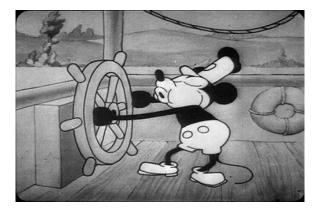
WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, B'2025

We will get started soon...



06 November 2025

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

Lecture 11:

Unit 6: tension/compression of slender longitudinal bars: statically indeterminate

06 November 2025

General information

Instructor: Cosme Furlong
HL-152
(508) 831-5126

Email: cfurlong @ wpi.edu

http://www.wpi.edu/~cfurlong/es2502.html

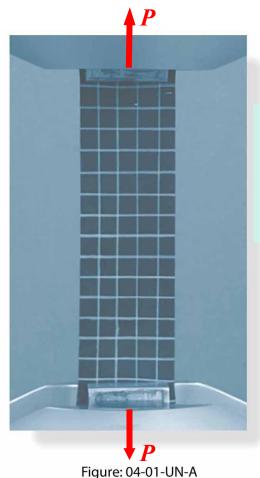
Graduate Assistants:

→ Hamed Ghavami (TA)
Email: sghavami @ wpi.edu

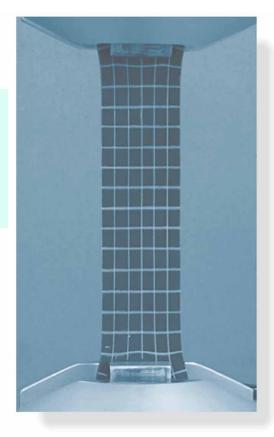
→ Jay Patil (GA)
Email: jpatil1 @ wpi.edu

→ Mikayla Almeida (GA) mpalmeida @ wpi.edu

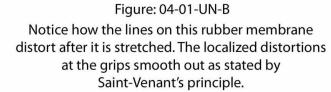
Axial load



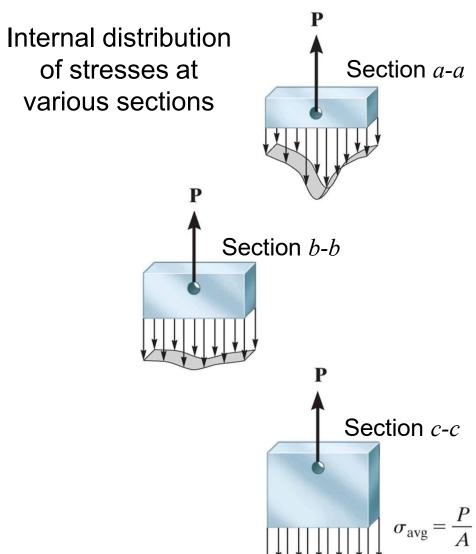
Note distortion lines: follow Saint-Venant's principle

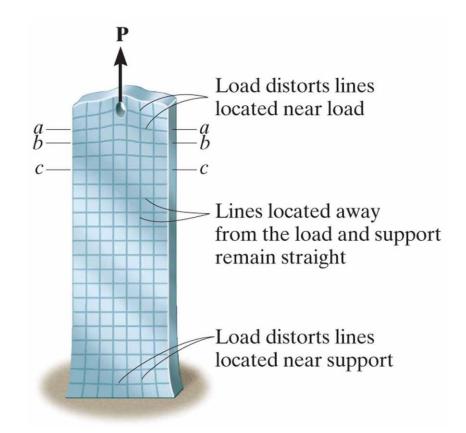


Notice how the lines on this rubber membrane distort after it is stretched. The localized distortions at the grips smooth out as stated by Saint-Venant's principle.

