WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2025

Design Project. Introduction, cont'ed
October 2025

Design project for this course

Indoor exercise machine for a wheelchair racer

Norton's Problem 9-17

Design projects are developed in teams of 3-4 students.

Each team will be evaluated based on individual member efforts and on overall team outcomes and collaboration.

 Hand-in/email each team <u>name</u> and <u>roster</u> by Monday, October 27, 2025 - or earlier

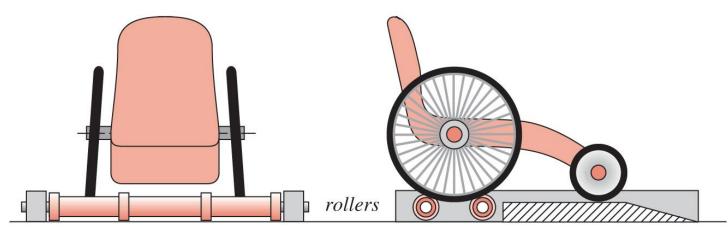
Design project for this course

Indoor exercise machine for a wheelchair racer

Norton's Problem 9-17

Wheelchair exercise equipment is important for people to maintain their health and wellbeing. Related exercise equipment comes in many varieties that can be tailored to user's needs

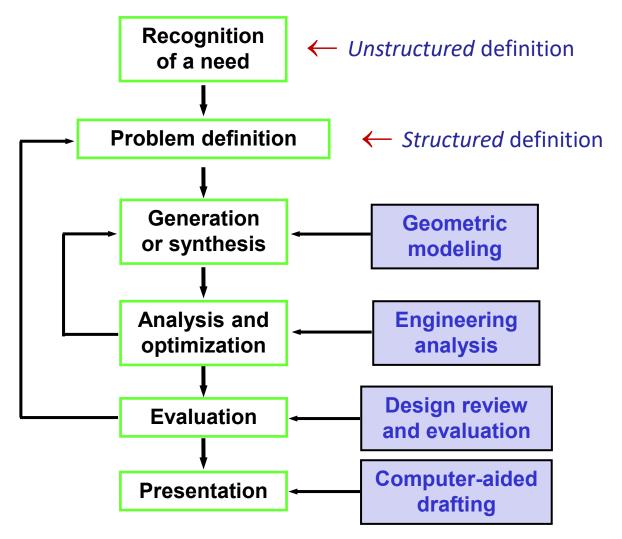
Design project for this course


Indoor exercise machine for a wheelchair racer

Norton's Problem 9-17

Need: design an indoor bicycle exerciser with a *general configuration as shown*. The concept is to provide twin rollers to support the rear wheels and a single roller for the front wheel of a specific wheelchair.

Some performance specifications:


- The rear rollers to be attached in some kinematic fashion (to be designed) to a DC generator whose output is shunted through an electrical load that can be varied by the rider to provide a dynamometric resistance.
- All needed necessary components to have suitable geometries and materials to survive for infinite life and maintain safety.

Engineering design methodology

Design of machine elements: a very general procedure

- Do background research and structure the unstructured problem!
- Fully define: objectives and constraints; mechanical configurations...
- Analysis:
 - Application of equilibrium conditions: static and dynamic (FBD's)
 - Identify critical sections: stress and strain analyses
 - Identify and consider: effects of stress concentrations, residual stresses, material characteristics, etc...
 - Apply design criteria: safety factors, failure theories, fatigue life, vibrations, deformations, etc...
- Select component geometry/dimensions/materials that satisfy objectives and constrains: design iterations
- Design review and presentation

Design project: schedule

- Do background research and structure the unstructured problem!
- Fully define: objectives and constraints; mechanical configurations...
 - Monday, Nov 03. Report #1 and team presentations/briefings
- Static failure theories and safety factors: dimensions and materials
 - Monday, Nov 17. Report #2 and team presentations/briefings
- Fatigue failure theories and safety factors: dimensions and materials
 - Monday, Dec 01. Report #3 and team presentations/briefings
- Selection of all components and design integration. Proposed solution
 - Friday, Dec 12. Report #4 and team presentations

Design of machine elements: design project. Report #1

- Do background research and structure the unstructured problem!
- Fully define: objectives and constraints; mechanical configurations...
- Analysis:
 - Application of equilibrium conditions: static and dynamic (FBD's)
 - Identify critical sections: stress and strain analyses
 - Identify and consider: effects of stress concentrations, residual stresses, material characteristics, etc...
 - Apply design criteria: safety factors, failure theories, fatigue life, vibrations, deformations, etc...
- Select component geometry/dimensions/materials that satisfy objectives and constrains: design iterations
- Design review and presentation

Design of machine elements: design project. Report #1

Work with your design team.

Do background research, including technical specification of the machine of interest:

structure the unstructured problem!

Fully define mechanical configurations, objectives, constrains...

FBD's (overall structure)

FBD's (of individual components)

Review project schedule:

<u>project report & team presentations #1</u>
<u>Due M, Nov 03, at lecture time</u>

Design of machine elements: design project

Report #1 specs and format:

Use a Memorandum format:

- No word/length limit to describe <u>structured</u> design problem(s)
- Add figures to describe concepts. Quantitative in nature as much as possible
- Add graphs and equations, as necessary
- Format figures, graphs, equations following ASME formats

