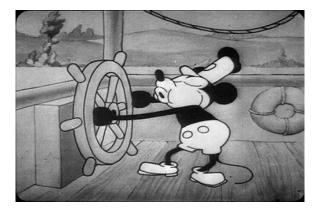
WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, B'2025

We will get started soon...



18 November 2025

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, B'2025

Lecture 17:

Unit 12: Torsion of shafts:

circular cross-section: power transmission

18 November 2025

General information

Instructor: Cosme Furlong
HL-152
(508) 831-5126

Email: cfurlong @ wpi.edu

http://www.wpi.edu/~cfurlong/es2502.html

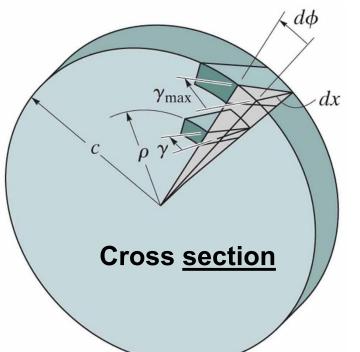
Graduate Assistants:

→ Hamed Ghavami (TA)
Email: sghavami @ wpi.edu

→ Jay Patil (GA)
Email: jpatil1 @ wpi.edu

→ Mikayla Almeida (GA) mpalmeida @ wpi.edu

Torsion: shear strains

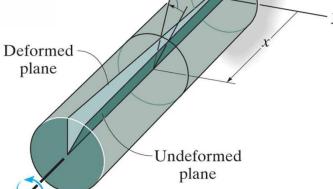


$$\frac{\gamma}{\rho} = \frac{\gamma_{\text{max}}}{c}$$

 $\phi(x)$

Shear <u>strains</u> vary linearly within a section:

$$\gamma = \gamma(\rho) = \rho \frac{\gamma_{\text{max}}}{c}$$



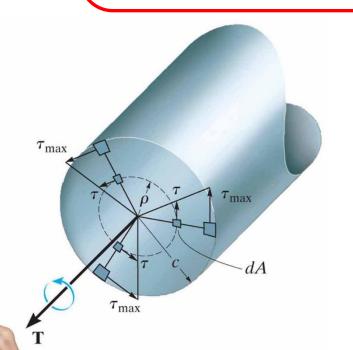
Torsion formula

According to Hook's law (linear elasticity):

$$(\tau = G \cdot \gamma)$$

Shear stresses also vary linearly within a section:

$$\tau = \tau(\rho) = \rho \frac{\tau_{\text{max}}}{c}$$



Differential Force:

$$dF = \tau \cdot dA$$

Differential Torque:

$$dT = \rho (\tau \cdot dA)$$

Torsion formula

Integrating torque:
$$T = \int_{A} \rho \left(\tau \cdot dA \right) = \int_{A} \rho \left(\rho \frac{\tau_{\text{max}}}{c} \right) dA$$
$$= \frac{\tau_{\text{max}}}{c} \int_{A} \rho^{2} dA$$

Define:
$$J = \int_A \rho^2 dA$$
 Polar area moment of inertia

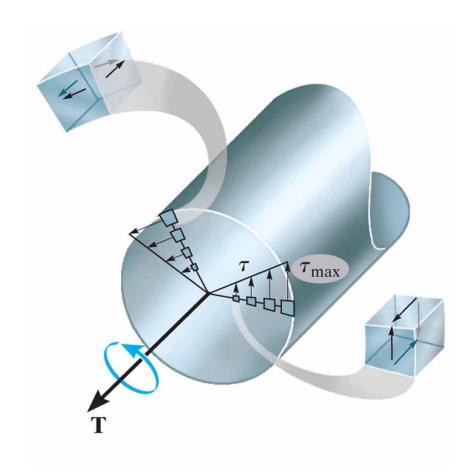
Torsion formula for stresses:

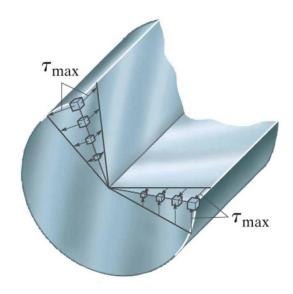
(linear elastic)

(linear elastic)
$$\tau_{\text{max}} = \frac{T c}{J} \quad and \quad \tau = \tau(\rho) = \frac{T \rho}{J}$$

Torsion formula: solid circular bar

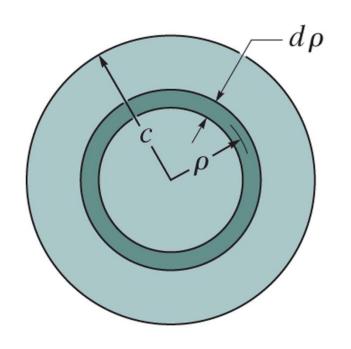
Linear variation of shear stress





Shear stress varies linearly along each radial line of the cross section.