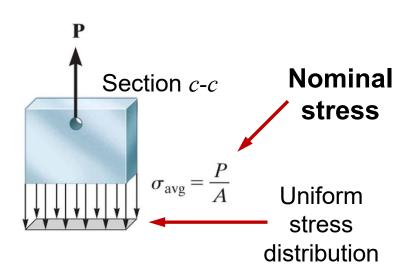


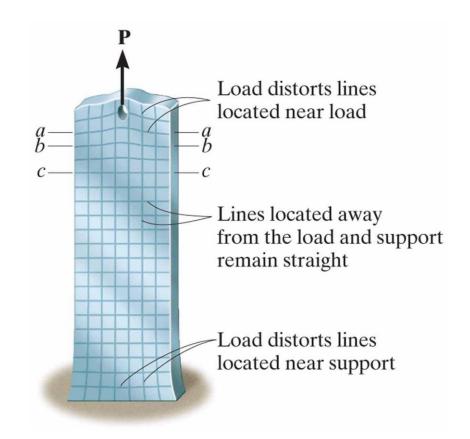
Axial load: Saint-Venant's principle





Axial load: Saint-Venant's principle

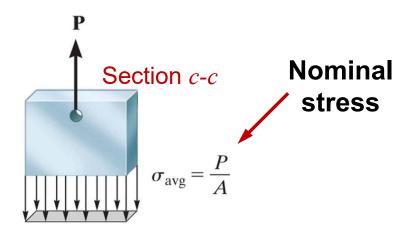


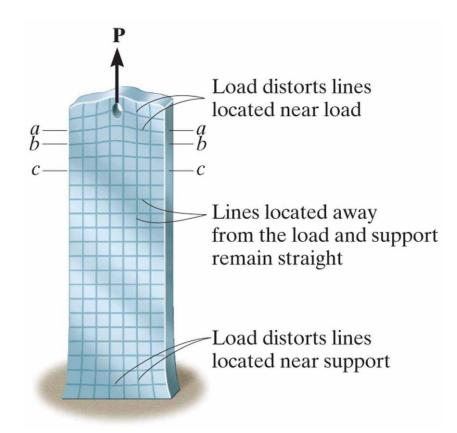


Axial load: Saint-Venant's principle

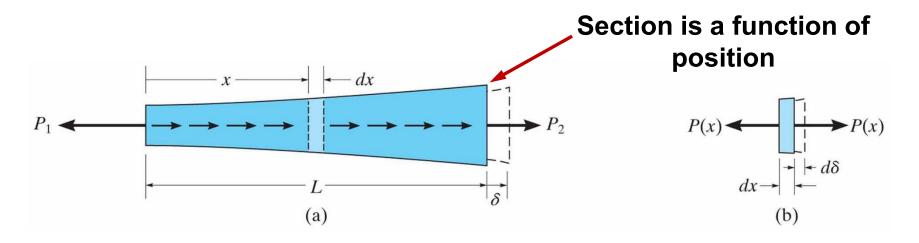
In your analyses, select locations (sections / points) located away from regions that are subjected to load application (to eliminate "end" effects)

Saint-Venant's principle: stresses and strains within a section will approach their nominal values as the section locates away from regions of load application





Elastic deformation of an axially loaded member

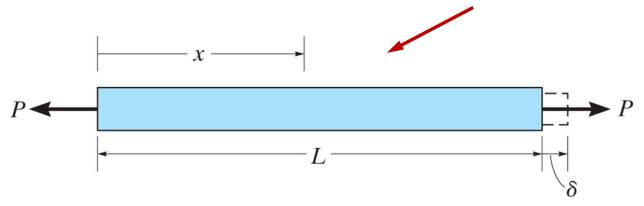


$$\sigma = \frac{P(x)}{A(x)}$$
 and $\varepsilon = \frac{d\delta}{dx}$

Therefore,
$$d\delta = \frac{P(x) dx}{A(x) E}$$
 $\delta = \int_{0}^{L} \frac{P(x)}{A(x) E} dx$

Elastic deformation of an axially loaded member

Constant load and cross-sectional area

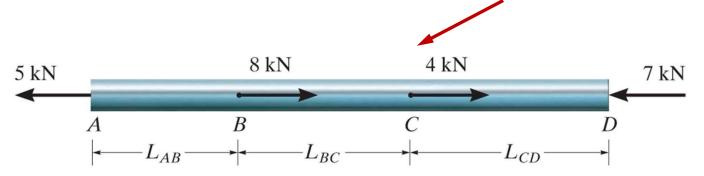


Elastic deformation:

$$\delta = \int_{0}^{L} \frac{P(x)}{A(x)E} dx = \frac{P}{AE} \int_{0}^{L} dx = \frac{PL}{AE}$$

