Synergy of Human and Robotic Systems

Jane Li
Assistant Professor
Mechanical Engineering Department, Robotic Engineering Program
Worcester Polytechnic Institute
Overview

- Course logistics
- Introduction
Course logistics
• Research website
 • http://users.wpi.edu/~zli11/index.html

• Office hour
 • 85 Prescott 223C
 • Thursday, 3:00-4:00pm

• Interested in lab research
 • Come to talk to me during office hour
Course website

- Course website
 - Course syllabus and schedule
 - Textbook & Reference resources

- Canvas
 - Course information and materials
 - Q&A, Discussion Forum
 - Course work submission, Grades
• Sihui Li
 • sli16@wpi.edu
 • 2nd year PhD

• Research focus
 • Shared autonomous tele-nursing robots
 • Teleoperation interfaces,
 • Learning from demonstration

• Office hour
 • Monday 3-4 pm, 224 at 85 Prescott
Pre-requisites

- Linear algebra

- Linux OS, bash commands, Git

- Matlab
 - Coding assignments
 - Data analysis, algorithm prototyping
What you expect to get from this course

- On both human and robot
 - Modeling, control and learning of human and robot motions
 - Applications on various human-robot system

- Theoretical topics
 - Robot Kinematics, robot learning algorithms

- Practical topics
 - Exoskeleton for stroke rehabilitation
 - EMG-controlled prosthetic arm
 - Intelligent tele-nursing robots
Pre-requisites

• Linear algebra
 • Matrix operations, dot products, cross products, etc.

• Linux OS, bash commands, Git

• Python Coding
 • Assignments – can be done in Matlab
 • Project coding – all in python!

• You may struggle if you don’t know it well
Recommended skills

• Big plus if you know it well
 • Robot kinematics
 • ROS, and ROS-based software
 • Computer vision (OpenCV)
 • Experience with real robots (Baxter, ReFlex SF hand, Mobile base)
 • Experience with RGDB cameras (Kinect, Realsense) and LIDAR
Reference books
Further readings

- The Computational Neurobiology of Reaching and Pointing
 A Foundation for Motor Learning
 Reza Shadmehr and Steven P. Wise

- HUMAN ROBOTICS
 NEUROMECHANICS AND MOTOR CONTROL
 ETIENNE BURDET, DAVID W. FRANKLIN, AND THEODORE E. MILNER

- MOTOR LEARNING AND CONTROL
 Concepts and Applications
 Richard Magill, David Anderson, Eleventh Edition
Your grade

- In-Class Participation and Preparation 10%
 - Attendance to lecture 3% + Active participation 7%.

- Quizzes 20%

- Assignments 25%

- Course project 35%
 - Project proposal 10% + Project proposal presentation 5%
 - Project report 10% + Final presentation 10%

- Literature review (report + presentation) 10%

- Extra credit
Quiz

• Quiz every lecture!
 • Given at the very beginning of the class
 • Be sure you are not late

• Make sure you prepare
 • Review slides and recorded lecture (Echo 360)
 • Do assignments

• Make sure your hand-writing is readable
In-class Participation

• Participation matters!

• Attending lectures
 • Count your attendance by quiz submission

• Ask and answer valuable questions in class and on Canvas
 • TA will take notes in class and count Q&A

• Help each other in projects
 • Teammates will evaluate each other
In-class participation

• To avoid miscalculation:
 • Check with TA for your participation records
 • Keep a log for your work

• Submit a note by the end of the course
 • A one-page description of how you have helped teams/classmates
 • Include a paragraph in project report to describe your contribution
Assignments

• Weekly Assignment
 • Math problems
 • Algorithm implementation
 • Individual paper review

• Assignments must be done individually!
Individual Paper Review

• Individual paper review assignment will be given every week
 • Assigned reading can be a paper or book chapter
 • Prepare a 6-8 pages presentation slides
 • Express your in-depth understanding either in slide notes, or submit an additional paper review report
 • No more than 2 pages, may include figures
 • Guideline for paper review – see course website: https://docs.google.com/document/d/1AipcpudCY48TmTwt2iOrt77LMgOnsHNmmNmMHOC2Nxg/pub
 • Good paper review will be selected for student talk
Student talk for individual paper review

- Select four best paper reviews from the class
 - Receive 100% for that paper review assignment

- Choose one to give a 5 min talk in every class
 - Extra credit as reward
 - Can be used to replace one quiz grade with 100% (any one you choose)
 - Consideration for grade boosting if you are on the edge
Each project team should conduct a literature survey

- **Assigned topic**, relevant to your project
- Read 10+ papers in depth on this topic
 - Divide the task among teammates
 - Start early and continue weekly discussion
- Compose a 10-page literature survey report
- Deliver a 20-min presentation
 - See course schedule for the dates of student talk on special topic.
Presentation for group paper review

• In-depth understanding of the paper you reviewed
 • Tentatively 20 minutes long + 5 minutes of questions
 • Similar to a conference talk

• Evaluated on
 • Depth of understanding
 • Clarity of presentation
 • Presentation skill (don’t run out of time!)
Course project

• This course is research-focused and project-orientated.

