Redundancy resolution based on optimization

Jane Li

Assistant Professor
Mechanical Engineering Department, Robotic Engineering Program
Worcester Polytechnic Institute
Quiz (10 pts)

• (6 pts) Explain the optimization/tradeoff underlying the damped least square method

\[
\min_{\dot{\mathbf{q}}} \frac{\mu^2}{2} \|\dot{\mathbf{q}}\|^2 + \frac{1}{2} \|\mathbf{x} - J\dot{\mathbf{q}}\|^2 = H(\dot{\mathbf{q}})
\]

• (2 pts) List two metrics that measure the distance from singularity

• (2 pts) How to guarantee the secondary task will not interfere the primary task
To render robust behavior when crossing the singularity, we can add a small constant along the diagonal of \((J(q)^T J(q))\) to make it invertible when it is singular.
Distance to singularity

• Manipulability index – Jacobian matrix determinant

\[\mu = \sqrt{|J J^T|} \]

• Which is indeed

\[\mu = \prod_{i=1}^{M} \sigma_i \]

• Is it a good measurement?
Distance to singularity

- Manipulability index – condition number
 \[\kappa = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \]

- Alternatively, can use isotropy
 \[\text{Isotropy} = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} \]

- Is it good enough?
Distance to singularity

- Manipulability index – the smallest singular value
 \[\sigma_{\text{min}} \]
- Direction of velocity disadvantage
- Is it good enough?
Distance to singularity

• Manipulability index

\[\mu' = \sum_{i=1}^{M} \sqrt{|J_i J_i^T|} \]

• What does it imply?
 • Manipulability of every sub-manipulator (non-redundant)
The Null-space of Jacobian

- Secondary tasks is satisfied in the **null-space** of the Jacobian pseudo-inverse

- In linear algebra, the **null-space** of a matrix \(A \) is the set of vectors \(V \) such that, for any \(v \) in \(V \), \(0 = A^Tv \).

- \(V \) is orthogonal to the range of \(A \)
The Null-space of Jacobian

- Given the null space of Jacobian, the secondary task will not disturb the primary task

- The null-space projection matrix for the Jacobian pseudo-inverse is:

\[N(q) = I - J(q)\dagger J(q) \]
The Null-space of Jacobian

- Project a **task space velocity vector** into the null-space

\[
\dot{q} = J(q)^\dagger \dot{x} + (I - J(q)^\dagger J(q)) J_c(q)^\dagger \dot{x}_c
\]

Primary task

Secondary task
Redundancy resolution based on optimization
Still a problem ...

- Methods for redundancy resolution has been studied for decades, yet there are still unsolved problems

- Multi-objective Optimization
 - What are the optimization criteria?
 - How to assign weighting coefficients?
Robot manipulator – Performance to optimize

- Manipulability
- Force/velocity transmission efficiency
- Energy
- Motion smoothness
- Task accuracy

<table>
<thead>
<tr>
<th>Performance indices</th>
<th>Formula</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinant of Jacobian (1984)</td>
<td>$w_n = \sqrt{JJ^T}$</td>
<td>Uniformity of the torque-velocity gain</td>
</tr>
<tr>
<td>Condition number (1982)</td>
<td>$\kappa = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$</td>
<td>Variance in velocity/force transmission</td>
</tr>
<tr>
<td>Isotropy (1987)</td>
<td>$I_{so} = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}}$</td>
<td>same as condition number</td>
</tr>
<tr>
<td>Min eigen-value of Jacobian (1987)</td>
<td>$I_{so} = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}}$</td>
<td>Efficiency of force/velocity transmission</td>
</tr>
<tr>
<td>Dynamic Manipulability (1985)</td>
<td>$G = J^{-T}MJ^{-1}$</td>
<td>Uniformity of this torque-acceleration gain</td>
</tr>
<tr>
<td>Distance from singularity (1987)</td>
<td>$H = \left</td>
<td>\prod_{i} \Delta_i \right</td>
</tr>
<tr>
<td>Acceleration radius (1988)</td>
<td>$\tau = M(\theta) + C(\theta, \dot{\theta})\dot{\theta}$</td>
<td>acceleration capability of the end-effector</td>
</tr>
<tr>
<td>Force transmission ratio (1988)</td>
<td>$\alpha = [(u^TJJ^Tu)^{1/2}]$</td>
<td>Force gain along task-compatibility direction</td>
</tr>
<tr>
<td>Velocity transmission ratio (1988)</td>
<td>$\beta = [u^T(JJ^T)u]^{1/2}$</td>
<td>Velocity along task-compatibility direction</td>
</tr>
<tr>
<td>Min Jerk model (1984)</td>
<td>$\min(\frac{\partial^3x}{\partial t^3})$</td>
<td>Motion smoothness</td>
</tr>
<tr>
<td>Min (commanded) torque-change (1985,1989)</td>
<td>$\min(\frac{\partial T}{\partial x})$</td>
<td>Motion smoothness</td>
</tr>
<tr>
<td>Min work model (1983)</td>
<td>$\min(W)$</td>
<td>Energy</td>
</tr>
<tr>
<td>Min variance model (1989)</td>
<td>$\min[\text{var}(x - x_d)]$</td>
<td>Task accuracy</td>
</tr>
</tbody>
</table>
Common Objectives for Redundant Resolution

