High-level Learning

Jane Li

Assistant Professor
Mechanical Engineering Department, Robotic Engineering Program
Worcester Polytechnic Institute
No Quiz Today! Student talk

• Snehal Dikhale
• Sinan Morcel
• Hanqing Zhang
Plan for Final Weeks
Next two weeks are our final weeks

• Literature review presentation (Dec 3, 5)
• Final project presentation (Dec 10, 12)
• Extra credit homework due Dec 12 by noon
Dec 3 – Literature review

- Perception-action + Sinan (20 min talk + 3 min Q&A)
- High-level learning (15 min talk + 3 min Q&A)
- Mostafa (7 min talk + 2 min Q&A)
Dec 5 – Literature review

- Handover (15 min talk + 3 min Q&A)
- Reach-to-grasp (15 min talk + 3 min Q&A)
- Loco-manipulation (15 min talk + 3 min Q&A)
- Physical Fatigue (12 min talk + 3 min Q&A)
Dec 10 – Final Project Presentation

- Handover (15 min talk + 3 min Q&A)
- Reach-to-grasp (15 min talk + 3 min Q&A)
- Loco-manipulation (15 min talk + 3 min Q&A)
- Physical Fatigue (12 min talk + 3 min Q&A)
Dec 12 – Final project presentation

- Perception-action (15 min talk + 3 min Q&A)
- High-level learning (15 min talk + 3 min Q&A)
- Soft hand (7 min talk + 2 min Q&A)
- Kinect teleoperation (7 min talk + 2 min Q&A)
Evaluation criteria for project proposal

• Most people/team get A (90%)

• Criteria
 • Balanced efforts in theory and practice, and among team members
 • Strong preliminary work, done by students in this class
 • Presentation must be within the time limit, preferably fluent

• Report revision – Dec 5
 • Your grade can be changed if you revise your report to address my feedback comments
Literature review evaluation criteria

- Material interest
 - Is the content interesting? – Beyond the course lectures
- Material novelty
 - Is it new? – Recent research, state-of-the-art
- Material relevancy
 - Does the content matter to the team's project?
- Material breadth
 - Did the team cover enough material to be useful? About 3-4 paper per person
- Member contributions
 - Did everyone do work? – Include one slides for task-sharing
- Presentation quality
 - Within time limit, clarity, depth, visualization, fluency
Final presentation evaluation criteria

- Problem Description
 - Is the project objective clear?
- Research Depth
 - Does this project tackle a good research question?
- Technical Contribution
 - Does the project implement a useful method(s)?
- Results
 - How much has this team delivered towards their objective?
- Task Division
 - Did the team divide tasks among their members effectively?
- Presentation Structure
 - A good balance of high-level ideas and low-level details?
- Presentation Quality
 - Is the presentation given fluently?
Teaching evaluation

- **Dec 10 (Monday)** Make sure to bring your computer/phone to the class, to fill in the course evaluation

- Additional questions for evaluating your student mentors
 - Clear about project objective, Provide enough guidance in literature review; help with your understanding of theory/algorithm; help with technical details of experiment/implementation; Communicate effectively; manage the team efficiently; approachable
Evaluation of project success

- All the teams are required to finish their planned experiments
 - Shared-autonomous teleoperation teams – Complete the training, testing and interface evaluation experiments
 - Handover team – data for handover experiment
 - High-level learning – data for simulation game experiment
 - Soft hand – data (video) for system evaluation
 - Physical fatigue – data from Vicon teleoperation experiment
 - Kinect teleoperation – demonstration
Beyond this course

• You may continue your project for
 • Direct research, RBE 550 course project (Spring 2019), Conference Publication, Thesis

• Please let your project mentor know if you would like to continue. I will have a meeting with them soon to come up a plan for future research
Learning object affordance
Learning object affordance

- Affordance
 - Properties of the environment that afford a certain action to be performed
 - Enable the user to categorize objects by their functions
 - A compact and useful representation of manipulation skills
Learning affordance

- Exploration
 - Act on object and observe the reaction \rightarrow correspondence

