

What is ANOVA

- Anova (Analysis of variance) is a method to compare 3 of more means
- Independent variable is categorical while dependent is continuous
- One way Anova: Used for when only one categorical factor affecting the variable of interest. Ex: Effect of type of water on plant growth.
- Two way Anova: When there are 2 independent variables.
- Ex: Saltwater vs freshwater and to be watered in the morning or afternoon on plant growth

What does it calculate

- Variability between groups / degrees of freedom between groups = MSB
- Variability within groups / degrees of freedom within groups = MSW
- F ratio = MSB/MSW
- When you do an ANOVA test a F statistic is calculated for each hypothesis.

ANOVA Hypothesis

- The population must be close to normal
- Samples must be independent
- Population variances must be roughly equal
- Groups must have equal sample sizes
- Ho: all group means are equal
- Ha: at least one group means differs
- P-value found in f-distribution
- top probability, bottom cumulative

Differences between 1 and 2 way

One way ANOVA Excel

Go to Data, and then click on data analysis

Select "ANOVA: Single Factor"

Type the number of rows

Highlight Desired Data (Do not highlight the categories of the data) to fill the value for the input range

Press ok and the result will be in a new sheet

The p value depends on if your data is the column or the roll

One way ANOVA Excel

Data	Review	View	Automate	Data Science Analytic Solver			PN 🖵 Comments	🖄 Share 🗸
	Stocks	Currencies	Geography	$\begin{array}{c c} \hline z \downarrow & \hline z \downarrow \\ z \downarrow & z \downarrow \\ z \downarrow & \hline z \downarrow \\ z \downarrow \hline z \downarrow \\ z \downarrow \hline z \downarrow \\ z \downarrow \hline z \downarrow \hline z \downarrow \hline z \downarrow \\ z \downarrow \hline z \downarrow \hline z \downarrow \hline z \downarrow \hline z \hline z \hline z \hline z \hline$	Text to Columns	What-If Analysis	+ = → → = → = → = → = → = → = → = → →	\supset

Data Analysis		
Analysis Tools	OK	•
Anova: Single Factor	Cancel	
Anova: Two-Factor With Replication	Cunton	
Anova: Two-Factor Without Replication		
Correlation		
Covariance		
Descriptive Statistics		

Arrova: Single Factor Input Input <td< th=""><th></th><th></th><th>-</th><th>Olumia Erro</th><th>A</th><th></th><th></th><th></th></td<>			-	Olumia Erro	A			
Imput Imput Range: \$E\$25:\$G\$30 Grouped By: Columns Rows Labels in first row Alpha: 0.05 Output options 56 32 12 Output options New Worksheet Ply: New Workbook New Workbook Salt water Wastewater 32 23 45 12 Salt water Wastewater 45 12 45 23 45 24			ctor	Single Fac	Anova:		aved. Do you w	ere
E Input Range: \$E\$25:\$6\$30 Wastewat Grouped By: Columns 32 Labels in first row Rows 45 Output options 0.05 56 Output Range: \$M\$24 12 New Worksheet Ply: New Workbook 12 New Workbook Image: Salt water Wastewater Freshwater 32 12 Image: 32 145 12 32 12 Image: 33 12 Image: 34 12 Image: Image: 32 12 Image: Image: 32 12 Image: Image: 32 12 12 Image: 33 12 12 12 45 12 23 145 42 42 42 42	OK					nput	line in Ir	
Grouped By: Columns 32 Labels in first row 45 Output options 56 Output Range: 32 New Worksheet Ply: 12 New Workbook 12 New Workbook 12 Yastewater 56 Salt water 32 Salt water 45 45 46 47 48 49 49 40 41 41 42 43 44 45 45 45 45 42 43 44 42 44 44 45 45 46 47 48 49 41 42 43 44 44 44 44 44 44 44 44 45 45 45 45 45 44 44 45 45 46 47 48 49 49 40 41 42 43 44 44	Cancel	<u>s</u>		\$25:\$G\$30	\$E	nput Range:	E I	
Wastewat • Rows 32 • Labels in first row 45 • Output options 56 • Output ange: 32 • New Worksheet Ply: 12 • New Workbook • New Workbook • • • • • • • • • • • • • • • • • • •				Columns		Grouped By:	(
32 Labels in first row 45 Alpha: 0.05 42 Output options 56 32 Output Range: \$M\$24 32 New Worksheet Ply: 12 12 New Workbook 14 Salt water Wastewater Freshwater 32 23 53 45 12 23 45 12 23 45 12 23 42 42 42				Rows			Wastewat	
45 Alpha: 0.05 42 Output options 56 Output Range: \$M\$24 • New Worksheet Ply: 12 • New Workbook • New Workbook • Salt water Wastewater Freshwater 532 23 53 45 12 23 45 12 23 42 42 25						Labels in first row		32
42 Output options 56 0utput Range: 32 New Worksheet Ply: 12 New Workbook New Workbook New Workbook Salt water Wastewater 32 23 45 12 42 42 42 42 43 66				05	0.	Alpha:	ļ A	45
56 Output Range: \$M\$24 32 New Worksheet Ply: New Workbook 12 New Workbook New Workbook Salt water Wastewater Freshwater 32 23 53 45 12 23 42 42 25						utput options	o	42
32 • Output Range: • Mew Worksheet Ply: 12 • New Workbook Salt water Wastewater 32 23 45 12 42 42 42 42 56 66								56
12 New Workbook New Workbook Salt water Wastewater 32 23 45 12 42 42 56 66						Output Range:		32
Salt water Wastewater Freshwater 32 23 53 45 12 23 42 42 25						New Worksneet Ply:		12
Salt water Wastewater Freshwater 32 23 53 45 12 23 42 42 25								
Salt water Wastewater Freshwater 32 23 53 45 12 23 42 42 25								
32 23 53 45 12 23 42 42 25				ater	Freshw	Wastewater	Salt water	
45 12 23 42 42 25					53	23	32	
42 42 25					23	12	45	
FC 42 CC					25	42	42	
50 43 00					66	43	56	
32 3 55					55	3	32	
12 23 88					88	23	12	