Elastic deformation of an axially loaded member

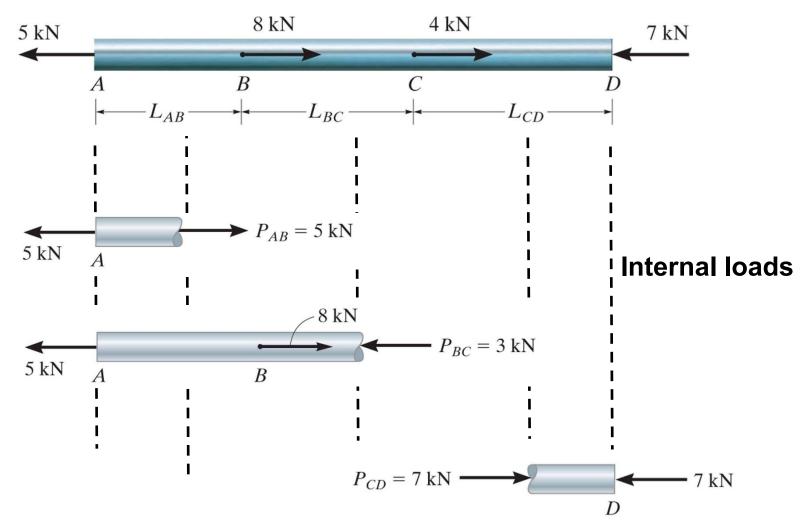
Bar subjected to multiple axial loads



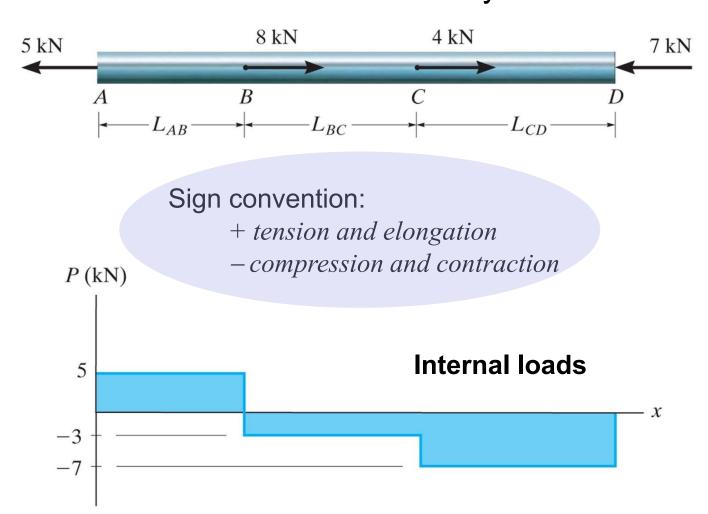
Elastic deformation:

$$\delta = \sum_{i} \left(\frac{P L}{A E} \right)_{i}$$

Elastic deformation of an axially loaded member Procedure for analysis

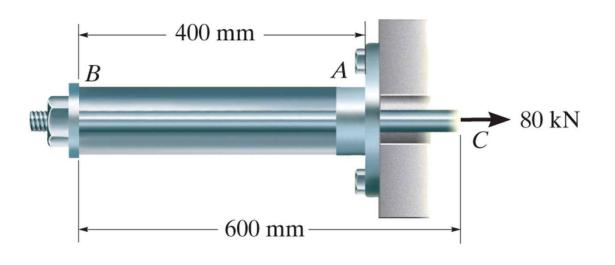


Elastic deformation of an axially loaded member Procedure for analysis



Axial load: example D

The assembly shown consists of an aluminum tube AB having a cross sectional area of 400 mm^2 . A steel rod having a diameter of 10 mm is attached to a rigid collar and passes through the tube. If a tensile load of 80 kN is applied to the rod, determine the displacement of the end C of the rod. Elastic modules: $E_{\text{steel}} = 200 \text{ GPa}$ and $E_{\text{alum}} = 200 \text{ GPa}$



