Inexact Newton Dogleg Methods

Homer Walker
Mathematical Sciences Department
Worcester Polytechnic Institute
August 8, 2003

Joint work with Roger Pawlowski (SNL), J. N. Shadid (SNL), J. P. Simonis (WPI).

Supported in part by the US DOE ASCI program, the US DOE Office of Science MICS program, and the Computer Science Research Institute at Sandia National Laboratories.
Nonlinear problem: \[F(u) = 0, \quad F : \mathbb{R}^n \to \mathbb{R}^n. \]

Start with classical ...

Newton’s Method:

Given an initial \(u \).

Iterate:

- Solve \(F'(u)s = -F(u) \).
- Update \(u \leftarrow u + s \).
Globalizations.

Idea: Repeat as necessary . . .

- *Test* a step for acceptable progress.
- If unacceptable, *modify* it and test again.

Major approaches:

- *Backtracking* (linesearch, damping).
- *Trust region*.
Trust region globalization.

- \(s = \arg \min_{\|w\| \leq \delta} \| F(u) + F'(u) w \|. \)

- Can’t be computed exactly.
The dogleg step. \[f(u) \equiv \frac{1}{2} \| F(u) \|^2. \]

- \[s^{\text{CP}} \equiv \arg \min_{0 \leq \lambda < \infty} \| F(u) - F'(u) \lambda \nabla f(u) \|. \]
- \[\Gamma^{\text{DL}}: 0 \to s^{\text{CP}} \to s^{\text{N}}. \]
- \[s = \arg \min_{\| w \| \leq \delta, w \in \Gamma^{\text{DL}}} \| F(u) + F'(u) w \|. \]
Work toward a general *inexact Newton* adaptation.

Inexact Newton Method (Dembo–Eisenstat–Steihaug 1982):
Given an initial u.
Iterate:

Find *some* $\eta \in [0, 1)$ and s that satisfy

$$\|F(u) + F'(u) s\| \leq \eta \|F(u)\|.$$

Update $u \leftarrow u + s$.
Possible **big** issue: *Evaluating s^{CP} requires $F'T$-products.*

Proposed general framework.

- Find s^{IN} such that $\|F(u) + F'(u) s^{IN}\| \leq \eta \|F(u)\|$.
- Choose $\hat{g} \approx \nabla f(u)$ and compute $\hat{s}^{CP} = \arg \min_{0 \leq \lambda < \infty} \|F(u) - F'(u) \lambda \hat{g}\|$.
- Define $\hat{\Gamma}^{DL} : 0 \to \hat{s}^{CP} \to s^{IN}$.
- Choose $s \in \hat{\Gamma}^{DL}$, test, etc.
More issues . . .

Minor consideration: For any $\eta \in (0, 1)$, $\|F(u) + F'(u) s\|$ may not decrease monotonically along \hat{T}_{DL}.
More issues (cont.) . . .

More serious consideration: Unless $\eta \in [0, 1)$ is small (how small?), we may have
\[
\langle s^{\text{IN}}, s^{\text{CP}} \rangle < \| s^{\text{CP}} \|^2 \quad \text{or} \quad \| s^{\text{IN}} \| < \| s^{\text{CP}} \|.
\]
Inexact Newton Dogleg Method:

Given $\eta_{\text{max}} \in [0, 1)$, $\delta_{\text{min}} > 0$, $t \in (0, 1)$, $0 < \theta_{\text{min}} < \theta_{\text{max}} < 1$, and initial u and $\delta \geq \delta_{\text{min}}$.

Iterate:

Choose $\eta \in [0, \eta_{\text{max}}]$ and s^{IN} such that

$$\|F(u) + F'(u) s^{\text{IN}}\| \leq \eta \|F(u)\|.$$

Determine \hat{g} and admissible $s \in \hat{\Gamma}^{\text{DL}}$.

While $\text{ared} < t \cdot \text{pred}$ do:

Choose $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$.

Update $\delta \leftarrow \max\{\theta \delta, \delta_{\text{min}}\}$.

Redetermine admissible $s \in \hat{\Gamma}^{\text{DL}}$.

Update $u \leftarrow u + s$ and update δ.

- $s \in \hat{\Gamma}^{\text{DL}}$ is admissible $\iff \min\{\|s^{\text{IN}}\|, \delta_{\text{min}}\} \leq \|s\| \leq \delta$.