- Tracking end-effector trajectory → primary task

- Obstacle avoidance
 - Pseudoinverse – Incorporate obstacle as secondary constraints
 - Artificial potential field – repulsive obstacle + attractive target

- Motion limits
 - Position, velocity, acceleration
 - Avoid vibration, improve motion smoothness
To be consistent and predictable, robot motion needs to be repetitive in both task and configuration space

- Close path in task space \rightarrow close path in configuration space

Unpredictable robot behavior

- Joint angle drift
- Readjusting the manipulators' configuration with self-motion at every cycle \rightarrow inefficient
Methods

- Baseline = Closed-loop pseudo-inverse

- Define a cost function to optimize for motion repetition, and solve it using
 - Genetic Algorithm [1]
 - Dynamical quadratic programming [2]

- Continuous pseudo-inverse and global redundancy resolution [3]
Closed-loop pseudo-inverse

• Compute the joint position through time integration pseudo-inverse

\[\Delta q = J^\dagger \Delta x \]

Unpredictable, not repeatable arm configurations
Closed-loop pseudo-inverse + Genetic Algorithm

\[\Delta q = J^\dagger \Delta x \]

\[\Delta x^* = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_m \\ \Delta x_{m+1} \\ \vdots \\ \Delta x_n \end{bmatrix} \]

Generated by GA

\[J^* = \begin{bmatrix} -l_1S_1 & -l_2S_2 & \cdots & -l_nS_n \\ l_1C_1 & l_2C_2 & \cdots & l_nC_n \end{bmatrix} \]

\[\begin{bmatrix} j_{(m+1)1} \\ \vdots \\ j_{(m+1)n} \\ \vdots \\ j_{n1} \\ \vdots \\ j_{nn} \end{bmatrix} \]

1. Begin
2. \(T = 0 \)
3. calculate \(\Delta x = x_{\text{ref}} - x_{\text{ref}} \cdot J \)
4. initialize random population
5. \(P(T) = \left[\begin{bmatrix} J^{(1)} : \Delta x^{(1)} \end{bmatrix}, \ldots, \begin{bmatrix} J^{(N)} : \Delta x^{(N)} \end{bmatrix} \right] \)
6. get \(\Delta q = J^{-1} (q) \Delta x^* \) and \(q = f \Delta q \)
7. evaluate \(P(T) \)
8. repeat
9.
10.
11.
12. get \(\Delta q = J^{-1} (q) \Delta x^* \) and \(q = f \Delta q \)
13. evaluate \(P(T) \)
14. \(T = T + 1 \)
15. until termination condition is TRUE
16. get new \(q \)
17. End

Use GA to update \(P(T) \)

Cost function?
Weighted least squares

Minimize the displacement between initial and current joint configurations over a time step
Simulation Result