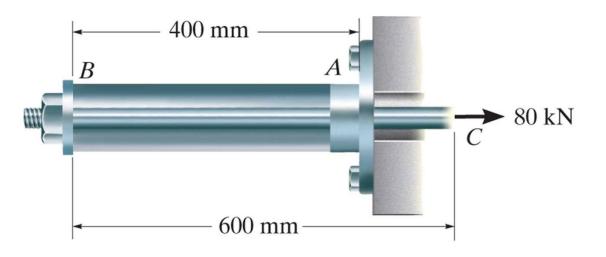
Approach:

- Determine internal loading
- Compute displacement

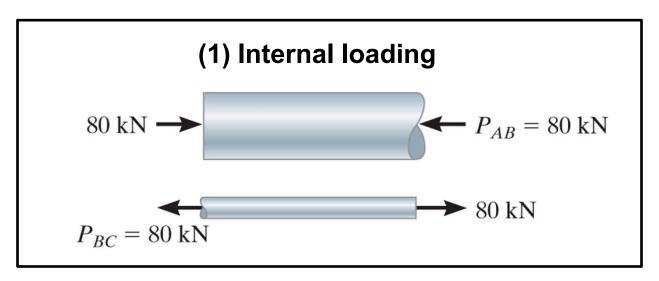
Axial load: example D

Displacement of *C*:

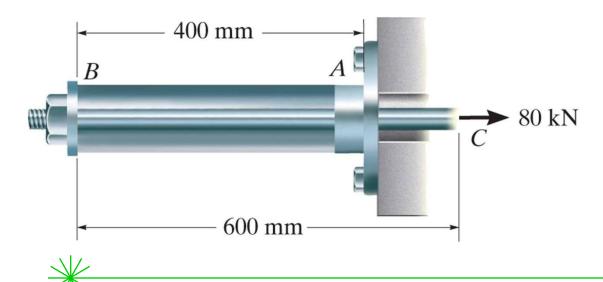
$$\delta_C = \delta_B + \delta_{C/B}$$



Axial load: example D

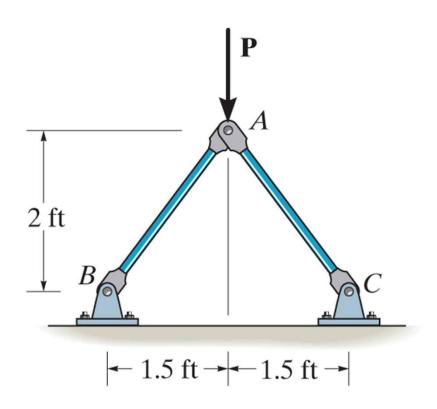


(2) \rightarrow find displacement at C



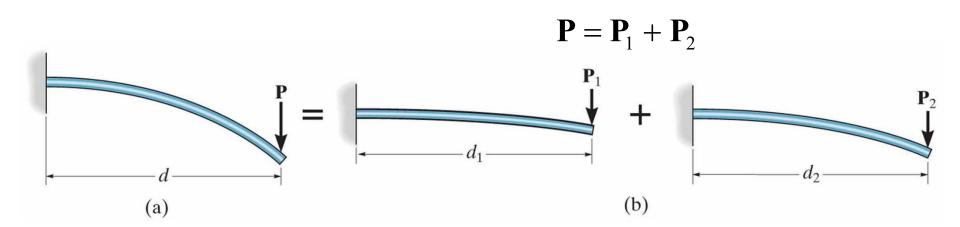
Axial load: example E

The linkage is made of two pin-connected A-36 steel members, each having a cross-sectional area of 1.50 in^2 . If a vertical force of is applied to point A, determine its vertical displacement at A.