- $\text{ared} \equiv \|F(u)\| - \|F(u + s)\|$, $\text{pred} \equiv \|F(u)\| - \|F(u) + F'(u) s\|$.

- Choose θ, update δ a la Dennis–Schnabel (1983).
Recall: u is a **stationary point** of $\|F\| \iff \|F(u)\| \leq \|F(u) + F'(u) s\| \forall s$.

Theorem: Assume F is continuously differentiable. Suppose $\{u_k\}$ is produced by the INDL Method and, for some $\epsilon > 0$,

$$\frac{\langle \hat{g}_k, \nabla f(u_k) \rangle_2}{\|\hat{g}_k\|_2 \|\nabla f(u_k)\|_2} \geq \epsilon$$

for every k. If u_* is a limit point of $\{u_k\}$, then u_* is a stationary point of $\|F\|$. If additionally $F'(u_*)$ is nonsingular, then $F(u_*) = 0$ and $u_k \to u_*$. Moreover, for all sufficiently large k, the initial s_k is accepted without modification in the while-loop, and $s_k = s_k^{IN}$ is an admissible step.

Note: If $s_k = s_k^{IN}$ for all large k, then **convergence is ultimately controlled by the “forcing terms”** η_k.
Choosing an admissible \(s \in \hat{\Gamma}^{DL} \).

The Standard Strategy.

If \(\|s^{\text{IN}}\| \leq \delta \),
\[s = s^{\text{IN}} \]
Else if \(\|\hat{s}^{\text{CP}}\| \geq \delta \),
\[s = (\delta/\|\hat{s}^{\text{CP}}\|)\hat{s}^{\text{CP}} \]
Else
\[s = (1 - \gamma)\hat{s}^{\text{CP}} + \gamma s^{\text{IN}} \]
for \(\gamma \in (0, 1) \) such that \(\|s\| = \delta \)

- An admissible \(s \in \hat{\Gamma}^{DL} \) is uniquely determined.
- \(s^{\text{IN}} \) is always computed; \(\hat{s}^{\text{CP}} \) may not be.
- If \(\eta \) isn’t small, we may have \(s = s^{\text{IN}} \) when \(s = \lambda\hat{s}^{\text{CP}} \) would be preferred.
An Alternative Strategy.

If \(\| \hat{s}_{\text{CP}} \| \geq \delta \),
\[
s = \left(\frac{\delta}{\| \hat{s}_{\text{CP}} \|} \right) \hat{s}_{\text{CP}}
\]
Else if \(\| F(u) + F'(u) \hat{s}_{\text{CP}} \| \leq \eta \| F(u) \| \),
\[
s = \hat{s}_{\text{CP}}
\]
Else if \(\| s_{\text{IN}} \| \leq \delta \),
\[
s = s_{\text{IN}}
\]
Else
\[
s = (1 - \gamma) s_{\text{CP}} + \gamma s_{\text{IN}}
\]
for \(\gamma \in (0, 1) \) such that \(\| s \| = \delta \)

- An admissible \(s \in \hat{\Gamma}_{\text{DL}} \) is uniquely determined.
- \(\hat{s}_{\text{CP}} \) is always computed; \(s_{\text{IN}} \) may not be.
- \(s \) is appropriately biased toward \(\hat{s}_{\text{CP}} \).
Further refinements.

- If needed, s^{IN} can be computed as $s^{\text{IN}} = \hat{s}^{\text{CP}} + z$, where $\|\hat{r}^{\text{CP}} + F'(u) z\| \leq \eta \|F(u)\|$ and $\hat{r}^{\text{CP}} \equiv F(u) + F'(u) \hat{s}^{\text{CP}}$.

- Having both \hat{s}^{CP} and s^{IN}, we can choose $s = (1 - \gamma) \hat{s}^{\text{CP}} + \gamma s^{\text{IN}}$ so that $\|s\| \leq \delta$ and $\|F(u) + F'(u) s\|$ is minimal (easy).
Numerical experiments.

- **Test problems**: Three benchmark flow problems in 2D; two in 3D.

- **PDEs**: Low Mach number Navier–Stokes equations with heat transport as appropriate.

- **Discretization**: Pressure stabilized streamline upwind Petrov–Galerkin FEM.