Torsion formula: polar area moment of inertia Solid bar



$$J = \int_{A} \rho^2 \ dA$$

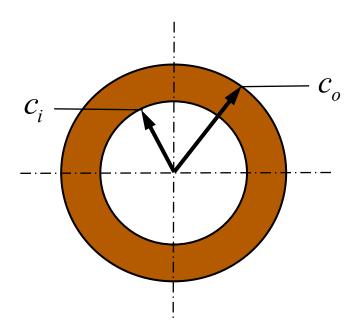
$$= \int_0^c \rho^2 \left(2\pi \ \rho \ d\rho \right)$$

$$=2\pi\int_0^c \rho^3 d\rho = 2\pi\left(\frac{\rho^4}{4}\right)_0^c$$

Solid, circular, section: $J = \frac{\pi}{2}c^4$

$$J = \frac{\pi}{2}c^4$$

Torsion formula: polar area moment of inertia Tubular bar



$$J = \int_{A} \rho^2 \ dA$$

$$= \int_{c_i}^{c_o} \rho^2 \left(2\pi \ \rho \ d\rho \right)$$

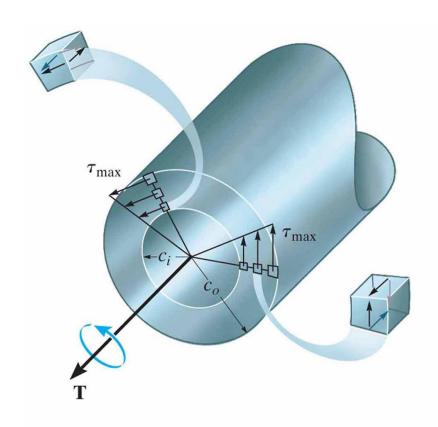
$$=2\pi\int_{c_i}^{c_o}\rho^3\ d\rho=2\pi\left(\frac{\rho^4}{4}\right)_{c_i}^{c_o}$$

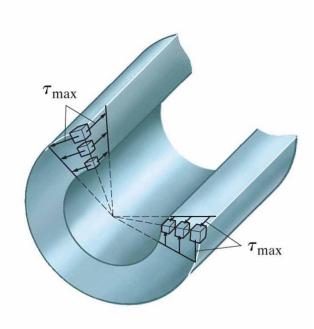
Tubular section:

$$J = \frac{\pi}{2} (c_o^4 - c_i^4)$$

Torsion formula: tubular bar

Linear variation of shear stress



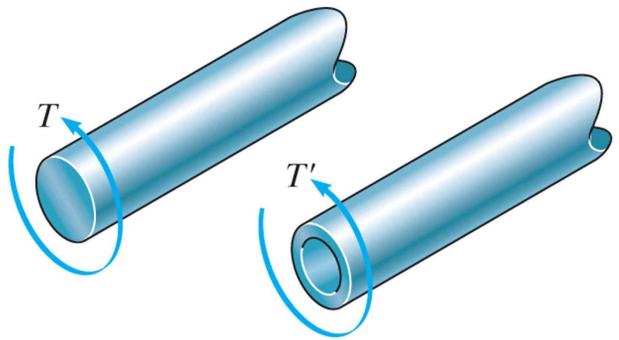


Shear stress varies linearly along each radial line of the cross section.

Torsion: example A

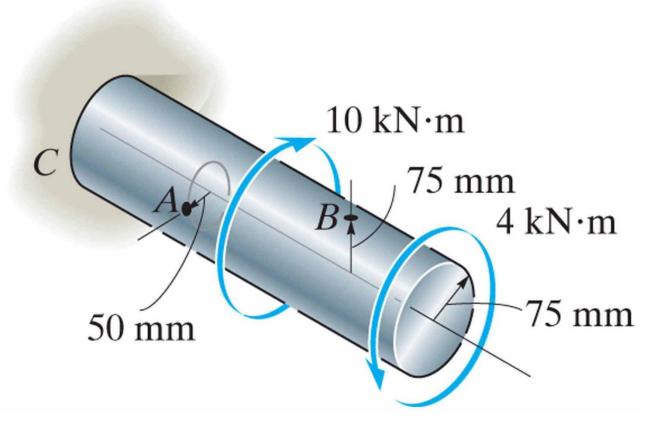
A shaft is made of a steel alloy having an allowable shear stress of $\tau_{\rm allow} = 12 \; \rm ksi$. If the diameter of the shaft is 1.5 in., determine the maximum torque T that can be transmitted.

