1. (1 pts) Let \(x = 2u + 3 \) and \(y = 5uv \). In changing variables for the integral \(\iint_D f(x, y) \, dx \, dy \) to \(u \) and \(v \), the stretching factor

 a) is constant
 b) depends only on \(u \)
 c) depends on both \(u \) and \(v \)
 d) none of these.

 \[J = 2 \cdot 5u - 0 \cdot 5v = 10u \]

 The stretching factor is \(J = 2 \cdot 5u - 0 \cdot 5v = 10u \) which depends only on \(u \).

2. (1 pts) Suppose \(\int_0^1 \left[\int_y^1 x^2 y \, dx \right] dy = \int_0^1 \left[\int_A^B x^2 y \, dy \right] dx \).

 a) \(A = x \) and \(B = 1 \)
 b) \(A = 1 \) and \(B = x \)
 c) \(A = 0 \) and \(B = x \)
 d) \(A = y \) and \(B = 1 \)

 The region is bounded between \(x = y \) and \(x = 1 \), and comprises the triangle with corners \((0, 0)\), \((1, 0)\), and \((1, 1)\). So integrating in the other order \(A : y = 0 \) and \(B : y = x \).

3. (1 pts) Transforming to polar coordinates:

 \[\int_0^{3\sqrt{2}/2} \int_x^{\sqrt{9-x^2}} x^2 y^2 \, dy \, dx = \int_A^B \int_C^D E \, dr \, d\theta. \]

 a) \(E = r^4 \).
 b) \(E = r^5 \cos^2(\theta) \sin^2(\theta) \).
 c) \(E = r^3 \theta^2 \).
 d) none of these.

 The integrand is \(x^2y^2 = r^2 \cos(\theta)r^2\sin(\theta) \) multiplied by the stretching factor \(r \).

4. (1 pts) Transforming to polar coordinates:

 \[\int_0^{3\sqrt{2}/2} \int_x^{\sqrt{9-x^2}} x^2 y^2 \, dy \, dx = \int_A^B \int_C^D E \, dr \, d\theta. \]

 a) \(C = \cos(\theta), D = 3 \).
 b) \(C = 0, \) and \(D = 9 \).
 c) \(C = 1/\cos(\theta), D = 9 \).
 d) none of these

 The region is the sector with boundary curves \(x^2 + y^2 = 3^2 \), a circle of radius 3, and the lines \(y = x \) and \(x = 0 \), which is a circular sector with \(0 \leq r \leq 3 \) and \(\pi/4 \leq \theta \leq \pi/2 \).
5. (6 pts) Let $\delta = 10 + x + y$ be a density function, and let \mathcal{R} be the finite region bounded by $x^2 + y = 9$ and $2x + y = 6$.

Write down, but do not evaluate, $\int \int_{\mathcal{R}} \delta \, dA$ as in iterated integral in two ways, once with x integration first, and once with y integration first.

The finite region has boundaries $x^2 + y = 9$ and $2x + y = 6$ which come together when $0 = x^2 - 2x - 3 = (x - 3)(x + 1)$, so the x interval is $[-1, 3]$ in which region the parabola is on top, so the integral is $\int_{x=-1}^{x=3} \int_{y=9-x^2}^{y=6-2x} (10 + x + y) \, dy \, dx$

Reversing the order, the y on the parabola reaches its maximum in the interval at $x = 0$, when it is 9. So the integral is split at $y = 8$, above which both x limits lie on the parabola.

$\int_{y=0}^{y=8} \int_{x=(6-y)/2}^{x=\sqrt{9-y}} (10 + x + y) \, dx \, dy + \int_{y=8}^{y=9} \int_{x=-\sqrt{9-y}}^{x=\sqrt{9-y}} (10 + x + y) \, dx \, dy$