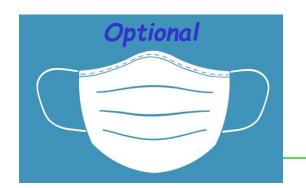
WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

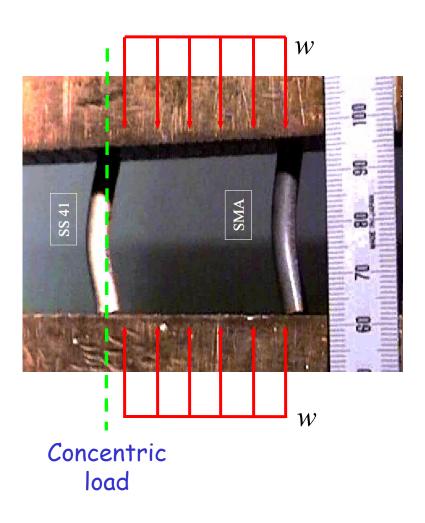
DESIGN OF MACHINE ELEMENTS ME-3320, B'2025

Lecture 08-09

November 2025

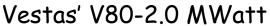


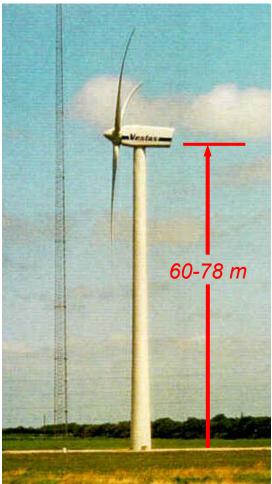
Examples



Eccentric load

Examples

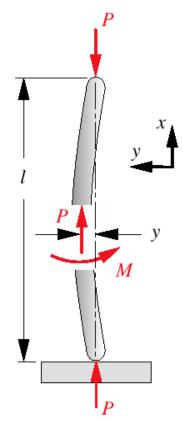




Installing a nacelle

Slenderness ratio: S_r

Buckling of a column



Definitions:
$$S_r = \frac{l}{k}$$
, with $k = \sqrt{\frac{I}{A}}$

• Short columns: $S_r < 10$

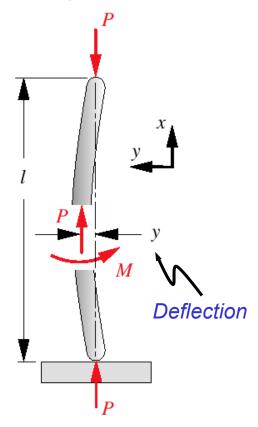
Calculated based on compression $\sigma_x = \frac{P}{A}$ stress criterion:

• Intermediate/long columns: $S_r \ge 10$

Calculated based on <u>critical unit load</u> $\frac{P_{cr}}{A}$

Long columns: concentric load

Buckling of a column



Bending moment: M = -P y

$$M = -P y$$

For small deflections: $\frac{M}{EI} = \frac{d^2y}{dx^2}$

(Governing ODE)
$$\longrightarrow \frac{d^2y}{dx^2} + \frac{Py}{EI} = 0$$

Solution (deflection) indicates:

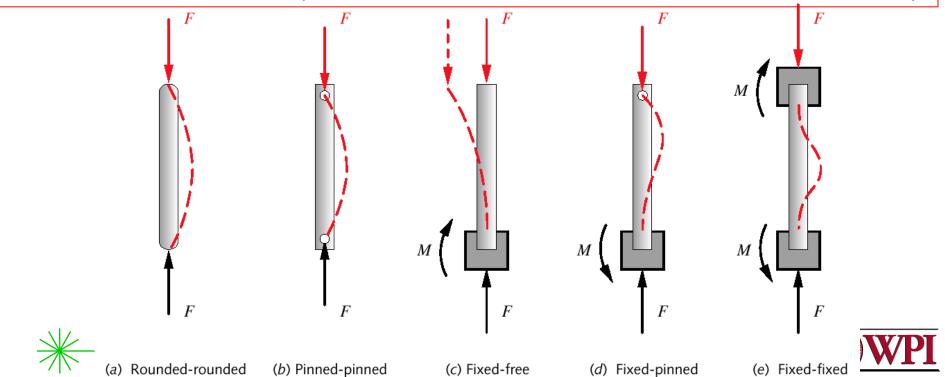
$$y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)$$

