Learning Low-level Motion Trajectory

Jane Li

Assistant Professor
Mechanical Engineering Department, Robotic Engineering Program
Worcester Polytechnic Institute
Quiz (10 point)

• (4 pts) List the four levels of a robot knowledge hierarchy

• (2 pts) Describe a situation that direct mapping cannot be applied to learning from demonstration

• (4 pts) What are the limitation of kinesthetic teaching?
Robot’s knowledge hierarchy
Mapping from Teacher to Learner

• Direct mapping
 • No correspondence problem
 • Demonstration is recorded in robot’s sensing states

• Not available option to all systems
 • Complex, coordinated motion on high degree of freedom
 • Controlling the robot physically may not be natural
Kinesthetic teaching using force control
Reward shaping and occasional bias
Reward shaping

• How to use Reward signals?
 • Initially, reinforce tendency to correct behavior
 • Gradually, reward more difficult elements of the task \(\rightarrow \) **shaping**

• Significantly more efficiently compare to feedback-only approach
Occasional Bias

• Instead of directly controlling all the agent’s actions
 • Human teacher occasionally bias the action selection

• Advantages?
 • Human doesn’t have to know all about how to perform the task
 • No need for undivided attention from human teacher
Low-level Skill Learning
Overview

• Low-level motion learning
 • Skills, motor skills, primitive actions, low-level motions ...
• Goal
 • Build an accurate model of a primitive action such that it can generalize across a variety of domain specific tasks
Methods

• Dynamic movement primitives (DMPs)
 • Deterministic – learn from individual demo
 • More recent variety
 • Probabilistic DMP – Integration of sensing uncertainty

• Other probabilistic modeling methods
 • HMMs, GMR - Learn from multiple demos
State spaces for motion learning

• An important choice

• Possible frames
 • Joint space frame
 • Task space frame
 • Object-directed frame

• How to make the choice?
 • Generalization
More than kinematic motions

• Choice is also biased by the capabilities of the hardware

• Learning motion in the sensing and actuation space of robots
 • Learning force or compliance profiles
Dynamic Movement Primitives (DMPs)

- Inspiration of motor primitives
- Algorithm
- Example
- Integration with RL
- Limitation
Motor primitives

- Motor primitives
 - Building blocks (control modules) of complex motions and behaviors

- Properties of motor primitives
 - Exist at different levels of motor hierarchy
 - Limited number, yet flexible task-based combination
Motor primitives

• Kinematic motor primitives
 • Strokes, sub-movements

• Dynamic motor primitives
 • Static force filed, muscle and joint torque synergies

• Neural motor primitives
 • A neuron assembly (spinal or cortical neuron), central pattern generators (CPGs)
Example of movement primitives
Motor primitives at behavior level

- Mental templates of motions
 - Control policy

- Examples
 - Bell-shape velocity profile in human motion
 - Fitts’ law – relationship of motion accuracy and speed

\[MT = a + b \cdot ID = a + b \cdot \log_2 \left(\frac{2D}{W} \right) \]
Motion primitives at muscle level

- Co-activation of multiple muscles
Motor Primitives at neural level

- Micro-stimulation of an inter-neuronal region in spinal cord
- Microcircuits are organized into discrete modules, each generating a specific force field
Central pattern generator (CPGs)
How to model goal-directed behaviors of non-linear dynamical system?

- Biological motor control
- Robotics
- Economies
- Traffic predictions
- Etc. ...
Appropriate model for movement primitives

- A generic modeling for \textit{discrete} and \textit{periodic} motions
- Autonomous, time-independent
- Coordinate multiple DOFs, in a stable way
- Model parameters are easy to learn
Appropriate model for movement primitives

• Motion synchronization
 • Phase difference

• Fast to compute
 • Online trajectory modulation

• Temporal and spatial scaling
A damped spring model

\[\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f. \]

- How does the system behave if \(f = 0 \) ?
- Goal of the system?
- How does this system behave if it is critically damped?
Recap: 2nd order dynamic system
System Modeling

• How to model this system?