What would be the maximum torque T'if a 1-in. diameter hole is bored through the shaft? Sketch the shear-stress distribution along a radial line in each case.



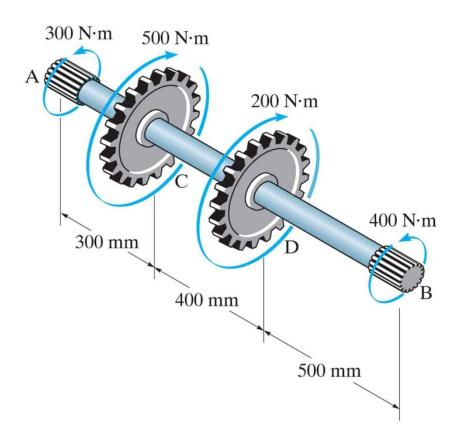
Torsion: example B

The solid shaft is fixed to the support at C and subjected to the torsional loadings shown. Determine the shear stress at points A and B and sketch the shear stress on volume (stress) elements located at these points.



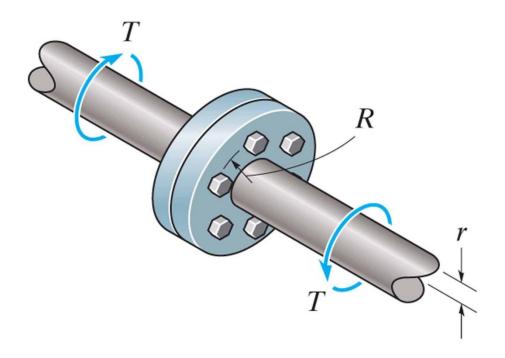
Torsion: example C

The solid 30 mm diameter shaft is used to transmit the torques applied to the gears. Determine the absolute maximum shear stress on the shaft.

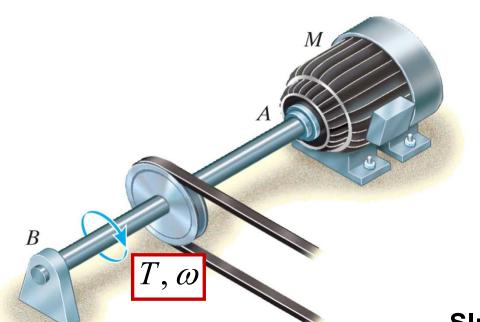


Torsion: example D

The coupling is used to connect the two shafts together. Assuming that the shear stress in the bolts is *uniform*, determine the number of bolts necessary to make the maximum shear stress in the shaft equal to the shear stress in the bolts. Each bolt has a diameter d.



Power transmission



$$P = T \omega$$

with:

$$\omega = 2\pi \cdot f$$

$$\omega \left[\frac{rad}{sec} \right]$$

SI:
$$1W = 1N \cdot \frac{m}{s}$$

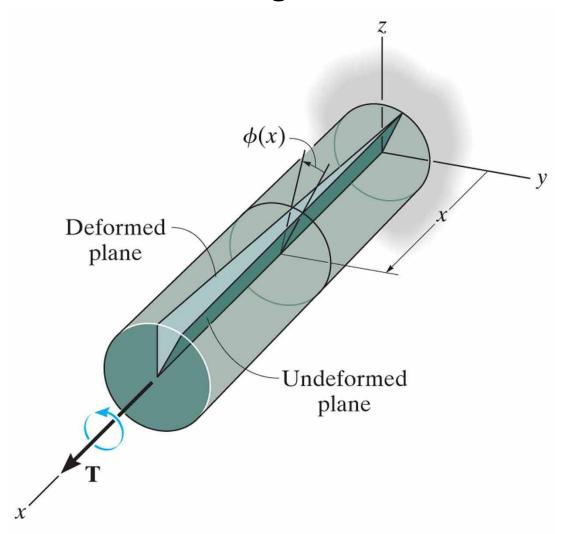
FPS:
$$1hp = 550 \text{ ft} \cdot \frac{lb}{s}$$

Torsion: example E

The 25 mm diameter shaft on the motor is made of a material having an allowable shear stress of $\tau_{\text{allow}} = 75 \text{ MPa}$. If the motor is operating at its maximum power of 5 kW, determine the minimum allowable rotation of the shaft.

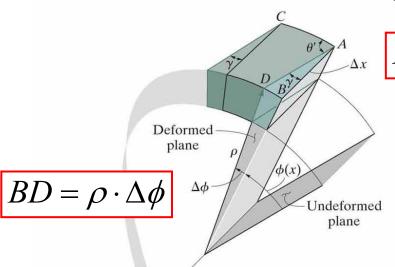


Torsion: angle of twist



The angle of twist $\phi(x)$ increases as x increases.