Principle of superposition

Applied when a component is subjected to complicated loading conditions → break a complex problem into series of simple problems

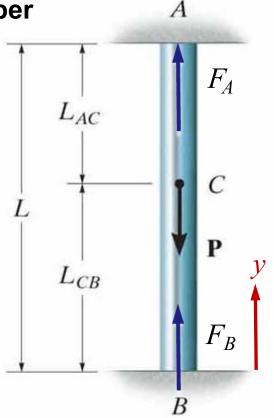


Can only be applied for:

(a) small deformations;

(b) deformations in the elastic (linear) range of the σ - ϵ diagram

Axially loaded member



In this case, only one equilibrium equation:

$$+ \uparrow \quad \sum F_y = 0 ;$$

$$F_B + F_A - P = 0 \tag{1}$$

→ Statically indeterminate problem

Need additional equations!!

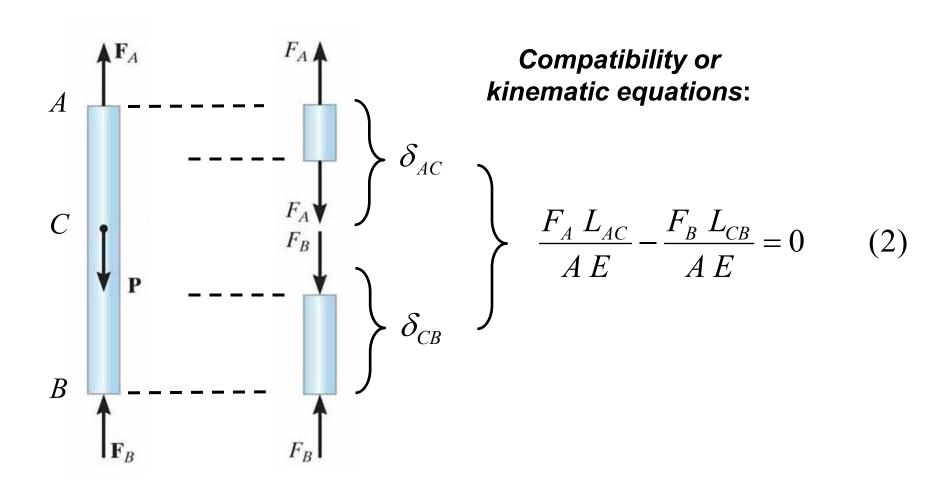
Axially loaded member A L_{AC} L L P Y

Additional equations are obtained by applying:

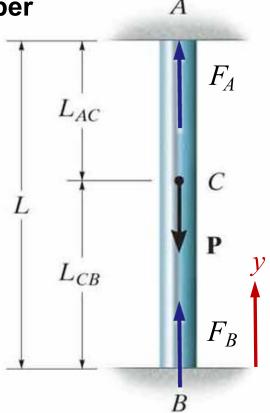
Compatibility or kinematic equations

†
Load-displacement
equations

$$\delta_{A/B} = 0$$



Axially loaded member



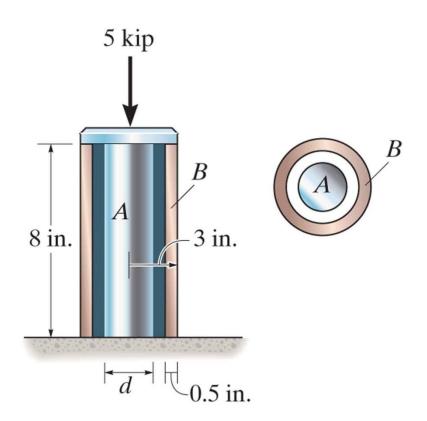
Forces are obtained by solving system of equations:

Equilibrium
$$\downarrow \\
F_B + F_A - P = 0 \tag{1}$$

$$\frac{F_A L_{AC}}{A E} - \frac{F_B L_{CB}}{A E} = 0 \qquad (2)$$

Axial load: example F

The 304 stainless steel post A has a diameter of d = 2.0 in and is surrounded by a red brass C83400 tube B. Both rest on the rigid surface. If a force of 5 kip is applied to the rigid cap, determine the average normal stress developed in the post and the tube.



Approach:

- Apply equilibrium equations
- 2) Apply compatibility equations
- 3) Solve for stresses

Reading assignment

- Chapters 3 and 4 of textbook
- Review notes and text: ES2001, ES2501

Homework assignment

As indicated on webpage of our course

