

CEO Niranjan Nair || CMO Andrew Brown || CTO Sriaditya Vaddadi || CIO Raihan Ahmed

Problem Statement

Over 2 million people in the United States use prosthetic limbs. However, they are worn under layers of socks, which means that they get uncomfortably hot over time.

Engineering Goal

Our project aimed to engineer a product that can actively cool prosthetic liners in a **compact** and **lightweight** form factor that is durable enough for **daily use**.

Level 1 Requirements

Type	Description	Met
Functional	Cools the prosthetic leg to an ambient temperature (below 70 degrees fahrenheit)	Υ
Physical	Does not cause signigicant discomfort to the user (qualitative)	?
Physical	Product does not need to be carried in the clients hands	Y
Physical	Product does not break/come loose from its compartment	Y
Physical	The product should not have any toxic comopnents or parts	Υ

Current Design

- **Compact**, able to fit in a fanny pack
- Cooling is **fast** and efficient (reaches target temperature in **<10 min**)
- Uses Peltier module for

active cooling

- Pumps water around residual limb using motor
- Heat sink and fan cool hot side of **Peltier** module
- Arduino and motor controller control motor and Peltier module

Design #2: Radiator Cooling

Pros

- Effective cooling
- Simple water tubing mechanism
- Less mechanical/electrical parts

Cons

- Large **weight**/size
- Requires **high power**

Design #1: Fan and Peltier Cooling

Pros

- Small and **portable**
- Reaches desired temperature in under 10 mins
- Cheap components and small form factor

Cons

- Requires **high power**
- Heavier than 1 lb

Design Study #1

<u>Purpose:</u> To determine the overall cooling capability of our first design. Independent Variable: **Time** (sec) <u>Dependent Variable:</u> **Temperature** (°F) <u>Results:</u> The design was able to cool the water from 91.4°F to 64.4°F (**Δ-27°F**) in **11.5 minutes.**

Design Study #2

<u>Purpose:</u> To determine the differences in cooling between our two fans. Independent Variable: Time (sec) <u>Dependent Variable:</u> **Temperature** (°F) <u>Results:</u> The **Winsinn fan** (which we are using for our current design) cooled the water more than the Pengdalantu fan (which we used for design #1) in the alloted time of 5 minutes.

- A prosthetic water-cooling solution is viable in a small form factor
- Our product can fit in a **fanny pack** and can cool water effectively
- Cooled water can be pumped around the **residual limb** to **reduce** heat

Future Work

- Place the **cooling tube** inside an amputee's silicone liner
- Test directly with **amputees**
- Reduce the size of design until it can be mouted on prosthetic
- Adapt design for arm prosthetics
- Add Bluetooth connectivity