
WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2025

Lecture 02

October 2025

DO NOTE:

Watch the following short videos before coming to class

Tensile test:

https://www.youtube.com/watch?v=D8U4G5kcpcM HERE

Poisson's ratio:

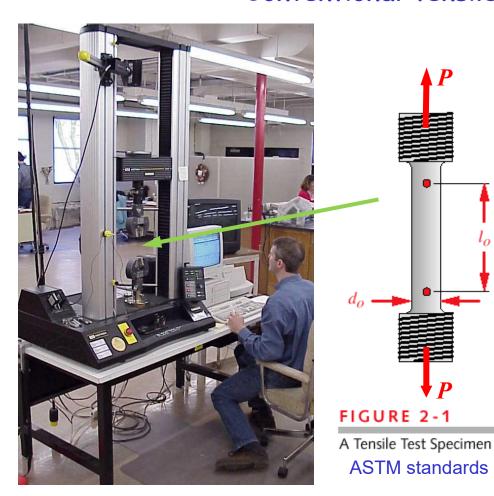
https://www.youtube.com/watch?v=M_7Prst1Ysc HERE

Fatigue test:

https://www.youtube.com/watch?v=LhUclxBUV_E HERE

Brinell Hardness test

https://www.youtube.com/watch?v=RJXJpeH78iU HERE


Charpy impact test:

https://www.youtube.com/watch?v=tpGhqQvftAo HERE

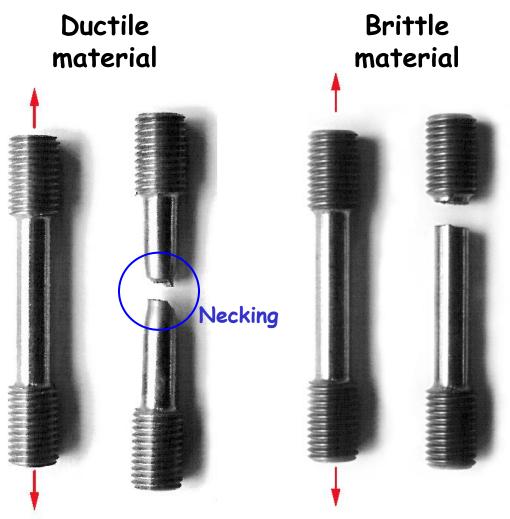
Conventional tensile test

Stress: $\sigma = \frac{P}{A_o}$ (Average normal stress)

Strain:
$$\varepsilon = \frac{l - l_o}{l_o}$$

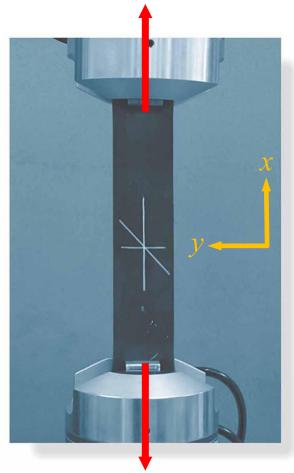
Modulus of elasticity:

$$E = \frac{\sigma}{\varepsilon}$$

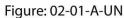


Average normal stress in an axially loaded bar

Tensile test

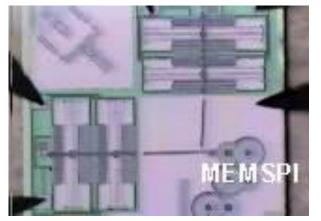

Typical results

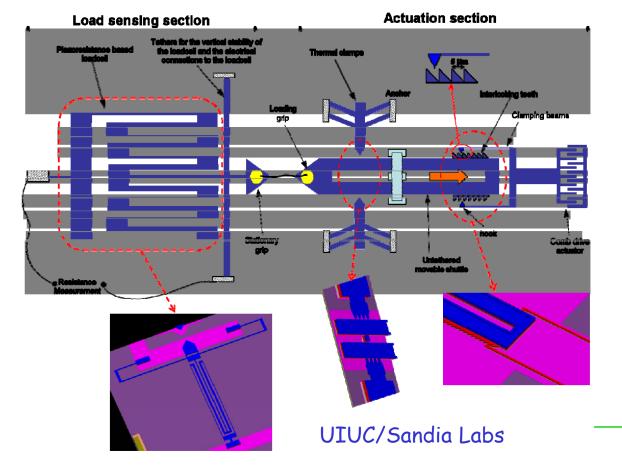
Average normal stress in an axially loaded bar: Poisson's ratio