<table>
<thead>
<tr>
<th></th>
<th>CLGA $r = 0.7$</th>
<th>CLGA $r = 1.0$</th>
<th>CLGA $r = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3R$</td>
<td>9.96E–04</td>
<td>8.84E–04</td>
<td>1.08E–03</td>
</tr>
<tr>
<td>$4R$</td>
<td>7.12E–04</td>
<td>7.38E–04</td>
<td>5.70E–04</td>
</tr>
<tr>
<td>$5R$</td>
<td>6.73E–04</td>
<td>5.42E–04</td>
<td>6.15E–04</td>
</tr>
<tr>
<td>$6R$</td>
<td>5.98E–04</td>
<td>4.81E–04</td>
<td>8.57E–04</td>
</tr>
<tr>
<td>$7R$</td>
<td>1.26E–03</td>
<td>5.44E–04</td>
<td>5.39E–04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CLP $r = 0.7$</th>
<th>CLP $r = 1.0$</th>
<th>CLP $r = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3R$</td>
<td>1.35E+01</td>
<td>6.41E+00</td>
<td>5.80E–01</td>
</tr>
<tr>
<td>$4R$</td>
<td>8.2E+00</td>
<td>4.4E+00</td>
<td>5.8E–01</td>
</tr>
<tr>
<td>$5R$</td>
<td>7.2E+00</td>
<td>2.2E+00</td>
<td>4.4E–01</td>
</tr>
<tr>
<td>$6R$</td>
<td>5.4E+00</td>
<td>4.9E+00</td>
<td>3.0E–01</td>
</tr>
<tr>
<td>$7R$</td>
<td>4.2E+00</td>
<td>2.4E+00</td>
<td>2.0E–01</td>
</tr>
</tbody>
</table>
Multi-objective optimization

- Formulation of Optimization Problem

\[
\text{minimize} \quad \frac{(\dot{\theta} + p)^T(\dot{\theta} + p)}{2} \\
\text{subject to} \quad J_e(\theta)\dot{\theta} = \dot{r}_d \\
J_o \dot{\theta} \leq b_o \\
\zeta^- \leq \dot{\theta} \leq \zeta^+ \\
\]

- Repetitive motion
- Tracking EE trajectory
- Obstacle constraints
- Joint limit
Formulation of Optimization Problem

\[
\text{minimize} \quad \frac{(\dot{\theta} + p)^T(\dot{\theta} + p)}{2} \\
\text{subject to} \quad J_e(\theta)\dot{\theta} = \dot{r}_d \\
J_o \dot{\theta} \leq b_o \\
\zeta^- \leq \dot{\theta} \leq \zeta^+ \\
\|
\dot{\theta}(t) + \eta(\theta(t) - \theta(0))\|_2^2 \\
\eta > 0 \in \mathbb{R}
\]

Repetitive motion

\[
p = \eta(\theta(t) - \theta(0))
\]

\[
\z(t) = \theta(t) - \theta(0) \\
\dot{z}(t) = -\eta z(t) \\
\|z(t)\|_2 = \exp(-\eta t)\|z(0)\|_2 \to 0
\]

\[
\theta(t) = \theta(0), \quad t \to \infty
\]
Dynamical quadratic programming

\[
\begin{align*}
\text{minimize} & \quad \frac{(\dot{\theta} + p)^T(\dot{\theta} + p)}{2} \\
\text{subject to} & \quad J_e(\theta)\dot{\theta} = \dot{r}_d \\
& \quad J_o \dot{\theta} \leq b_o \\
& \quad \zeta^- \leq \dot{\theta} \leq \zeta^+
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad \frac{x^TQx}{2} + p^Tx \\
\text{subject to} & \quad Ax = d \\
& \quad Cx \leq b \\
& \quad \zeta^- \leq x \leq \zeta^+
\end{align*}
\]

- Dynamical quadratic program (DQP) with equality, inequality, and bound constraints
- Can be solved by piecewise-linear projection equation (PLPE) neural network
Simulation Result [1]

Simulation motion

Motion of each joint in task space
Simulation Result

Joint angles

Minimal link-obstacle distance
Practical needs in robot control
Continuous, globally consistent redundancy resolution
Continuity and global consistency

• Continuity of redundancy resolution
 • Starting joint configuration was chosen "badly", then the robot tracking a simple path could get stuck when it hits joint limits.

• Globally consistent redundancy resolution
 • When tracking a cyclic path (forward and backward), the robot should return to the same joint configuration that it started from
Pathwise Redundancy Resolution
Algorithm 2 PRM-Path-Resolution(y, N)

