Sensing Physiological Signals for Human-Robotics Interaction

Paola Contessa
Assist. Director of Research

Michael D. Twardowski
Research Engineer
PhD Student, Robotics Engineering

Synergy of Human and Robotic Systems
Altec Inc. founded by Prof. Carlo J. De Luca

A COMMITMENT TO FORWARD THINKING & TRANSLATIONAL INNOVATION

1997
Altec Inc. founded by Prof. Carlo J. De Luca

First fixed-spacing sensor for high-fidelity EMG
- From research studies of fatigue and muscle activation monitoring

1997-2003
First fully wireless sEMG system
- From research studies of movement disorders monitoring

2003-2006
First fully wireless sEMG system
- From research studies of motor control in health, aging, and disease

Avanti, Bluetooth, Mini, and Galileo Wireless Sensors
- From research studies of prosthetic control, vigorous activities, subvocal EMG-voice, control of dynamic tasks

2006-2010
First non-invasive system for extracting neural information
- From research studies of motor control in health, aging, and disease

2018
Conceptualize new EMG technology

Development of EMG products

Scientific/Research Questions

Advance understanding of human movement

Enabling new research applications

Human Machine Interfaces • Assistive Devices • Rehabilitation • Robotics • Ergonomics • among other fields
AREAS OF FOCUS THAT WILL SHAPE OUR FUTURE

Learn more at www.delsys.com/altec/

Engineering the Next-generation Neural Interface

EMG-based Silent Speech Recognition

Next-generation sensor technology

Tracking Movement Disorders
CLASS SCHEDULE

PART I • OCT 1\(^{st}• 13:00-14:20

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Introduction</td>
</tr>
<tr>
<td>30 min</td>
<td>Sensing EMG and biomechanics signals - Q&A</td>
</tr>
<tr>
<td>30 min</td>
<td>Demo – Q&A</td>
</tr>
<tr>
<td>10 min</td>
<td>Hands on</td>
</tr>
</tbody>
</table>

PART II • OCT 2\(^{nd}• 13:00-14:20

- Bhawna Shiwani: Processing Physiological Signals for Human-Robotics Interaction

PART III • OCT 8\(^{th}• 13:00-14:20

- Bhawna Shiwani: From EMG to motor units: accessing the neural control of movement

PART IV • OCT 10\(^{th}• 13:00-14:20

- Michael Twardowski: Improving neural interfaces for robotics/prosthetic control
What is in the EMG signal?

Electro | Electric
Myo | Muscle
Graphy | Graph

Electromyography is the study of muscle function through the inquiry of the electrical signal the muscles emanate.

MUSCLES ALIVE
Basmajian & De Luca, 1985
What is in the EMG signal?

1. Control signal from brain
2. Motor Unit Firings
3. Motor Unit Electrical Signal
4. Muscle Electrical Signal

Muscle Force Output

Spinal Cord
- Motor Unit 1
- Motor Unit 2
- Motor Unit 3

Muscle Fibers

EMG Signal

Muscle Force
Record Good Quality EMG Signals

- **Low Baseline Noise**
 Quality and stability of the skin-electrode interface.

- **Low Line Interference and Other Contaminants**
 Low power line 50/60 Hz noise, no clipping.

- **High Signal-Noise Ratio**
 High-amplitude EMG signal and low baseline noise.
Record Good Quality EMG Signals

View Webinar

WHAT SHOULD BE IN AN **EMG System**

- Full Bandwidth Signal
- Low Noise Electronics
- Synchronized Signals
- Fixed Spacing
- Reduced Crosstalk
- Suppressed Artifacts
- High-Fidelity
- Integration Options

Stable
Reliable
Adaptable
Research-Centric

Wearable Sensors for Movement Sciences
Record Good Quality EMG Signals

APPLICATION

- **Sensor Location:**
 Place on muscle belly for high-amplitude sEMG signal

- **Skin Preparation:**
 Clean and shave skin to improve skin-electrode contact

SENSOR POSITION & SKIN PREPARATION

1. Clean skin with alcohol swab.
2. Firmly apply the sensor to skin.
Acknowledgements