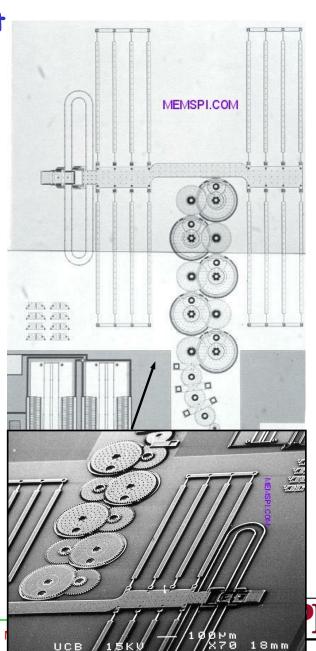

Poisson's ratio:

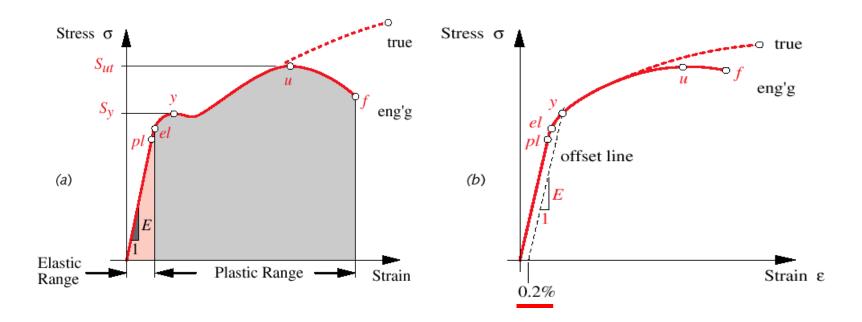
$$v = -\frac{\varepsilon_{yy}}{\varepsilon_{xx}}$$

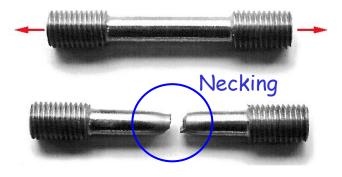
Figure: 02-01-B-UN


Note the before and after positions of three different line segments on this rubber membrane which is subjected to tension. The vertical line is lengthened, the horizontal line is shortened, and the inclined line changes its length and rotates.

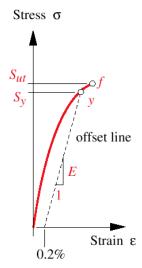



Note the before and after positions of three different line segments on this rubber membrane which is subjected to tension. The vertical line is lengthened, the horizontal line is shortened, and the inclined line changes its length and rotates.


