1. (3 pts) Let $\Sigma = \{a, b, c\}$. Find two languages $A, B \subseteq \Sigma^*$ so that $|A| = 5$, $|B| = 3$, and $|AB| \neq 15$.

We want to choose our languages so that there the same string can occur with more than one factorization. If we take $A = \{\lambda, a^2, a^4, a^6, a^8\}$, then $|A| = 5$ and if we take $|B| = \{a, a^3, a^5\}$, then $|B| = 3$, and $AB = \{a, a^2, a^5, a^7, a^9, a^{11}, a^{13}\}$, so $|AB| = 7$. In this case we even have $A \cap B = \emptyset$, which was not required.

2. (3 pts) Let $\Sigma = \{a, b, c\}$ and $A = \{a, b, c^2\}$ and $B = \{a, b^2, c\}$.

Compute $A \cup B$ and AB.

Is $A \subseteq B^*$?

$A \cup B = \{a, b, c^2\} \cup \{a, b^2, c\} = \{a, b, b^2, c, c^2\}$

$AB = \{a, b, c^2\}\{a, b^2, c\} = \{a^2, ab^2, ac, ba, b^3, bc, c^2a, c^2b^2, c^3\}$

$a \in B^*$ and $c^2 \in B^*$, however $b \notin B^*$, so $A \nsubseteq B^*$.

3. (4 pts) Give a recursive definition of the language $L \subseteq \{a, b\}^*$ consisting of all strings having twice as many a’s as b’s.

(So for example $aaabab \in L$ and $\lambda \in L$, but $aa \notin L$.)

There are many different elements in this language and we have to be sure that we describe how to recursively generate all of them.

If there are twice as many a’s as b’s, then if the string is not empty, then there is some b which will have to match to two a’s, but they need not be together. So, to make sure we have everything we can do as follows:

BASIS: $\lambda \in L$

RECURSIVE STEP: If $w = u_1u_2u_3u_4 \in L$ then the three strings $u_1au_2au_3bu_4$, $u_1au_2bu_3au_4$, and $u_1bu_2au_3au_4$, are all in L. (Note nothing prevents $u_i = \lambda$.)

CLOSURE: All elements of L are generated from the basis after a finite number of recursive steps.

Another solution is to note that if no a’s occur next to one another, then the a’s would have to alternate with powers of b, and the only way for there to be twice as many a’s is if the string is just aba. Otherwise there must be a substring a^2b or ba^2, and we have a second method.

BASIS: $\lambda, aba \in L$

RECURSIVE STEP: If $w = u_1u_2 \in L$ then the two strings $u_1a^2bu_2$, and $u_1ba^2u_2$ are both in L. (Note nothing prevents $u_i = \lambda$.)

CLOSURE: All elements of L are generated from the basis after a finite number of recursive steps.