Anova: Single	Factor					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	6	219	36.5	224.7		
Column 2	6	146	24.3333333	254.266667		
Column 3	6	310	51.6666667	614.266667		
ANOVA						
urce of Variati	SS	df	MS	F	P-value	F crit
Between Gro	2250.33333	2	1125.16667	3.08762997	0.07533015	3.68232034
Within Group	5466.16667	15	364.411111			
Total	7716.5	17				

Calculator Commands for 1 way ANOVA

🤹 Texas	INSTRUMEN	ITS	TI-8 4	Plus CE
NORMAL	FLOAT AU	TO REAL A	RADIAN MI	° 🚺
statplot f1	tblset f2	format f3	calc f4	table f5
y=	window	20011	uace	graph
	quit	ins	×.	
2nd	mode	del	• •	► ►
A-lock	link 🖁	list	×	
alpha	X, I, Ə, N	stat		
test A	angle B	draw C	distr	clear
x ⁻¹	sin ⁻ E	COS ⁻¹ F	tan' G	
x ²	,	[,]	() [[]	÷
10 [×] N	u O	v P	w Q	[R
log	7	8	9	×
e ^x S	L4 T	L5 U	L6 V) W
In	4	5	6	-
rcl X	L1 Y		L3 θ	mem "
sto→		4	3	+
off	دatalog د	<i>i</i> :	ans?	entrysolve
on		•		enter

V IEAAS	INSTRUMEN	ars -	11-04	Pius CE
NORMAL	FLOAT AU	TO REAL F	RADIAN MI	° 📋
EDIT 2:Sor 3:Sor 4:Clr 5:Set	CALC 1 t tA(tD(List UPEdit	CESTS		
statplot f1 y=	tblset f2 window	format f3 zoom	calc f4 trace	table f5 graph
2nd A-lock	quit mode	ins del		
alpha test A math	X,T,θ,n angle B apps	stat draw C prgm	distr vars	clear
matrix D x ⁻¹	sin ⁻¹ E	COS ⁻¹ F COS	tan ⁻¹ G tan	
x ²	EE J	{ K (} L	e M ÷
lox N log	[•] 7 [°]	× P 8	<mark>9</mark> 9	K R
e ^x S In	^{L4} Т 4	5 ¹⁵	^{L6} 6 ^V	1 w
rcl X sto→	^{L1} Y	² 2 ²	^{L3} θ	mem " +
off on	catalog L O	i : -	ans ? (-)	entrysolve enter