Microscale tensile test


Stress-strain diagrams: yield behavior

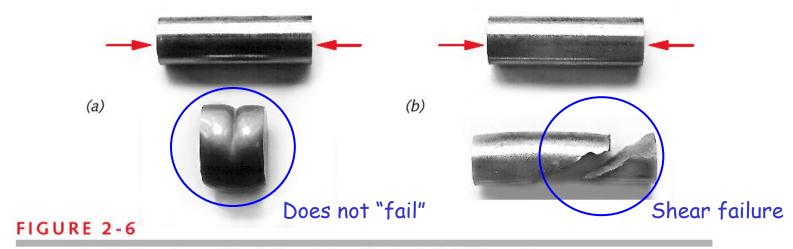
Tensile test


FIGURE 2-3

A Tensile Test Specimen of Mild, Ductile Steel After Fracture

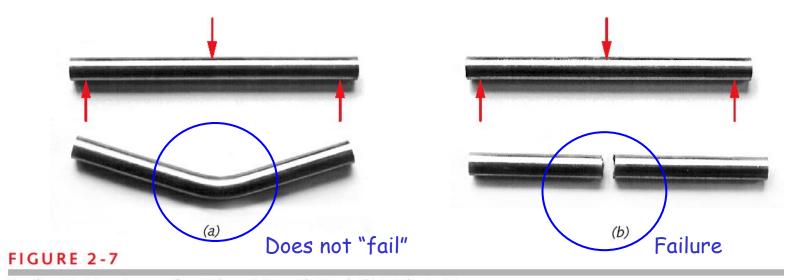
FIGURE 2-5

A Tensile Test Specimen of Brittle Cast Iron After Fracture


FIGURE 2-4

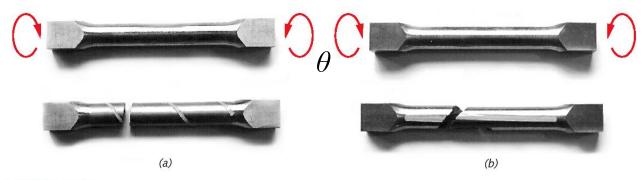
Stress-Strain Curve of a Brittle Material

Compression test


Compression Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Even materials: same behavior in tension as in compression.

Bending test: three-point bending



Bending Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Torsion test

Steels: $S_{us} = 0.80 S_{ut}$

Other ductile

mtls.: $S_{us} = 0.75 S_{ut}$

Note: $S_{sy} = 0.58 S_{y}$

FIGURE 2-8

Torsion Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

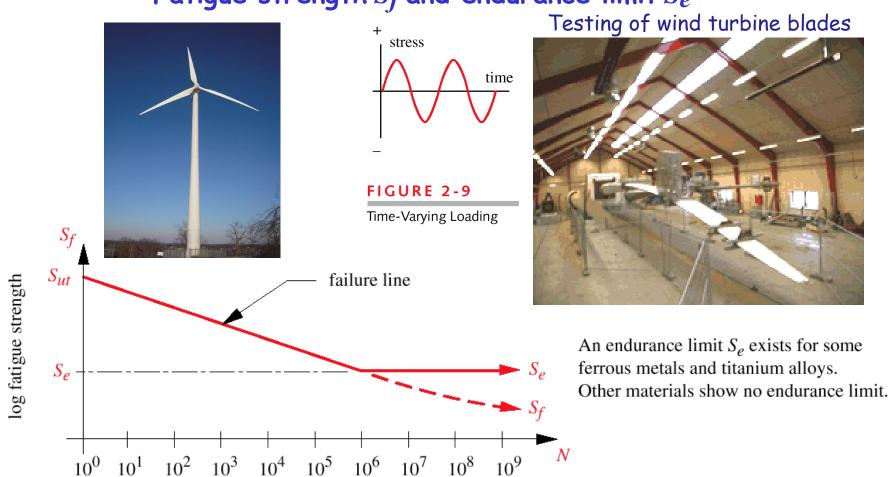
Stress-strain relation (torsion): $\tau = \frac{Gr\theta}{I}$

Modulus of rigidity:

$$G = \frac{E}{2(1+\nu)}$$

Poisson's Ratio v				
Material	ν			
Aluminum	0.34			
Copper	0.35			
Iron	0.28			
Steel	0.28			
Magnesium	0.33			
Titanium	0.34			

Table 2-1


Ultimate shear strength (torsion): $S_{us} = \frac{T_{(break)}r}{J}$

Not uniform stress distribution; (in some cases, thin-walled tubes are preferred for this test, why?)