- Visually observing human or other robot
 - Manipulating tasks
 - Full-body environmental interaction
Represent affordances as Bayesian networks

- Encode the dependencies between actions, object features and the effects of those actions.
- Learn structure using Markov Chain Monte Carlo (MCMC)
- Resulting model interprets the effects of observed actions
Bayesian Network

Symbol	Description	Values
A | Action | grasp, tap, touch
H | Height | discretized in 10 values
C | Color | green1, green2, yellow, blue
Sh | Shape | ball, box
S | Size | small, medium, big
V | Object velocity | small, medium, big
HV | Hand velocity | small, medium, big
Di | Object-hand velocity | small, medium, big
Ct | Contact duration | none, short, long
Bayesian Network

• Demo 1
 • A tap on a small ball resulting in high velocity and medium hand–object distance

• Demo 2
 • A grasp on a small square resulting in small velocity and small hand–object distance

<table>
<thead>
<tr>
<th>obj</th>
<th>action</th>
<th>grasp</th>
<th>tap</th>
<th>touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue, big, ball</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Yellow, small box</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Detection of objects in human action sequences

(a) Ground truth: book
(b) Ground truth: magazine
(c) Ground truth: box
(d) Ground truth: box+pitcher
(e) Ground truth: cup+pitcher
(f) Ground truth: cup+pitcher

= book, = magazine, = hammer, = box, = cup, = pitcher.
Detection of objects in human action sequences

\[
\begin{array}{cccc}
\chi_1^a & \chi_2^a & \chi_3^a \\
\circ_1 & \circ_2 & \circ_3 \\
\chi_1^o & \chi_2^o & \chi_3^o
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>Open</th>
<th>Hammer</th>
<th>Pour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>0.52</td>
<td>0.13</td>
<td>0.35</td>
</tr>
<tr>
<td>Hammer</td>
<td>0.08</td>
<td>0.81</td>
<td>0.11</td>
</tr>
<tr>
<td>Pour</td>
<td>0.13</td>
<td>0.03</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Learning affordance in full-body environmental interactions – FOCUS algorithm

- Model inanimate objects in the environment by structural and functional definitions
 - Structural definition = Capture a simple and generalized visual definition of an object by feature detection
 - Functional definition = Capture object affordance properties

- Object classification
 - Recognize an object by associate an observed action with a particular environmental feature
Process of learning visual features

1. Camera → Raw Video → Face Recognition and Tracking → People’s Positions → Activity Recognition
2. Raw Video → Feature Detection → Features → Object Grab and Generalize → Object Class
3. Object Class → Updated Visual Object Definition → Object Class Library

- Chair: Affordance, Sitting, Temporal association: δ(t), Spatial association: δ(p)
- Door: Affordance, Entry, Temporal association: δ(t), Spatial association: δ(p)
- Visual Features: [1, 1, ...]
Examples
Learning Task features
Learning task features

- Feature selection
- Eliminate redundant and irrelevant features
AfD’s feature elimination

- Automated state abstraction from demonstration
 - In the limit of infinite data, the feature subset it yields will not negatively affect the accuracy of the learner

- Feature elimination judgement
 - Never remove a feature if it negatively impacts accuracy
 - Judgements are based on some held out portion of the data
Example – Learning to play Frogger Game

• Collect demonstrations from human players
 • Play the game for 10 min
 • 306 features in the state representation

• Data processing
 • Only use successful games
 • Remove redundant samples (not pressing keys while thinking or taking a small break)
Performance
Learning Reference Frames
Learning frame of reference

- Five possible frames
Choose the correct frame [8]
How to choose the correct frame?

