1. Given the grammar

\[G : S \to SBA | A \\
 A \to aA | \lambda \\
 B \to Bba | \lambda, \]

convert to an equivalent non-contracting grammar with no recursive start.

We compute Null(\(G\)) = \{A, B, S\}.

So the conversion is:

\[G_L : S \to SBA | SB | SA | BA | S | B | A \\
 A \to aA | a \\
 B \to Bba | ba, \]

convert to an equivalent non-contracting grammar with no recursive start. in which the rule S \(\to\) S can be removed.

Removing the non-recursive start we define a new start symbol S':

\[G_L : S' \to S \\
 S \to SBA | SB | SA | BA | S | B | A \\
 A \to aA | a \\
 B \to Bba | ba, \]

convert to an equivalent non-contracting grammar with no recursive start.

2. Given the grammar

\[G : S \to AS | A \\
 A \to a^2A | bB | C \\
 B \to b^2B | b \\
 C \to c^2C | B \]

Compute \(G_c\), the equivalent grammar with no chain rules.

Chain(\(S\)) = \{S, A, B, C\}

Chain(\(A\)) = \{A, B, C\}

Chain(\(B\)) = \{B\}

Chain(\(C\)) = \{B, C\}

\[G : S \to AS | a^2A | bB | b^2B | b | c^2C \\
 A \to a^2A | bB | b^2B | b | c^2C \\
 B \to b^2B | b \\
 C \to c^2C | b^2B | b \]