Long columns

Deflection:
$$y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)$$

 C_1 and C_2 are determined from boundary conditions (end conditions)

Possible end conditions (make sure you understand BC's in terms of slope and deflection):



Long columns: end conditions + critical load P_{cr}

Deflection:
$$y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)$$

For the rounded-rounded end conditions:

(1)
$$y(x=0) = 0$$
 \longrightarrow $C_2 = 0$

(2)
$$y(x=l) = 0 \longrightarrow C_1 \sin\left(\sqrt{\frac{P}{EI}} l\right) = 0$$

Indicating that:

$$\sqrt{\frac{P}{EI}} \ l = n \cdot \pi; \quad n = 1, 2, 3....$$

Many solutions....

Therefore,

$$P_n = \frac{(n \cdot \pi)^2 E I}{l^2}; \quad n = 1, 2, 3....$$
 Many critical loads....

Long columns: end conditions + critical load P_{cr}

Typically, designs are based on the smallest critical load. Therefore,

$$P_{cr} = \frac{\pi^2 E I}{l^2}$$
; for $n = 1$ using: $I = A k^2$ and $S_r = \frac{l}{k}$

using:
$$I = A k^2$$
 and $S_r = \frac{l}{k}$

$$\frac{P_{cr}}{A} = \frac{\pi^2 E}{S_r^2}$$
; for $n = 1$ Critical load per unit area in terms of slenderness ratio

Corresponding deflection:
$$y = C_1 \sin\left(\frac{\pi x}{l}\right)$$

For BC's:

(1)
$$y(x=0)=0$$

(2)
$$y(x = l) = 0$$

Axial compression -- columns Accounting for different BC's

In order to take into account other boundary conditions, the concept of **effective length**, $l_{\it eff}$, is introduced:

$$S_r = \frac{l_{eff}}{k} \longrightarrow \frac{P_{cr}}{A} = \frac{\pi^2 E}{S_r^2}$$

Table 4-3 Column End-Condition Effective Length Factors

End Conditions	Theoretical Value	AISC* Recommended	Conservative Value
Rounded-Rounded	$I_{eff} = I$	$I_{eff} = I$	$I_{eff} = I$
Pinned-Pinned	$I_{eff} = I$	$I_{eff} = I$	$I_{eff} = I$
Fixed-Free	$I_{eff} = 2I$	$I_{eff} = 2.1I$	$I_{eff} = 2.4I$
Fixed-Pinned	$I_{eff} = 0.707I$	$I_{eff} = 0.80I$	$I_{eff} = I$
Fixed-Fixed	$I_{eff} = 0.5I$	$I_{eff} = 0.65I$	$I_{eff} = I$

- 1) Determine force to be supported and expected length of the column (design objective and corresponding constraint(s)). Use free-body diagram(s) and equilibrium conditions.
- 2) Determine cross-section parameters of a proposed column:
 - Area, A
 - Moment of inertia, I
 - Radius of gyration, k
- 3) Determine slenderness ratio, $S_r = \frac{l_{eff}}{k}$
 - Identify boundary conditions (BC's) and apply appropriate value for the effective length l_{eff} -- use appropriate table (Table 4-3.)
- 4) Identify material to use and its corresponding compressive yield strength, S_{yc} , and elastic modulus, E.

- 4) Determine slenderness ratio at half-yield: $(S_r)_D$ (**Design criterion**)
 - $(S_r)_D$ is obtained as follows:
 - (a) Set the load per unit area as: $\frac{P_{cr}}{A} = \frac{S_{yc}}{2}$ (Half the yield strength value in compression)
 - (b) Therefore, $\frac{S_{yc}}{2} = \frac{\pi^2 E}{S_r^2}$
 - (c) Solve for slenderness ratio -- using previous equation, (b). This is the slenderness ratio at half-yield in compression.