1: Initialize empty roadmap $\mathcal{R} = (V, E)$
2: if $q(0)$ and $q(1)$ are given then
3: Add $(0, q(0))$ and $(1, q(1))$ to V
4: else
5: Sample $O(N)$ start configurations using $\text{SampleF}(y(0))$
6: Sample $O(N)$ goal configurations using $\text{SampleF}(y(1))$
7: for $i = 1, \ldots, N$ do
8: Sample $t_{\text{sample}} \sim U([0, 1])$
9: Sample $q_{\text{sample}} \leftarrow \text{SampleF}(y(t_{\text{sample}}))$
10: if $q_{\text{sample}} \neq \text{nil}$ then add (t_{sample}, q) to V
11: for all nearby pairs of vertices $(t_u, q_u), (t_v, q_v)$ with $t_u < t_v$ do
12: if Visible(y, t_u, t_v, q_u, q_v) then
13: Add the (directed) edge to E
14: Search \mathcal{R} for a path from $t = 0$ to $t = 1$

Add start and end points in configuration space
Algorithm 2 PRM-Path-Resolution(y, N)

1: Initialize empty roadmap $\mathcal{R} = (V, E)$
2: if $q(0)$ and $q(1)$ are given then
3: \hspace{1em} Add $(0, q(0))$ and $(1, q(1))$ to V
4: else
5: \hspace{1em} Sample $O(N)$ start configurations using $\text{SampleF}(y(0))$
6: \hspace{1em} Sample $O(N)$ goal configurations using $\text{SampleF}(y(1))$
7: for $i = 1, ..., N$ do
8: Sample $t_{sample} \sim U([0, 1])$
9: Sample $q_{sample} \leftarrow \text{SampleF}(y(t_{sample}))$
10: if $q_{sample} \neq \text{nil}$ then add (t_{sample}, q_{sample}) to V
11: for all nearby pairs of vertices (t_{1}, q_{1}), (t_{2}, q_{2}) do
12: \hspace{1em} if $\text{Visible}(y, t_{1}, t_{2}, q_{1}, q_{2})$ then
13: \hspace{2em} Add the (directed) edge to E
14: Search \mathcal{R} for a path from $t = 0$ to $t = 1$

- $\text{SampleF}(y)$ first samples a random configuration $q_{\text{rand}} \in \mathcal{C}$ and then uses $\text{Solve}(y, q_{\text{rand}})$. If the result is nil or infeasible, then nil is returned.

- $\text{Solve}(y, q_{\text{init}})$ solves a root-finding problem $f(q) = y$ numerically using q_{init} as the initial point. If it fails, it returns nil. It is assumed that the result q lies close to q_{init}.
Algorithm 2 PRM-Path-Resolution\((y, N)\)

1: Initialize empty roadmap \(\mathcal{R} = (V, E)\)
2: if \(q(0)\) and \(q(1)\) are given then
3: \hspace{1em} Add \((0, q(0))\) and \((1, q(1))\) to \(V\)
4: else
5: \hspace{1em} Sample \(O(N)\) start configurations using \(\text{SampleF}(y(0))\)
6: \hspace{1em} Sample \(O(N)\) goal configurations using \(\text{SampleF}(y(1))\)
7: for \(i = 1, \ldots, N\) do
8: \hspace{1em} Sample \(t_{\text{sample}} \sim U([0, 1])\)
9: \hspace{1em} Sample \(q_{\text{sample}} \leftarrow \text{SampleF}(y(t_{\text{sample}}))\)
10: \hspace{1em} if \(q_{\text{sample}} \neq \text{nil}\) then add \((t_{\text{sample}}, q)\) to \(V\)
11: for all nearby pairs of vertices \((t_u, q_u), (t_v, q_v)\) with \(t_u < t_v\) do
12: \hspace{1em} if Visible\((y, t_u, t_v, q_u, q_v)\) then
13: \hspace{1em} \hspace{1em} Add the (directed) edge to \(E\)
14: Search \(\mathcal{R}\) for a path from \(t = 0\) to \(t = 1\)

Sampling in the time domain – every node added subject to the manifold constraints
Local planner – directed edges restrict forward progress along the time domain
PRM-Path Resolution

- Local planner

Algorithm 1 Visible(y, t_s, t_g, q_s, q_g)

1: if \(d(q_s, q_g) \leq \epsilon \) then return “true”
2: Let \(y_m \leftarrow y((t_s + t_g)/2) \) and \(q_m \leftarrow (q_s + q_g)/2 \)
3: Let \(q \leftarrow \text{Solve}(y_m, q_m) \)
4: if \(q = \text{nil} \) or \(q \notin \mathcal{F} \) then return “false”
5: if \(\max(d(q, q_s), d(q, q_g)) > c \cdot d(q_s, q_g) \) then return “false”
6: if Visible(y, t_s, t_m, q_s, q_m) and Visible(y, t_m, t_g, q_m, q_g) then return “true”
7: return “false”

