Robot Learning from Human Teachers

Jane Li

Assistant Professor
Mechanical Engineering Department, Robotic Engineering Program
Worcester Polytechnic Institute
In the LfD framework, what does each component study?
Human Social Learning
Overview

- As learners, children have
 - Motivation to interact
 - Motivation to imitate

- How to model the learning interaction?

- As a teacher, how to scaffold this learning process?
Children’s motivation to interact
What enables a child to interact?
- Being able to recognize, seek proximity to, and interact with (caregivers)

A big assumption
- Children assume that the caregiver has their best interest

Assisted imitation
- A dynamic turn-taking activity

How to model this turn-taking activity?
• One recent HRI focus
 • Modeling engagement and turn-taking dynamics in interaction

• Examples
 • Partner robot – Generate connection event [1]
 • Social robot – Control multimodal dialog [2]
 • Conversational service robots – Controls task-based dialog [3]
Generating connection event

• Engagement between a human and a humanoid robot

• Assume both human and robot can perform
 • Look at the other’s face, objects on the table or “away”
 • Point at objects on the table
 • Nod the head (up and down)
 • Shake the head (side to side)
 • Speech (not available for now)
Generating connection event

- Connection events include
 - Directed Gaze
 - Mutual Facial Gaze
 - Adjacency Pair
 - Backchannel
Robot generates non-verbal behavior that contributes to HRI engagement.
Generating connection event

Process human-initiated CE

engagement recognition

human-initiated CE’s
robot-initiated CE’s
turn fragments

gaze/point inhibit

engagement generation

symbolic vision

engagement statistics

speech & gestures
Evaluation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Melvin seemed more like a human than a robot.</td>
<td>3.43</td>
<td>2.27</td>
<td>.55</td>
<td>< 0.05</td>
</tr>
<tr>
<td>2) Melvin looked at the table and the puzzle pieces at appropriate times.</td>
<td>6.21</td>
<td>4.47</td>
<td>.73</td>
<td>< 0.05</td>
</tr>
<tr>
<td>3) Melvin always looked at me in a natural way.</td>
<td>4.57</td>
<td>2.73</td>
<td>.58</td>
<td>< 0.01</td>
</tr>
<tr>
<td>4) Melvin looked at me at appropriate times.</td>
<td>6.21</td>
<td>2.40</td>
<td>.46</td>
<td>< 0.001</td>
</tr>
<tr>
<td>5) I always knew what object Melvin looked at.</td>
<td>6.07</td>
<td>3.80</td>
<td>.83</td>
<td>< 0.05</td>
</tr>
<tr>
<td>6) I could easily tell which objects Melvin looked at.</td>
<td>5.71</td>
<td>3.40</td>
<td>.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>7) I looked at Melvin’s face often.</td>
<td>6.07</td>
<td>5.00</td>
<td>.50</td>
<td>< 0.05</td>
</tr>
<tr>
<td>8) I made eye contact with Melvin frequently.</td>
<td>5.43</td>
<td>4.00</td>
<td>.62</td>
<td>< 0.05</td>
</tr>
<tr>
<td>9) I always knew what object Melvin pointed at.</td>
<td>6.57</td>
<td>3.13</td>
<td>.72</td>
<td>< 0.001</td>
</tr>
<tr>
<td>10) I could easily tell the object that Melvin pointed to.</td>
<td>6.43</td>
<td>3.07</td>
<td>.70</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Switch between multiple situated modules
Switch between multiple situated modules

- Bottom-up method
Implementing interaction dynamics

• The basic strategy of implementing interaction dynamics
 • Develop situated modules for various situations.
 • Define episode rules for sequential transition.
 • Modify implemented episode rules (rules of negation) to suppress execution of the situated modules for a particular long-term context.
Switch between expert models

• Requirements for conversational robot intelligence model
 • Integration of dialogues and physical actions
 • Handling multiple task domains
 • Interruption handling
 • Parallel task execution
 • Extensibility

• Goal
 • Build a dialogue and behavior controller
Architecture for conversational service robots

- Recognition results, confidence scores, etc.
- Speech and image recognizers, sensor interpreters, & information integrators

Behavior and dialogue controller

- Multi-modal action
- Robot & human positions, etc.