- **Algorithms and software**: Newton–GMRES implementations in the Sandia NOX nonlinear solver suite, with GMRES and domain-based (overlapping Schwarz) ILU preconditioners from the Sandia Aztec package. The simulation driver was the Sandia MPSalsa parallel reacting flow code.

- **Problem sizes**: 25,263 to 179,685 unknowns.

- **Machine**: 4-15 nodes (8-30 CPUs) on a 16-node, 32-CPU IBM Linux cluster.
2D test problems.

Thermal Convection Problem

Lid Driven Cavity Problem

Backward-Facing Step Problem

3D test problems. Thermal convection and lid driven cavity problems in the unit cube.
The forcing terms.

- **Small constant:** \(\eta_k = 10^{-4} \).

- **Adaptive:** \(\eta_k = \min \{ \eta_{\text{max}}, \tilde{\eta}_k \} \), where

\[
\tilde{\eta}_k = \frac{\|F(u_k)\| - \|F(u_{k-1}) + F'(u_{k-1}) s_{k-1}\|}{\|F(u_{k-1})\|}
\]
Robustness study.

2D and 3D Thermal Convection $Ra = 10^3, 10^4, 10^5, 10^6$

2D Lid Driven Cavity $Re = 1000, 2000, \ldots, 10,000$

3D Lid Driven Cavity $Re = 100, 200, \ldots, 1000$

2D Backward Facing Step $Re = 100, 200, \ldots, 700, 750, 800$
Robustness study. The table shows *total numbers of failures.*

<table>
<thead>
<tr>
<th>Method</th>
<th>Forcing Term</th>
<th>2D Problems</th>
<th>3D Problems</th>
<th>All Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogleg,</td>
<td>Adaptive</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Stand. Strat.</td>
<td>10^{-4}</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dogleg,</td>
<td>Adaptive</td>
<td>2</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Alt. Strat.*</td>
<td>10^{-4}</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Dogleg,</td>
<td>Adaptive</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Alt. Strat.**</td>
<td>10^{-4}</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>“Full Step”</td>
<td>Adaptive</td>
<td>15</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>18</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>

*GMRES solves starting from zero.

**GMRES solves starting from the Cauchy point.*
Efficiency study.

- 2D Thermal Convection \(Ra = 10^3, 10^4, 10^5 \)
- 3D Thermal Convection \(Ra = 10^3, 10^4, 10^5, 10^6 \)
- 2D Lid Driven Cavity \(Re = 100, 200, \ldots, 1000 \)
- 3D Lid Driven Cavity \(Re = 100, 200, \ldots, 900 \)
- 2D Backward Facing Step \(Re = 100, 200, \ldots, 700, 750, 800 \)
Efficiency study.

<table>
<thead>
<tr>
<th>Method</th>
<th>Forcing Term</th>
<th>Inexact Newton Steps</th>
<th>Function Evals.</th>
<th>GMRES Iterations</th>
<th>GMRES Iterations per INS</th>
<th>Normal'd Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogleg, Stand. Strat.</td>
<td>Adapt.</td>
<td>18.8</td>
<td>21.1</td>
<td>1160</td>
<td>61.7</td>
<td>.87</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>10.3</td>
<td>12.5</td>
<td>1330</td>
<td>129</td>
<td>1.0</td>
</tr>
<tr>
<td>Dogleg, Alt. Strat.*</td>
<td>Adapt.</td>
<td>16.6</td>
<td>18.9</td>
<td>1200</td>
<td>72.2</td>
<td>.92</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>11.3</td>
<td>13.7</td>
<td>1650</td>
<td>146</td>
<td>1.21</td>
</tr>
<tr>
<td>Dogleg, Alt. Strat.**</td>
<td>Adapt.</td>
<td>18.4</td>
<td>20.6</td>
<td>1122</td>
<td>61.0</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>11.2</td>
<td>13.6</td>
<td>1634</td>
<td>147</td>
<td>1.23</td>
</tr>
</tbody>
</table>

*GMRES solves starting from zero.

**GMRES solves starting from the Cauchy point.*
Concluding observations.

- These globalizations have good theoretical support.

- They are effective on these test problems, *especially with adaptive forcing terms*.

- Methods, strategies, and refinements bear further study ...
 - more experimentation,
 - comparisons with other globalizations (*see Simonis’s talk*).