• Prepare you for doing independent research
 • Propose methodology (e.g. experimental protocol, algorithms)
 • Show your results
 • User study – data collection and analysis
 • Algorithm – simulation and implementation
 • Hardware development – demonstration
Choose your course project

- Select among the projects offered by the course
 - Introduction to course project – Lecture on Sept 5
 - Work in team

- Propose your own individual project
 - Pros: Project relevant to your thesis, or on-going research
 - Cons: You will be on your own
 - Need approval of the instructor
Choose course project

• Submit through google form – link will be published

• First and second choices

• Justification for your choices
 • Previous course work, project experience

• Preferred teammates
 • List three, with student’s name, major, contact email
Project Team

• Instructor will assign project team based on
 • Student’s choice & skills
 • Whether there are enough students to form a team

• Team size is proportional to project workload
 • 3-5 members per team
 • Led by TA and senior students in my lab
As a team you should ...

- Meet with instructor weekly for project discussion
- Meet weekly for literature review reading group

Your project will be evaluated by ...

- Mandatory – Project proposal, report, presentation, demonstration (if applicable)
- Optional, but highly recommended: research log, project website
 - Show the project website to your future employer/graduate advisor
Project leader – Kenechukwu C. Mbanisi

- Kenechukwu C. Mbanisi
 - kcmbanisi@wpi.edu
 - 3rd year PhD

- Research focus
 - Human motion modeling and learning
 - Human performance assessment
 - Human-vehicle interaction
Project leader – Alexandra Valiton

- Alexandra Valiton
 - arvaliton@wpi.edu
 - 2nd year PhD

- Research focus
 - Shared autonomous tele-nursing robot
 - Interactive perception
Project leader – Heramb Nemlekar

- Heramb Nemlekar
 - hsnemlekar@wpi.edu
 - 2nd year Master

- Research focus
 - Human-robot handover
 - High-level motion planning
Important!!!

- Submitted before **noon** of the due date.
 - Do not count late submission

- Check **Course Schedule** *frequently* for most up-to-date submission date

- Check **your grade** *frequently*. Before the end of the course, you can
 - Attend **office hour** if you need help
 - Ask for **extra work** if you want to make up for your low grade

- Keep in touch with instructor, TA, project team
 - Make sure you teammates know what you are working, because **they will evaluate you in the end**.
Academic integrity

- WPI policy
 - https://www.wpi.edu/about/policies/academic-integrity
 - Same penalty for all members involved.

- Do not risk your future
Introduction
Synergy = work better together!
Synergy – When redundancy exists
Synergy – When redundancy exists
Synergy in human and robotic systems
Theory and applications

• Theory
 • Motion modeling, control and learning of/between human and robots

• Applications
 • Of human – Exoskeletons and humanoid
 • By human – Teleoperated robots
 • For human – assistive robots
Synergy of human and robotic systems
Exoskeleton for Power Augmentation
Teleoperation – control and teaching robots
From physical world to virtual reality
Novel teleoperation interfaces
Humanoid
How to achieve human-robot synergy?
Course topics

• Bio-inspired mechanical design and motion control

• From teleoperation to shared-autonomous control

• Learning from human
Assignment 01
Assignment 01 – Due Aug 29 (Wed) by noon

• Introduce yourself to this course:
 • https://goo.gl/forms/IHIloJOFkYdRcQbh2

• Make sure you can access this course on Canvas

• Check the course syllabus and schedule
Assignment 01 – Due Sep 5 (Wed) by noon

• Review course topics
 • Chapters in the Handbook of Robotics, 2nd Edition, 2016
 • CH 43 – Tele-robotics
 • CH 70 – Human-robot augmentation
 • CH 74 – Learning from humans
 • Fill the form: https://goo.gl/forms/E1PbfWzHvfH8Xnk53
Course work submission and format
Submission on Canvas

- Go to Canvas and click on Assignments.

- Choose respective assignment and submit zip (if coding is part of the assignment) or pdf (paper review)

- You can update your post until the time of the deadline!
Submission Format

• Applied to all the submission for this course
 • Assignments, project proposal, paper preview, reports, etc.

• Submit to Canvas
 • Post Title = use [LastName]_[FirstName]_[submission content]
 • Post Content = student’s name, student number, teammates
 • Attachment
 • Multi-file submission: include all document in a Single zip file
 • Single-file submission: attach to post directly

8/27/2018
Submission Format

- Simulation model and coding files
 - In one sub-folder
 - Necessary documentation

- Documents in pdf formats
 - Math problem, paper review, report
 - 11pt, single-spaced, with 1-inch margins
Submission Format

- Submission in an incorrect format
 - First time – warning
 - Second time – deduct 20% from the grade
 - Third time and more – Rejected without grading
Naming protocol

• Assignments
 • [LastName]_[FirstName]_HW_[Assignment number]

• Reports
 • [LastName]_[FirstName]_Report_[Report_title]

• Paper Reviews
 • [LastName]_[FirstName]_Review_[Report_title]
 • In the post, include title and author of the reviewed paper, with a link to the paper file.
Welcome, and enjoy!