TEXAS	INSTRUME	NIS	11-0	
NORMAL	FLOAT AL	JTO REAL	RADIAN	^{MP} 🚺
L1	L2	Lз	L4	L5 1
32	23	53		
45	12	23		
56	43	66		
32	3	55		
12	23	88		
L1(1)=3	2			
statplot f1	tblset f2	format f	3 calc	f4 table f5
y=	window	zoom	trace	e graph
	quit	ins		
2nd	mode	del		
A-lock	link	list		.ö. =
alpha	X,T,θ,n	stat		× • •
test A	angle B	draw (distr	
math	apps	prgm	vars	clear
matrix D	sin ⁻¹ E	cos-1	F tan ⁻¹	G π н
x-1	sin	cos	tan	
	EE J	{ ⊧	<u>دا (</u>	L e M
x ²	,	(÷
10 [×] N	u O	v	Pw	QIB
log	7	8	9	×
			—	-
e ^x S	L4 T	L5 U		v] w
In	4	5	6	-
rcl X	L1 Y	L2 3	Z L3	θ mem "
	1	2	2	
sto →				+
sto →		2	3	+
sto →	catalog 🖵	i	ans	+ entrysolve

TEXAS	INSTRUMEN	TS	TI-84	Plus CE	
NORMAL	FLOAT AU	TO REAL A	RADIAN MA	Ì	
anova	(L1,L2	2,L3)			
statplot f1	tblset f2	format f3	calc f4	table f5	
y=	window	zoom	trace	graph	
	quit	ins	×.		
2nd	mode	del	• •	H F	
A-lock	link ≞	list	¢.	Ţ	
			diate		
math	apps	prgm	vars	clear	
matrix D	sin ⁻¹ E	cos ⁻¹ F	tan ⁻¹ G	π Η	
x ⁻¹	sin	cos	tan		
	EE J	{ K	} L	e M ÷	
	,		,	·	
	້7ັ	່ 8 ໌	ຶ 9 ັ	່×ົ	
e ^x S	L4 T	L5 U	L6 V	1 W	
In	4	5	6	—	
rcl X	L1 Y	^{L2} ^Z	L3 θ 3	mem "	
sto →		4	3	Ţ	
off	د catalog 0	<i>i</i> :	ans ? (—)	entrysolve enter	
	-		``		

Excel commands for one way

Effects of types of water (Salt, fresh, wastewater) and the states (Oregon, Wyoming) in which the plant is grown on plant growth

Fabricated Data:

	Salt water	Wastewater	Freshwater
	32	23	53
	45	12	23
Oregon	42	42	25
	56	43	66
	32	3	55
Wyoming	12	23	88

Plant growth (km)

Excel Commands for 2 way ANOVA

Highlight Desired Data

Go to Data, and then click on data analysis

Select "ANOVA: Two-Factor With Replication"

- Highlight Desired Data (Highlight the categories of the data) to fill the value for the input range
- Type the number of rows for the category
- Press ok and the result will be in a new sheet
- The p value depends on if your data is the column or the roll

Two way ANOVA Excel

Data	Review	View	Automate	Data Science Analytic So	lver		F	Comments	🔄 Share 🗸
			f = f = f = f = f = f = f = f = f = f =				≝E Group ∽ ₊₌	<ঁ⊘̀ Analysis Tools	
	Stocks	Currencies	Geography	Z AZ Reappl	y → ⊡ ···· ··· ··· ··· ··· ···· ·········	What-If	veril Engroup ∨	Data Analysis	
				A V Advance	ed Columns 🖹 🖓 🖓	Analysis	Subtotal –	Guiver	

Data Analysis		
Analysis Tools	ОК	
Anova: Two-Factor With Replication	Cancel	\leftarrow
Anova: Two-Factor Without Replication		•
Correlation		
Covariance		
Descriptive Statistics		
Exponential Smoothing		
	,	

	Salt water	Wastewater	Freshwater	
Oregon	32	23	53	Input
	45	12	23	Input Range:
	42	42	25	Rows per same
Wyoming	56	43	66	Alpha:
	32	3	55	
	12	23	88	Output options
				Output Rang
				New Worksh
				New Workbo