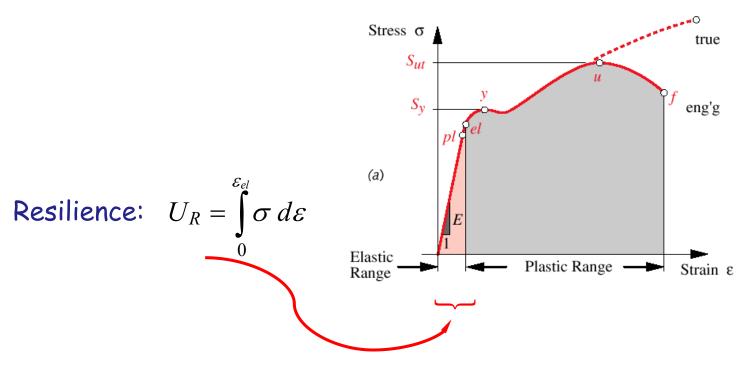

Fatigue strength S_f and endurance limit S_e

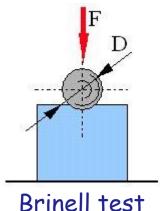
FIGURE 2-10

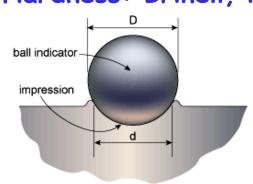
log number of cycles

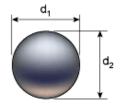
Resilience and toughness: impact load

Toughness:
$$U_T = \int_0^{\varepsilon_f} \sigma \, d\varepsilon$$

Resilience and toughness: impact load


Wind turbine test set-up on the UCSD-NEES Outdoor Shake Table at UCSD's Jacobs School of Engineering. The Table is capable of creating realistic simulations of the most devastating earthquakes ever recorded. The facility is part of the National Science Foundation's George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES).


Reference: http://www.jacobsschool.ucsd.edu/



Hardness: Brinell, Rockwell, and Vickers test

(a) Brinell indentation

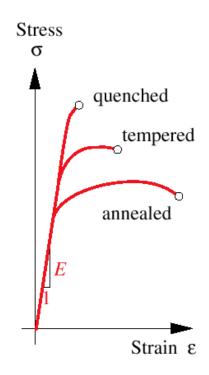
(b) measurement of impression diameter

S_{ut} estimation using Brinell hardness number:

$$S_{ut} \cong 500 H_B \pm 30 H_B$$
, psi

$$S_{ut} \cong 3.45H_B \pm 0.2H_B$$
, MPa

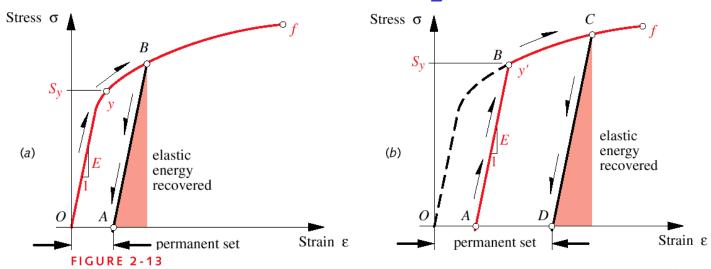
Table 2-3 Approximate Equivalent Hardness Numbers and Ultimate Tensile Strengths for Steels


	Brinell	Vickers	Rockwell		Ultima	Ultimate, σ_u	
	HB	HV	HRB	HRC	MPa	ksi	
	627	667	_	58.7	2393	347	
	578	615		56.0	2158	313	
	534	569		53.5	1986	288	
	495	528	_	51.0	1813	263	
	461	491		48.5	1669	242	
	429	455	_	45.7	1517	220	
	401	425	_	43.1	1393	202	
	375	396		40.4	1267	184	
	341	360	_	36.6	1131	164	
	311	328	_	33.1	1027	149	
	277	292		28.8	924	134	
	241	253	100	22.8	800	116	
	217	228	96.4		724	105	
	197	207	92.8	_	655	95	
	179	188	89.0	_	600	87	
	159	167	83.9		538	78	
	143	150	78.6	_	490	71	
	131	137	74.2	_	448	65	
	116	122	67.6	_	400	58	
-							

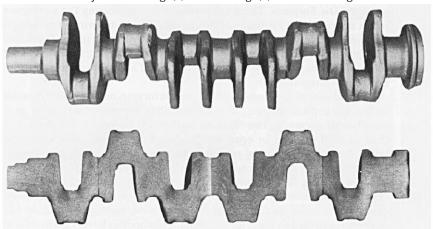
Note: Load 3000 kg for HB.

