
import java.util.ArrayList;
import java.util.Random;
public class ArrayListExercises {
​ public static void main(String[] args) {
​ ​ bulgarianSolitaire(10);
​ ​ // You do not need to handle the
User Interface (UI).
​ ​ // Instead you can run the JUnit test
cases found in
ArrayListExercisesTests.java
​ ​
​ }
​
​ /**
​ * Removes all of the strings of even
length from the given list
​ * @param listOfStrings the list of
Strings (list can be empty)

​ * @return the given list with all even
length strings removed
​ */
​ public static ArrayList<String>
removeEvenLength(ArrayList<String>
listOfStrings) {
​ ​ for(int i = listOfStrings.size() - 1; i
>= 0; i--) {
​ ​ ​ if (listOfStrings.get(i).length() %
2 == 0)​ {
​ ​ ​ ​ listOfStrings.remove(i);
​ ​ ​ }
​ ​
​ ​ }
​ ​
​ ​
​ ​ return listOfStrings; // This return
statement should be last
​ }

​
​ /**
​ * Moves the minimum value in the list
to the front, otherwise preserving the
order of the elements
​ * @param listOfIntegers the list of
Integers (list cannot be empty)
​ * @return the given list with the
minimum value in the front (zeroth
element)
​ */
​ public static ArrayList<Integer>
minimumToFront(ArrayList<Integer>
listOfInts) {
​ ​ int smallest = listOfInts.get(0);
​ ​ int count = 0;
​ ​ // if i - 1 is less than i, then update
the variable to i - 1

​ ​ for(int i = 1; i < listOfInts.size(); i++)
{
​ ​ ​ if(listOfInts.get(i) < smallest) {
​ ​ ​ smallest = listOfInts.get(i);
​ ​ ​ count = i;
​ ​ ​ }
​ ​ }
​ ​ listOfInts.remove(count);
​ ​ listOfInts.add(0, smallest);
​ ​ return listOfInts; // This return
statement should be last
​ }
​
​ /**
​ * Removes all elements from the
given list whose values are in the range
min through max (inclusive).

​ * If no elements in range min-max are
found in the list, the list's contents are
unchanged.
​ * If an empty list is passed, the list
remains empty. Assume min < max.
​ * @param listOfInts the list of Integers
(list can be empty)
​ * @param min the minimum value in
the range
​ * @param max the maximum value in
the range
​ * @return the given list with the range
min-max removed
​ */
​ public static ArrayList<Integer>
filterRange(ArrayList<Integer> listOfInts,
int min, int max) {
​ ​ for(int i = listOfInts.size() - 1; i >= 0;
i--) {

​ ​ ​ if (listOfInts.get(i) >= min &&
listOfInts.get(i) <= max)​ {
​ ​ ​ ​ listOfInts.remove(i);
​ ​ ​ }
​ ​
​ ​ }
​ ​ return listOfInts; // This return
statement should be last
​ }
​
​ /**
​ * Models/simulates the game of
Bulgarian Solitaire.
​ * @param numCards the number of
cards to start with; n must be a triangular
number (a triangular
​ * number is a number that can be
written as the sum of the first n positive
integers).

​ */
​ public static void bulgarianSolitaire(int
numCards) {
​ ​
​ ​ // Check if given number of cards is
triangular
​ ​ int n = (int) Math.sqrt(2*numCards);
​ ​ if (n*(n+1)/2 != numCards) {
​ ​ ​ System.out.println(numCards +
" is not triangular");
​ ​ ​ }
​ ​ ArrayList <Integer> values = new
ArrayList<Integer>();
​ ​ ArrayList <Integer> endconfig =
new ArrayList<Integer>();
​ ​ Random randy = new Random();
​ ​ int count = 0;
​ ​ int a = 0;
​ ​ int tries = 0;

​ ​ int i = 0;
​ ​ int cards = numCards;
​ ​ int har = randy.nextInt(cards);
​ ​ endconfig.add(1);
​ ​ endconfig.add(2);
​ ​ endconfig.add(3);
​ ​ endconfig.add(4);
​ for(int o = numCards; o > 0;) {
​ ​ a = randy.nextInt(o) + 1;
​ ​ o = o - a;
​ ​ values.add(a);
​ }
​ System.out.println("The start
configuration is: " + values);
​ ​
while(!values.containsAll(endconfig)) {
​ ​ ​ for(i = values.size() - 1; i >= 0;
i--) {
​ ​ ​ ​ if(values.get(i) != 0) {

​ ​ ​ ​ values.set(i,values.get(i) - 1);
​ ​ ​ ​ count++;
​ ​ ​ ​ }
​ ​ ​ ​ else {
​ ​ ​ ​ ​ values.remove(i);
​ ​ ​ ​ }
​ ​ ​ ​
​ ​ ​ }
​ ​ ​ values.add(count);
​ ​ ​ System.out.println(values);
​ ​ ​ count = 0;
​ ​ ​ tries++;
​ ​ }
​ ​ System.out.println("It took " + tries
+ " tries");
​ }
}
​