Anova: Tv	vo-Factor With Rep	lication	
ut out Range: ws per sample: oha:	\$C\$8:\$F\$14 3 0.05	3	OK Cancel
tput options Output Range: New Worksheet Ply: New Workbook			

water 3 119 3666667 3333333 100 3333333 .333333 .333333 .6 6 219	Wastewater 3 77 25.66666667 230.333333 3 69 23 400 6 146	Freshwater 3 101 33.6666667 281.333333 3 209 69.6666667 282.33333	Total 9 297 33 176.5 9 378 42 742.5		
3 119 3666667 3333333 3 100 3333333 .333333 .333333 6 6 219	3 77 25.66666667 230.333333 3 69 23 400 6 6 146	3 101 33.6666667 281.333333 3 209 69.6666667 282.33333 69.6666667 282.33333	9 297 33 176.5 9 378 42 742.5		
3 119 6666667 3333333 3 100 333333 .333333 .333333 .333333	3 77 25.6666667 230.333333 3 69 23 400 6 6 146	3 101 33.6666667 281.333333 3 209 69.6666667 282.333333	9 297 33 176.5 9 378 42 742.5		
119 6666667 3333333 3 100 333333 .333333 .333333 .333333	77 25.6666667 230.333333 3 69 23 400 6 6	101 33.6666667 281.333333 3 209 69.6666667 282.333333	297 33 176.5 9 378 42 742.5		
3333333 3333333 3100 3333333 .333333 .333333 6 6 219	25.6666667 230.333333 3 69 23 400 6 146	33.6666667 281.333333 3 209 69.6666667 282.333333	33 176.5 9 378 42 742.5		
3333333 3 100 3333333 .333333 .333333 6 6 219	230.333333 3 69 23 400 6	281.333333 3 209 69.6666667 282.333333	176.5 9 378 42 742.5		
3 100 333333 .333333 6 219	3 69 23 400 6	3 209 69.6666667 282.333333	9 378 42 742.5		
3 100 333333 .333333 .333333 6 219	3 69 23 400 6	3 209 69.6666667 282.333333	9 378 42 742.5		
100 3333333 .333333 6 219	69 23 400 6	209 69.6666667 282.333333	378 42 742.5		
3333333 .333333 6 219	23 400 6	69.6666667 282.333333 6	42 742.5		
.3333333 6 219	400 6	282.333333	742.5		
6 219	6	6			
6 219	6	6			
219	146				
	140	310			
36.5	24.3333333	51.6666667			
224.7	254.266667	614.266667			
SS	df	MS	F	P-value	Fcrit
364.5	1	364.5	1.2673363	0.28227849	4.74722535
0.33333	2	1125.16667	3.91211126	0.04919381	3.88529383
0.33333	2	825.166667	2.86903612	0.09586255	3.88529383
1.33333	12	287.611111			
; C	SS 364.5).33333).33333 33333	SS df 364.5 1 0.33333 2 0.33333 2 0.33333 2	SS df MS 364.5 1 364.5 0.33333 2 1125.16667 0.33333 2 825.166667 33333 12 287.611111	SS df MS F 364.5 1 364.5 1.2673363 0.33333 2 1125.16667 3.91211126 0.33333 2 825.166667 2.86903612 33333 12 287.611111 287.611111	MS MS F P-value 364.5 1 364.5 1.2673363 0.28227849 .33333 1125.16667 3.91211126 0.04919381 .33333 2 825.166667 2.86903612 0.09586255 .33333 12 287.611111 1 1

P-value interpretation

- Sample: Your rows, so the categorical on the side of the matrix independent from each other or not.
- Columns: Your columns, so the categorical on the top or bottom of the matrix independent from each other or not.
- Interaction : If your columns and rows are independent from each other or not

Tests Used Last Year

Types of Statistical Testing Used by MAMS Seniors During Their IRPs

Conclusion

Reject the null hypothesis if p value < alpha level

- Accept the alternative hypotheses that is at least one of the mean is different due to significant statistical evidence.
- Fail to reject the null hypothesis if p value > alpha level
- Do not have convincing statistical evidence for the alternative.
- Do tests after to compare categories to find which one is significantly different

Reference

https://www.investopedia.com/terms/a/anova.asp

https://education.ti.com/en/customer-support/knowledge-base/ti-83-84-plus-family/product-usage/34611

https://www.statology.org/two-way-anova-excel/

https://en.wikipedia.org/wiki/F-distribution (the goat)