• Time Domain
 • ODE
 • State space

• Frequency Domain
 • Laplace transform
System Modeling

$$m\ddot{q} + c(\dot{q}) + kq = 0$$

ODE – How to solve?
Characteristic Polynomial

\[a y'' + b y' + c y = 0, \quad a \neq 0. \]

• Let \(y = e^{rt} \) be a solution,
 \[y' = r e^{rt} \quad y'' = r^2 e^{rt} \]
 \[a r^2 e^{rt} + b r e^{rt} + c e^{rt} = 0 \]
 \[e^{rt} (ar^2 + br + c) = 0 \]
Solutions to Characteristic Equations

\[ar^2 + br + c = 0 \]

- \(b^2 - 4ac > 0 \) \rightarrow two distinct real roots \(r_1, r_2 \)
- \(b^2 - 4ac < 0 \) \rightarrow two complex conjugate roots \(r = \lambda \pm \mu i \)
- \(b^2 - 4ac = 0 \) \rightarrow one repeated real root \(r \)
Solution to ODE – Case 1

Two distinct real roots: $b^2 - 4ac > 0$ leads to two distinct real roots r_1, r_2

- Two distinct real roots:

 \[y_1 = e^{r_1 t} \quad y_2 = e^{r_2 t} \]

- General solution

 \[y = C_1 y_1 + C_2 y_2 = C_1 e^{r_1 t} + C_2 e^{r_2 t}. \]
Solution to ODE – Case 2

- Two complex conjugate roots

\[r_1 = \lambda + \mu i \quad r_2 = \lambda - \mu i \]

- Euler formula

For any real number \(\theta \),
\[e^{\theta i} = \cos \theta + i \sin \theta \]

\[e^{rt} = e^{(\lambda + \mu i)t} = e^{ \lambda t} e^{\mu i t} = e^{ \lambda t} (\cos \mu t + i \sin \mu t) \]
Solution to ODE – Case 2

\[e^{rt} = e^{(\lambda + \mu i)t} = e^{\lambda t} e^{\mu i t} = e^{\lambda t} (\cos \mu t + i \sin \mu t) \]

\[y = C_1 e^{\lambda t} (\cos \mu t + i \sin \mu t) + C_2 e^{\lambda t} (\cos \mu t - i \sin \mu t) \]

- General solution

\[y = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t. \]
Solution to ODE – Case 3

\[b^2 - 4ac = 0 \quad \rightarrow \quad \text{one repeated real root } r \]

- Repeated real root

\[r = \frac{-b}{2a} \]

- General solution

\[y = C_1 e^{rt} + C_2 t e^{rt} \]
When do these solutions go unstable?

\[b^2 - 4ac > 0 \quad \Rightarrow \quad y = C_1 y_1 + C_2 y_2 = C_1 e^{r_1 t} + C_2 e^{r_2 t}. \]

\[b^2 - 4ac < 0 \quad \Rightarrow \quad y = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t. \]

\[b^2 - 4ac = 0 \quad \Rightarrow \quad y = C_1 e^{rt} + C_2 t e^{rt}. \]

Solutions have negative real parts
Behavior of Stable Solution

• Let \(x(t; a) \) be a solution with initial condition \(a \)

• A solution is **stable** if other solutions that start near \(a \) stay close to \(x(t; a) \)

• A solution is **asymptotically stable** if all the nearby solutions converge to this stable solution for large time

\[
x(t; b) \rightarrow x(t; a) \text{ as } t \rightarrow \infty
\]
Behavior of asymptotically stable solutions

\[m\ddot{q} + c(\dot{q}) + kq = 0 \]

\[b^2 - 4ac < 0 \]

\[y = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t. \]
Over, critical, under damped systems

\[b^2 - 4ac > 0 \] \quad \text{Over}

\[b^2 - 4ac < 0 \] \quad \text{Under}

\[b^2 - 4ac = 0 \] \quad \text{Critical}

All asymptotically stable
Autonomous VS forced systems

\[m\ddot{q} + c(\dot{q}) + kq = 0 \]

\[m\ddot{q} + c\dot{q} + kq = u \]
Forced System

\[m\ddot{q} + c\dot{q} + kq = u \]

\[u(t) = A \sin \omega t \]
Back to DMP model
A damped spring model

\[\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f. \]