Heat treatment

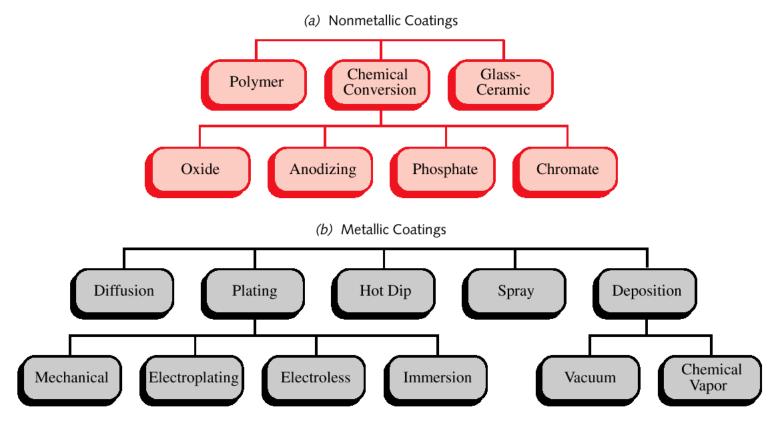
- Quenching: transformation temperature (steels \approx 700 °C); rapid cooling; formation of martensite
- Tempering: quenching; reheated (200 700 °C -- lower than transformation temperature); cool slowly
- Annealing: reverses quenching and tempering; slow cooling rate
- Normalizing: similar to annealing, but faster cooling rate


FIGURE 2-12

Stress-Strain Curves for Annealed, Quenched, and Tempered Steel



Cold working


Strain Hardening a Ductile Material by Cold Working (a) First Working (b) Second Working

Coatings and surface treatments: surface protection (wear resistance, corrosion, etc.)

FIGURE 2-16

Coating Methods Available for Metals

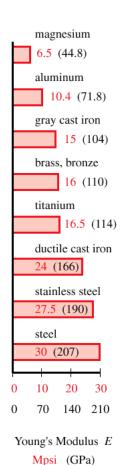
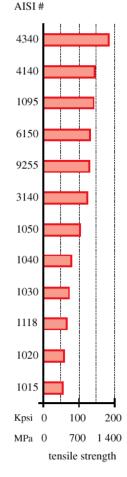
AISI/SAE designation of steel alloys

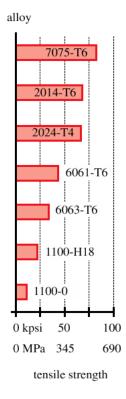
Table 2-5 AISI/SAE Designations of Steel Alloys

A partial list - other alloys are available - consult the manufacturers

Туре	AISI/SAE Series	Principal Alloying Elements
Carbon Steels		(represent hundredths of a percent of carbon present
Plain	10xx	Carbon
Free-cutting	11xx	Carbon plus Sulphur (resulphurized)
Alloy Steels		
Manganese	13xx	1.75% Manganese
	15xx	1.00 to 1.65% Manganese
Nickel	23xx	3.50% Nickel
	25xx	5.00% Nickel
Nickel-Chrome	31xx	1.25% Nickel and 0.65 or 0.80% Chromium
	33xx	3.50% Nickel and 1.55% Chromium
Molybdenum	40xx	0.25% Molybdenum
	44xx	0.40 or 0.52% Molybdenum
Chrome-Moly	41xx	0.95% Chromium and 0.20% Molybdenum
Nickel-Chrome-Moly	43xx	1.82% Nickel, 0.50 or 0.80% Chromium, and 0.25% Molybdenum
	47xx	1.45% Nickel, 0.45% Chromium, and 0.20 or 0.35% Molybdenum
Nickel-Moly	46xx	0.82 or 1.82% Nickel and 0.25% Molybdenum
	48xx	3.50% Nickel and 0.25% Molybdenum
Chrome	50xx	0.27 to 0.65% Chromium
	51xx	0.80 to 1.05% Chromium
	52xx	1.45% Chromium
Chrome-Vanadium	61xx	0.60 to 0.95% Chromium and 0.10 to 0.15% Vanadium minimum

General properties


FIGURE 2-17

Young's Moduli for Various Metals

FIGURE 2-18

Approximate Ultimate Tensile Strengths of Some Normalized Steels

FIGURE 2-20

Ultimate Tensile Strengths of Some Aluminum Alloys

Reading assignment

- Chapter 2 of textbook
- Review notes and text: ES2001

Homework assignment

- Author's: Refer to website of our course
- Solve: Refer to website of our course