$$(S_r)_D = \pi \sqrt{\frac{2E}{S_{yc}}}$$

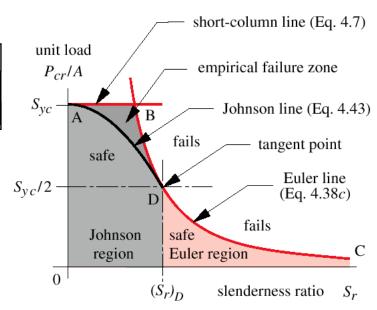
5) Determine type of column based on proposed design:

- <u>Johnson</u>: if S_r (step 3) < $(S_r)_D$ (Step 4)
- <u>Euler</u>: if S_r (step 3) > $(S_r)_D$ (Step 4)

6) Determine critical load

• Johnson:
$$P_{cr} = A \left[S_{yc} - \frac{1}{E} \left(\frac{S_{yc} S_r}{2\pi} \right)^2 \right]$$
 unit load P_{cr}/A S_{yc}

• <u>Euler</u>: $P_{cr} = A \frac{\pi^2 E}{S_r^2}$

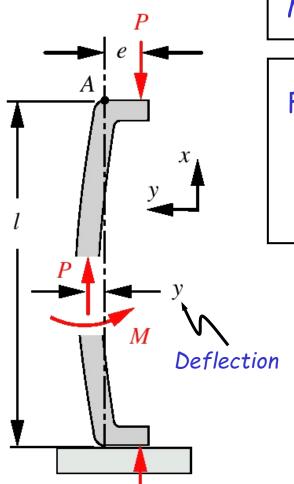


(a) Construction of column failure lines

- 7) Determine allowed load: $P_{allowed} = \frac{P_{cr}}{SF}$
 - P_{cr} , is the critical load (step 6)
 - *SF* , is the security factor (> 1)
- 8) If $P_{allowed}$ is > than force to be supported, then, a satisfactory design has been obtained -- not necessarily the optimal!! Go to step (1) and refine your design, if possible (e.g., weight minimization)
- 9) If $P_{allowed}$ is < than force to be supported, then, go to step (1) and improve design. You can select a different section and/or material.

Use of MathCad is strongly recommended!!

Eccentrically loaded



Moments:
$$\sum M_A = -M + P(e+y) = 0$$

For small deflections:
$$\frac{M}{EI} = \frac{d^2y}{dx^2}$$

(Governing ODE)
$$\longrightarrow \frac{d^2y}{dx^2} - \frac{Py}{EI} = \frac{Pe}{EI}$$

For BC's:
$$y(x=0)=0$$
; $\frac{dy}{dx}\Big|_{x=\frac{l}{2}}=0$

$$y\left(x = \frac{l}{2}\right) = e\left[\sec\left(\frac{l}{2}\sqrt{\frac{P}{EI}}\right) - 1\right]$$

Eccentrically loaded

Maximum moment:
$$M_{\text{max}} = P \cdot \left(e + y \Big|_{x = \frac{l}{2}} \right) = P \cdot e \cdot \sec \left(\frac{l}{2} \sqrt{\frac{P}{EI}} \right)$$

Compressive stress:
$$\sigma_c = \frac{P}{A} + \frac{Mc}{I} = \frac{P}{A} + \frac{Mc}{Ak^2}$$

with the maximum stress level at $M = M_{\text{max}}$ which yields

$$\sigma_{c,\max} = \frac{P}{A} \left[1 + \left(\frac{e \, c}{k^2} \right) \cdot \sec \left(\frac{l}{k} \sqrt{\frac{P}{4EA}} \right) \right] \quad \text{setting} \quad \sigma_{c,\max} = S_{yc}$$

$$\Rightarrow \frac{P}{A} = \frac{S_{yc}}{1 + \left(\frac{e\,c}{k^2}\right) \cdot \sec\left(\frac{l_{eff}}{k}\sqrt{\frac{P}{4EA}}\right)}$$
 Solve for P to obtain the critical load (Secant column formula)

Reading assignment

- Chapters 4 of textbook: Sections 4.12 to 4.19
- Review notes and text: ES2501, ES2502

Homework assignment

- Author's: as indicated on Website of our course
- Solve: as indicated on Website of our course