- Data normalization
 - Rescale data in all dimension to have the same variance and mean zero

- Measurement for framing quality
 - Robot does not have access to the relevant dimensions of the different tasks it is to perform
 - Need a way to measure the quality of a framing by just looking at the raw demonstration data.
Input: \(D, M, N, x_{q0} \)
- \(D \) is the full database encoded in an incremental kd-tree like structure for fast approximate nearest neighbours search;
- \(x_{q0} \) is the initial current state;
- \(N \) is the number of local points;
- \(M \) is the number of gaussians in the GMM
- \(\lambda = (\lambda_1, \ldots, \lambda_M) \) is the GMM parameter list;
- \(D_f(x_{q_t}) \) is the local database consisting of \(N \) points retrieved given the current state \(x_{q_t} \) and using framing \(f \), for \(f=1,2,3 \)

repeat
for \(f = 1 \) to \(3 \) do
 i) Given the current state \(x_{q_t} \) at iteration nr \(t \); find the local database \(D_f(x_{q_t}), N \) for framing \(f \) with fast approximate nearest neighbours search.
 ii) Initialize a GMM parameter list \(\lambda_{0f} \leftarrow k\text{-}mean(D_f(x_{q_t}), M) \).
 iii) Compute the GMM parameter list using EM, \(\lambda_{x_{q_f}} \leftarrow EM(D_f(x_{q_f}), \lambda_{0f}) \).
 for \(i = 1 \) to \(M \) do
 iv) Compute \(h_i(x_{q_f}) \) using (3)
 end for
 v) Predict the desired vector \(\hat{v}_f(x_{q_t}) \) using (4)
 vi) Get the total framing angle error \(E_f \) of \(D_f(x_{q_t}) \) and the weight of framing \(f \) as \(w_f = 1/(0.001 + E_f) \)
 end for
 vii) Now we have \(\hat{v} = \sum (\hat{v}_f(x_{q_t}) \times w_f) / \sum w_f \)
 viii) Use \(\hat{v} \) to update the position and get the new state \(x_{q(t+1)} = x_{q(t)} + \hat{v} \times \tau \), where \(\tau \) is a time constant
until Reproduction done
Example
Learning and Generalization of Complex Tasks from Unstructured Demonstrations [9]

• Proposed a method for
 • Segmenting demonstrations
 • Recognizing repeated skills
 • Generalizing complex tasks from unstructured demonstrations

• Beta Process Autoregressive HMM Algorithm
 • Combines many of the advantages of recent automatic segmentation methods for LfD into a single principled, integrated framework
Framework

Autonomous demo segmentation

Learning frames
Learning task frame

• Define coordinate frames centered on each known object, gripper, world frame

• Cluster the end points of demo plotted in each frame

• Demo of clustered end points in a particular frame →
 • The reference frame in which motor skill often occurs
Reference – feature elimination

Reference

Reference

End
 Incremental, Local, Online Gaussian Mixture Regression (ILO-GMR) [8]

• Objective
 • learn incrementally and online a variety of new context-dependent tasks

• Challenges
 • Unknown task number and complexity at programming time
 • Demonstrator is not allowed to tell the system when introducing a new task
 • Robot figure it out itself → How?
Infer new task information from continuous sensorimotor context

• Key idea
 • Build online and on-demand local Gaussian Mixture Regression models of the task

• Incremental learning of
 • Task category
 • Task framing
ILO-GMR Process

• **Learning**
 • Store all demonstration of all (different tasks)

• **Reproduction**
 • Search in database for N points closest to the current robot states
 • Input these points to local GMR model (with 2-3 basis) to predict near-future behavior

• **Question**
 • What do you mean by closest? – by what features?
Assignment 15 (30 pts) – Due Dec 4

• Read
 • Section 5.6 Learning frame of reference

• Prepare 4-6 presentation slides

• To reflect your understanding
 • Add notes to your presentation slides, or
 • Submit 2-page review
Assignment 15 (30 pts) – Due Dec 4

- Grading and reward policy
 - 4 best work: grade = 100% for this assignment
 - Select 2-4 for student presentation: replace a low-grade assignment or quiz with 100%
Extra Assignment (50 pts) – Due Dec 11

• Read
 • Chapter 7 in Robot learning from human teachers

• Prepare 20 presentation slides

• To reflect your understanding
 • Add notes to your presentation slides, or
 • Submit 2-page review