- How does the system behave if \(f = 0 \) ?
- Goal of the system?
- How does this system behave if it is critically damped?
The forcing term

\[\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f \]

- How does the system behave if \(f \neq 0 \) ?
- How to set the forcing term such that the system will eventually stabilize at the goal?
- What can the forcing term encode?
The forcing term

\[\dot{\ddot{y}} = \alpha_z (\beta_z (g - y) - \dot{y}) + f \]

\[f(t) = \frac{\sum_{i=1}^{N} \Psi_i(t) w_i}{\sum_{i=1}^{N} \Psi_i(t)} \]

- The forcing term preserves the shape of a trajectory
- Fixed basis function
- Adjustable weight
- How to get rid of the explicit time dependence?
Change basis by introducing a canonical system

\[\frac{\tau \dot{x}}{\dot{\alpha}_x} = x, \]

\[f(t) \rightarrow f(x) \]

- \(t = 0 \) motion starts
- \(t = \infty \) motion finishes
Reformulation of Basis

\[f(t) = \frac{\sum_{i=1}^{N} \Psi_i(t) w_i}{\sum_{i=1}^{N} \Psi_i(t)} \]

\[f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0) \]

- Where

\[\Psi_i(x) = \exp\left(-\frac{1}{2\sigma_i^2} (x - c_i)^2 \right) \]
Basis and weights

Psi activations

x-domain

Psi activations

t-domain

Weighted summation

Weighted summation

<table>
<thead>
<tr>
<th>activation</th>
<th>weighted summation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
</tr>
</tbody>
</table>

11/12/2018
How to use DMP to learn from a demonstration

- Transformation system:
 \[\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f \]

- Forcing term:
 \[f_{\text{target}} = \tau^2 \ddot{y}_{\text{demo}} - \alpha_z (\beta_z (g - y_{\text{demo}}) - \tau \dot{y}_{\text{demo}}) \]
How to use DMP to learn from a demonstration

• Estimate the weights using locally weighted regression (LWR)

\[w_i = \frac{s^T \Gamma_i f_{\text{target}}}{s^T \Gamma_i s} \]

• Where

\[
\begin{align*}
s &= \begin{pmatrix} \xi(1) \\ \xi(2) \\ \vdots \\ \xi(P) \end{pmatrix} \quad \Gamma_i &= \begin{pmatrix} \Psi_i(1) & 0 \\ 0 & \Psi_i(2) \end{pmatrix} \\ f_{\text{target}} &= \begin{pmatrix} f_{\text{target}}(1) \\ f_{\text{target}}(2) \\ \vdots \\ f_{\text{target}}(P) \end{pmatrix}
\end{align*}
\]
Apply DMP on a single DOF
Reading

- Understand how to generate
 - Periodic motion
 - Multi-DOF synchronization
 - Obstacle avoidance
Assignment 9 – Due Nov 21

• Download and exercise with DMP Matlab code
 • http://www-clmc.usc.edu/software/git/gitweb.cgi?p=matlab/dmp.git;a=summary
 • Click the “snapshot” of master branch to download

• Temporal & spatial scaling (45 pts)
 • Generate a trajectory and learn it as a DMP
 • Use the learned DMP to generate a trajectory twice as slow to the original goal
 • Use the learned DMP to generate a trajectory to a new goal

Reference

• Study wolf’s DMP lecture notes
 • Part 1: https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/
 • Part 2: https://studywolf.wordpress.com/2013/12/05/dynamic-movement-primitives-part-2-controlling-a-system-and-comparison-with-direct-trajectory-control/
 • Part 3: https://studywolf.wordpress.com/2014/03/07/dynamic-movement-primitives-part-3-rhythmic-movements/