- \(\text{Solve}(y, q_{init}) \) solves a root-finding problem \(f(q) = y \) numerically using \(q_{init} \) as the initial point. If it fails, it returns \(\text{nil} \). It is assumed that the result \(q \) lies close to \(q_{init} \).
Approximate global redundancy resolution

• Assign a single robot configuration to each target point
• Pointwise global resolution
• Constraint-satisfaction-based resolution
Algorithm 3: Pointwise-Global-Resolution\((G_W, N_q)\)

1. Initialize empty roadmap \(R_C = (V_C, E_C)\).
2. for each \(y \in V_W\) do
 \[N(y)\] is the neighborhood of a vertex \(y\) in the workspace graph.
3. Let \(Q_{seed} \leftarrow \bigcup_{w \in N(y)} Q[w]\).
4. for each \(q_s \in Q_{seed}\) do
5. Run \(q \leftarrow \text{Solve}(y, q_s)\).
6. if \(q \neq \text{nil}\) then add \(q\) to \(V_C\) and go to Step 2, proceeding to the next \(y\).
7. Run \(\text{SampleF}(y)\) up to \(N_q\) times. If any sample \(q\) succeeds, add it to \(V_C\).
8. for all edges \((y, y') \in E_W\) such that \(|Q(y)| > 0\) and \(|Q(y')| > 0\) do
9. Let \(q\) be the only member of \(Q(y)\) and \(q'\) the only member of \(Q(y')\).
10. if \(R(y, y', q, q') = 1\) then
11. Add \((q, q')\) to \(E_C\) return \(R_C\).
Pointwise global resolution

Algorithm 3 Pointwise-Global-Resolution(G_W, N_q)

1: Initialize empty roadmap $\mathcal{R}_C = (V_C, E_C)$
2: for each $y \in V_W$ do
3: Let $Q_{seed} \leftarrow \bigcup_{w \in N(y)} Q[w]$
4: for each $q_s \in Q_{seed}$ do
5: Run $q \leftarrow \text{Solve}(y, q_s)$
6: if $q \neq \text{nil}$ then add q to V_C and go to Step 2, proceeding to the next y.
7: Run SampleF(y) up to N_q times. If any sample q succeeds, add it to V_C.
8: for all edges $(y, y') \in E_W$ such that $|Q(y)| > 0$ and $|Q(y')| > 0$ do
9: Let q be the only member of $Q(y)$ and q' the only member of $Q(y')$
10: if $R(y, y', q, q')=1$ then
11: Add (q, q') to E_C
12: return \mathcal{R}_C

Keep only one configuration
Pointwise global resolution
Limitation of pointwise method

• Pointwise method can yield poor results
 • Several edges unnecessarily unresolved

• Constraint-satisfaction problem
 • Sample many configurations in the preimage of each workspace point
 • Connect them with feasible edges
 • Seek a “sheet” in the C-space roadmap that satisfies the constraints
Constraint-satisfaction-based resolution

- Primary error metric
 - Measures the number of unresolved edges

- Secondary error metric
 - Maximize smoothness in the redundant dimensions
Minimize the number of unsolvable edges

- Let $G_W = (V_W, E_W)$ be the workspace roadmap

$$U(g) = |E_W| - \sum_{(y, y') \in E_W} R(y, y', g[y], g[y'])$$

- Seek the mapping g from task space vertices to C-space vertices

Local reachability indicator function – check for locally pairwise resolvable
Maximize pseudo-inverse smoothness

- Distance is a good proxy for smoothness.
 - Use total C-space path length to measure smoothness

\[L(g) = \sum_{(y, y') \in E_W} d(g[y], g[y']) R(y, y', g[y], g[y']). \]
Ensure connection in C-space and task space

- Given the C-space roadmap \(R = (V_c, E_c) \), make sure

\[
E_C = \{ (q, q') \mid (Y[q], Y[q']) \in E_W \text{ and } R(Y[q], Y[q'], q, q') = 1 \}
\]
Discontinuity boundary for 3-DOF arm

- **Pointwise solution**
- **Optimization-based solution**
Discontinuity boundary for 3-DOF arm

Pointwise solution

Optimization-based solution

 • [link](http://motion.pratt.duke.edu/redundancyresolution/)