Action Executor

- Physical action commands
- Text

Hardware controller

- Microphones
- Cameras
- Sensors
- Robot hardware

Speech synthesizer

- Speaker
Change in primitive tasks and experts

Diagram:
- **Task**: setting task → Tell person A to go to the client → task planning
- **Primitive Task**: understand messaging request → go to A → tell A the message
 - **Expert**: Select according to the first human utterance → request understanding in the message domain → physical action planning for approaching → information providing expert for messaging
- **Lower-layer modules**:

Review paper

Assignment 10 – Due Nov 13

• Refer to “Research paper review guidance”
 • https://docs.google.com/document/d/1oVmjZSj09YY_PsutFf6UBMm3Ly18_VHOvk_Yno-7k5M/pub

• Prepare 4-6 presentation slides
 • Good presentation slides will be rewarded with additional credit and will have a chance to give a 5-min presentation in coming lecture
 • More opportunity coming soon
Children’s motivation to imitate
Children have motivation to imitate

• Like-me bias
 • An inclination and ability to map self and others’ actions

• Theory of “legitimate peripheral participation”
 • Children want to participate adults’ world
 • Get out of subordinate learner role, and be able to choose what to do
 • Strong motivation for learning
Teacher – Method to impose influence

- Given the motivation of imitate, there are several ways that the teacher can influence the learner
 - **Stimulus enhancement**
 - Emulation
 - Mimicking
 - Imitation
Teacher – Method to impose influence

• Given the motivation of imitate, there are several ways that the teacher can influence the learner
 • Stimulus enhancement
 • Emulation
 • Mimicking
 • Imitation
Given the motivation of imitate, there are several ways that the teacher can influence the learner:

- Stimulus enhancement
- Emulation
- Mimicking
- Imitation
Teacher – Method to impose influence

- Given the motivation of imitate, there are several ways that the teacher can influence the learner
 - Stimulus enhancement
 - Emulation
 - Mimicking
 - Imitation
All the four methods benefit self-exploration

- Particularly when the target goal is rare occurrence

Which is the “best”?

- Depend on the nature of problem, and current behavior of social partner
How to create learning motivation for robot?

• Reinforcement Learning
 • Reward novel experience

• Developmental learning [1]
 • Integrate self-motivation and curiosity
 • Build a control system to continue to adapt to new problems
How to Scaffold the learning process?
Human teacher scaffold robot learner

• Human can help robot with hard problems in learning

• Three methods for scaffolding
 • Direct robot attention
 • Dynamic scaffolding
 • Externalize and modeling meta-cognition
Direct robot’s attention

• Effect of social gaze
 • Lots of studies in HRI

• Example
 • Teach a robot as if parenting a baby
 • How to?
Example – Parenting robot

- Parents (human teacher) alter their actions when interacting with infants, compared to when interacting with adults
 - Put longer and more pauses between actions
 - Exaggerate actions
 - Decompose a rounded movement into several linear movements
- Baby (robot learner)
 - Immature attention capability, don’t know where to pay attention to
 - Parental teaching helps a robot to detect significant information of the actions
Parental action demonstration

- Analyze videotaped data of parent-infant/-adult interactions
Locate attention

- Apply saliency-based attention model
Experimental comparison of saliency map

- Experimental conditions
 - Partner = infant
 - Partner = adult

- High value in saliency when the partner is infant
 - Suppressing body motion
 - Add motion to the cup
 - Long pause before start and after end of the demonstration
 - Stop and comment on action/show additional emotional facial expression
Demonstrate to robot simulation

- Program robot to look at the most salient part
