1. You are saving for a new car. You wish to accumulate sufficient funds by making sixty monthly deposits into a savings account, beginning today. Interest is a nominal 6%, compounded monthly.

 You have two goals:
 a. Have $18,000 five years from today to buy a car
 b. Have enough money left over to provide for 48 monthly payments of $100 to operate the car (gas, maintenance, etc.).

 Assume you will need the first $100 on the day you buy the car, and that the nominal interest rate is 6%, compounded monthly.

 How much does your monthly deposit need to be? (10 points)
2. 1000 five years from now plus 1000 ten years from today is known to be equivalent to a series of ten annual payments of $\$X$ commencing six years from today. If $i=6\%$, what is $\$X$? \(8 \text{ points}\)

3. Evaluate $300\ddot{s}_{\bar{8}|}$ assuming $d=8\%$. \(7 \text{ points}\)
4. At time $t=6$, the current value of $A + B$ is equivalent to the current value of $C + D$, where:

- A is a ten year annuity-certain of X per year, first payment occurring at time $t=1$
- B is 5000 payable at time $t=5$
- C is an annual perpetuity with first payment of 600 at time $t=7$
- D is $10,000$ payable at time $t=10$

If $i=8\%$, what is X? (10 points)
5. A perpetuity-due which pays $1,200 per year and costs $13,200 is known to be equivalent to a perpetuity of $X per year which has its first payment five years from today. What is $X? (10 points)

6. A, B, and C are dividing the proceeds from the sale of their company. Each person will receive an equal share of the proceeds. The company has been sold for X. Instead of a single payment, however, the buyer has offered 30 years of annual $30,000 payments, beginning one year from today. From these payments, A has asked to receive $15,000 per year for n years and nothing thereafter. B and C have agreed to this. Assuming $i^{(4)} = 7.68\%$, what is n? (10 points)
BONUS QUESTION (up to 5 points; quiz score cannot exceed 100%)

A special annual perpetuity due pays $1 for the first two payments, $2 for the next two payments, $3 for the next two payments, and so on. What is the present value of this perpetuity, if $i=8\%$?

**** END OF QUIZ ****