add wheel zoom handler (cursor-anchored zoom)

208 // Zoom calculation keeps the point under the cursor stationary in canvas
coordinates.

209 useEffect(() => {

210 const canvas = canvasRef.current;

211 if (!canvas || listenersAddedRef.current) return;

212

213 const onWheel = (e) => {

214 e.preventDefault();

215 const rect = canvas.getBoundingClientRect();

216 const mx = e.clientX - rect. left;

217 const my = e.clientY - rect.top;

218

219 const prev = zoomRef.current;

220 const next = Math.min(2@, Math.max(1, prev * Math.exp(-e.deltaY * 0.0
01)));

221 const s = next / prev;

222

223 // adjust offset so zoom anchors on cursor position

224 offsetRef.current.x = mx - (mx - offsetRef.current.x) * s;

225 offsetRef.current.y = my - (my — offsetRef.current.y) * s;

226 zoomRef.current = next;

227 };

228

229 canvas.addEventListener("wheel”, onWheel, { passive: false });

230 listenersAddedRef.current = true;

231

232 return () => {

233 canvas.removeEventListener("wheel", onWheel);

234 listenersAddedRef.current = false;

235 ¥

236 Foo0);

237

238 // handleControlChange: central place to update React state. Refs are upd
ated as well.

239 const handleControlChange = (k, v) => {

240 setControls((c) => ({ ...c, [kl: v }));

241

242 // update the refs used in rendering to avoid re-wiring RAF loop

243 if (k === "drawStep") drawStepRef.current = v;

244 if (k === "globalWultiplier") globalMultRef.current = v;

245 if (k === "compressExp") compressExpRef.current = v;

246
247
248
249
250
251
252
253
254
255
256
257
258
259

if (k === "minRadius") minRadiusRef.current V;
if (k === "maxRadius") maxRadiusRef.current

1]
<

// percentile cap affects the computed “maxPop™ used for normalization
if (k === "percentileCap") {
percentileCapRef.current = v;
if (popResRef.current) {
const a = Array.from(popResRef.current).sort((x, y) == x - y);
maxPopRef.current = alMath.floor(a.length x v)! || 1;

}
};

// resetView_Controls: restore display-related parameters to sensible def

aults (will be fine tuned in the future)

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
1 toggles
284
285
286
287
288
289
290
291
292
293
294
295

// Note: we update both UI state and internal refs used by the renderer.
const resetView_Controls = () => {

zoomRef.current = 1;

offsetRef.current = { x: 0, y: 0 };

const d = {
drawStep: 2,
globalMultiplier: 1,
compressExp: 0.7,
percentileCap: 0.95,
minRadius: 0.1,
maxRadius: 0.9,

¥

setControls(d);
drawStepRef.current = d.drawStep;
globalMultRef.current = d.globalMultiplier;
compressExpRef.current = d.compressExp;
percentileCapRef.current = d.percentileCap;
minRadiusRef.current d.minRadius;
maxRadiusRef.current d.maxRadius;

Y

// virus handlers: simple setters lifted up so values persist across pane

const handleVirusChange = (k, v) => {
setVirusValues((p) => ({ ...p, [kl: v }));
Y

const resetVirusControls = () => {
// restore defaults defined in “VirusControls® so both components agree
setVirusValues (VIRUS_DEFAULTS) ;

¥

return (
<div className="1live-sim-container">
<div className="Tlive-sim-status'>

296 {loading && <p className="live-sim-loading">Loading population dat
a.</p>’

297 {error &% <p className="1live-sim-error">Error: {error}</p>}

298 </div>

299

300 <div className="1live-sim-row'>

301 <div className={"live-sim-controls-wrapper left ${openPanel ? "expa
nded" : "collapsed"} }>

302 <div className='"panel-header stacked">

303 <button

304 className="panel-toggle"

305 aria-controls="virus—panel"

306 aria-expanded={openPanel === "virus"}

307 onClick={() => togglePanel("virus")}

308 >

309 Virus

310 </button>

311

312 <button

313 className="panel-toggle"

314 aria—-controls="screen—panel"

315 aria-expanded={openPanel === "screen"}

316 onClick={() => togglePanel("screen")}

317 >

318 Screen

319 </button>

320 </div>

321

322 {openPanel === "virus" &&

323 <div id="virus-panel">

324 <VirusControls

325 values={virusValues}

326 onChange={handleVirusChange}

327 onVirusReset={resetVirusControls}

328 />

329 </div>

330)}

331

332 {openPanel === "screen" && |

333 <div id="screen-panel">

334 <ScreenControls

335 values={controls}

336 onChange={handleControlChange};

337 onScreenReset={resetView_Controls}

338 />

339 </div>

340)}

341 </div>

342

343 <div className="1live-sim-canvas—-wrapper center'>

344 <canvas

345 ref={canvasRef}

346

347
348
349
350
351
352

);

className={"live-sim-canvas ${loading || error ? "hidden"

/>
</div>
</div>
</div>

IIII}_