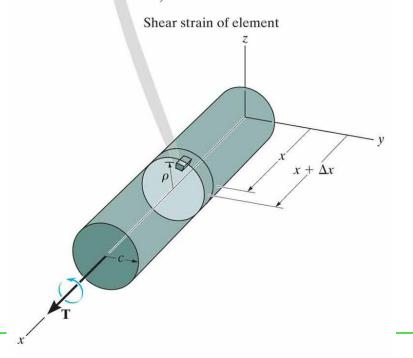
Torsion: angle of twist ϕ



 $BD = \gamma \cdot \Delta x$

Shear strain: $\gamma = \rho \frac{d\phi}{dx}$

Therefore:
$$d\phi = \frac{\gamma}{\rho} dx$$



Torsion: angle of twist ϕ

From before:
$$d\phi = \frac{\gamma}{\rho} dx$$

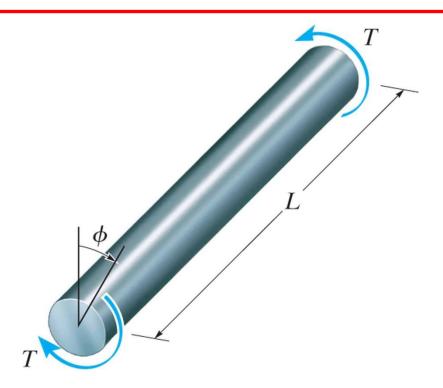
By Hook's law:
$$\gamma = \frac{\tau}{G} = \frac{1}{G} \frac{T \rho}{J}$$

$$\gamma(x,\rho) = \frac{1}{G} \frac{T(x) \rho}{J(x)}$$

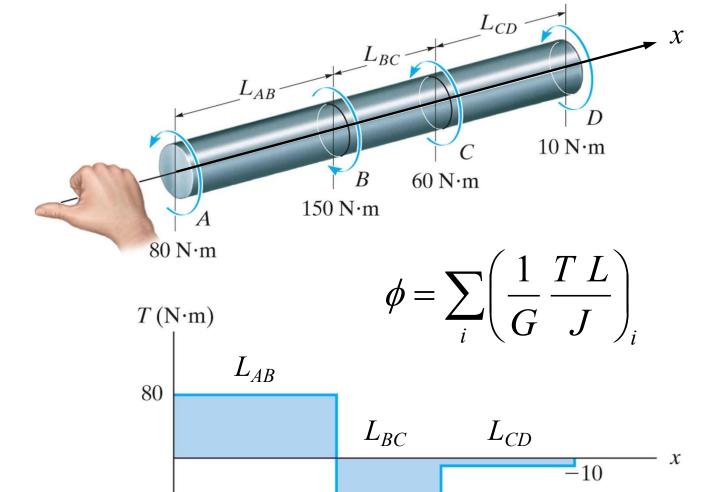
Angle of twist:
$$\phi(x) = \int_{0}^{L} \frac{1}{G} \frac{T(x)}{J(x)} dx$$

Torsion: angle of twist ϕ Constant torque and cross sectional area

Angle of twist:
$$\phi(x = L) = \frac{1}{G} \frac{TL}{J}$$



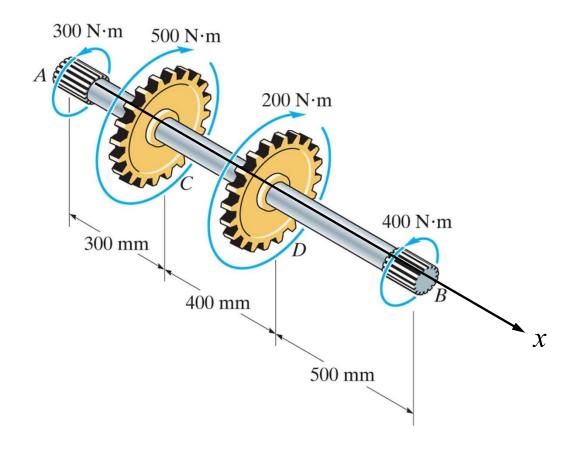
Torsion: angle of twist ϕ Multiple torques



-70

Torsion: example F

The splined ends and gears attached to the A-36vsteel shaft are subjected to the torques shown. Determine the angle of twist of end B with respect to end A. The shaft has a diameter of 40 mm.



Reading assignment

- Chapter 5 of textbook
- Review notes and text: ES2001, ES2501

Homework assignment

As indicated on webpage of our course

