
Analysis: 

When creating the graph, I had the following equation in mind: 𝑣! = 𝑣"! + 2𝑎∆𝑥. 

Since the cart started from rest in our set up, 𝑣" = 0, 𝑡ℎ𝑢𝑠	𝑣"! = 0. And the equation simplifies 

to:		𝑣! = 2𝑎∆𝑥 

Since I’m plotting the distance traveled versus velocity, The best way to make a linearized graph 

was to plot 𝑣! and ∆𝑥. 

Thus, I chose to put ∆𝑥 on the x axis as it is the independent variable and put 𝑣! on the y-axis as 

it’s the dependent variable. 
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y = 2.4251x - 0.0546
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I used Excel Sheets to find the line of best fit. 

 The equation of the line of best fit for the 15-inch ramp, in terms of v and ∆𝑥, is: 

 𝑣! = 1.8139 ∗ ∆𝑥 − 0.0167 

The equation of the line of best fit for the 19-inch ramp, in terms of v and ∆𝑥, is: 

 𝑣! = 2.41251 ∗ ∆𝑥 − 0.0546 

We know that: 𝑣! = 2𝑎∆𝑥 

For the 15-inch ramp, 

1.8139 ∗ ∆𝑥 − 0.0167 = 𝑣! 

We can substitute in the previous equation, giving us: 

2𝑎∆𝑥 = 1.8139 ∗ ∆𝑥 − 0.0167 

Since we plotted v^2 and ∆x, 2a is the slope, or rather, 1.8139 

Using a calculator to solve, 

𝑎 = 0.90695 

For the 19-inch ramp, 

2.41251 ∗ ∆𝑥 − 0.0546 = 𝑣! 

We can substitute in the previous equation, giving us: 

2𝑎∆𝑥 = 2.41251 ∗ ∆𝑥 − 0.0546 

Since we plotted 𝑣!	and ∆x, 2a is the slope, or rather, 2.41251 

Using a calculator to solve, 

𝑎 = 1.206255 

 



Conclusion: 

The experimental accelerations found by linearizing 𝑣! and ∆𝑥 were about 0.907	#
$!

  and 

1.206	#
$!

 for the 15- and 19-inch ramp respectively. These values are reasonable, and it makes 

sense that the acceleration for the 19-inch ramp was larger than for the 15-inch ramp since there 

is a steeper incline. Let’s compare these values to the expected result for these ramp sizes. We are 

using the equation 𝑎 = 𝑔	𝑠𝑖𝑛(𝜃) for our expected result, where g is the magnitude of the 

acceleration due to gravity and theta is the angle that the inclined plane makes with the floor. 

For the 15-inch ramp, the expected acceleration is equal to 9.8#
$
	 ∗ %&

%""
, which equals 1.47 

#
$

. Plugging in our theoretical and experimental values into the equation for percent error, we 

find that there is a percent error of about 38.367%. 

For the 19-inch ramp, the expected acceleration is equal to 9.8#
$
	 ∗ %'

%""
, which equals 

1.862 #
$

. Plugging in our theoretical and experimental values into the equation for percent error, 

we find that there is a percent error of about 35.231%. 

Possible sources of error in the experiment include friction of the cart on the rail, placing 

the cart at the wrong point on the ramp, leading to a miscalculation in ∆𝑥, or an error in the photo 

gate. The last two possibilities don’t have a concrete effect on the result as they could skew the 

results either way, but friction leads to a lower experimental acceleration than expected, which is 

what I found in my own experiment. Since my result was too small, friction is a sensible source 

of error to identify. The measurement I have the least confidence in is our ∆𝑥, since I think it is 

very feasible that we placed the cart slightly off position since we were going so fast.  

I made three key assumptions. The first and most obvious one is that the sensors on the 

ramp worked and were accurate. I relied on them heavily for the time measurements and the 

whole experiment would be inaccurate if the sensors weren’t working properly. Second, I 

assumed that friction was negligible and didn’t factor it into my equations at all. Clearly, it did 

have a substantial effect. Third, when calculating the acceleration from the slope of my graphs, I 

didn’t account the constant on the right side of the equation, instead just dividing 2 with the 

coefficient of ∆𝑥. 


