
Project	2:	Implementing	Reliable	Data	Transfer	Protocol	
(CS3516	–	A20)	

	
Due:	October	5th,	2020	M,	11:59	PM	
	
Total Points
100 (One Hundred)
	

1. Overview
In this programming assignment, you will be writing the sending and receiving transport-level
code for implementing a simple reliable data transfer protocol, i.e., the Alternating-Bit-Protocol
(ABP). This project should be fun since your implementation will differ very little from what would
be required in a real-world situation.

Since you probably don't have standalone machines (with an OS that you can modify), your code
will have to execute in a simulated hardware/software environment. However, the programming
interface provided to your routines, i.e., the code that would call your entities from above and from
below is very close to what is done in an actual Linux environment. (Indeed, the software
interfaces described in this programming assignment are much more realistic than the infinite
loop senders and receivers that many texts describe). Stopping/starting of timers are also
simulated, and timer interrupts will cause your timer handling routine to be activated.

Figure 1 below presents an overview of the elements you will be coding in this project. Our
purpose of this project we only have three layers in our network stack.

Figure	1:	Project	Overview	

The procedures you will write are for the sending entity (A) and the receiving entity (B). The
equivalent reverse (bidirectional) traffic originates on the B-side and is received on the A-side. Of

course, the B-side will have to send packets to A to acknowledge (positively or negatively) receipt
of data. Your routines are to be implemented in the form of the procedures described in Figure 1.
These procedures will be called by (and will call) procedures already written that emulate a
network environment.
2. Communication Between Layers – Data Structures

Figure 2 below shows the data structure used for communicating between the layers

	
Figure	2:	Data	Structure	for	Communicating	between	Layers

3. Routines you will write
The routines you will write are detailed below. As noted above, such procedures in real-life would
be part of the operating system, and would be called by other procedures in the operating
system.

void A_output(struct msg message);
Where message is a structure of type msg, containing data to be sent to the B-side. This routine
will be called whenever the upper layer at the sending side (A) has a message to send. It is the
job of your protocol to insure that the data in such a message is delivered in-order, and correctly,
to the receiving side upper layer.

void A_input(struct pkt packet);
Where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the B-side (i.e., as a result of a tolayer3() being done by a B-side procedure) arrives at the A-
side. The arriving packet may be corrupted w.r.t. packet sent from the B-side.

void A_timerinterrupt();
This routine will be called when A's timer expires (thus generating a timer interrupt). You'll
probably want to use this routine to control the retransmission of packets. See starttimer()
and stoptimer() below for how the timer is started and stopped.

void A_init();
This routine will be called once, before any of your other A-side routines are called. It can be used

to do any required initialization.

void B_input(struct pkt packet);
Where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the A-side (i.e., as a result of a tolayer3() being done by a A-side procedure) arrives at the B-
side. packet is the (possibly corrupted) packet sent from the A-side.
void B_init();
This routine will be called once, before any of your other B-side routines are called. It can be used
to do any required initialization.

void B_timerinterrupt();
This routine will be called when B's timer expires (thus generating a timer interrupt). You'll
probably want to use this routine to control the retransmission of packets. See starttimer()
and stoptimer() below for how the timer is started and stopped.

void B_output(struct msg message);
Similar to A_Output() Required only when implement bi-directional messaging. Ignore for this
project.

4. Available routines, to be used by your routines
The procedures described above are the ones that you will write. The following routines, which
can be called by your routines:

void startTimer(int AorB, double TimeIncrement);
Where calling_entity is either AEntity (for starting the A-side timer) or BEntity (for
starting the B side timer), and TimeIncrement is a double value indicating the amount of time
that will pass before the timer interrupts. A's timer should only be started (or stopped) by A-side
routines, and similarly for the B-side timer. To give you an idea of the appropriate increment value
to use: a packet sent into the network takes an average of 5 time units to arrive at the other side
when there are no other messages in the medium.

void stopTimer(int AorB);
Where calling_entity is either AEntity (for stopping the A-side timer) or BEntity (for
stopping the B side timer).

double getClockTime();
Returns the current simulation time, which is very useful in printouts of traces since the simulator
is already printing out such times.

int getTimerStatus(int AorB);
Returns TRUE if the requested timer is running, or FALSE if the timer is not running.

void toLayer3(int AorB, struct pkt packet);
Where calling_entity is either AEntity (for the A-side send) or BEntity (for the B side
send), and packet is a structure of type pkt. Calling this routine will cause the packet to be sent
into the network, destined for the other entity.

void toLayer5(int AorB, struct msg datasent);
Where calling_entity is either AEntity (for A-side delivery to layer 5) or BEntity (for B-side
delivery to layer 5), and message is a structure of type msg. With unidirectional data transfer, you
would only be calling this with calling_entity equal to BEntity (delivery to the B-side).
Calling this routine will cause data to be passed up to layer 5.

5. Input Arguments
The medium is capable of corrupting, losing, and reordering packets. When you compile your

procedures and simulation procedures together, and run the resulting program, you will be asked
to specify values regarding the simulated network environment. Figure 3 illustrates a sample input
and below that you will find a description for the various input elements.

Figure	3:	Input	Arguments	

Number of messages to simulate:
My emulator (and your routines) will stop as soon as this number of messages have been passed
down from layer 5, regardless of whether or not all of the messages have been correctly
delivered. Thus, you need not worry about undelivered or unACK'ed messages still in your
sender when the emulator stops. Note that if you set this value to 1, your program will terminate
immediately, before the message is delivered to the other side. Thus, this value should always be
greater than 1.

Loss:
You are asked to specify a packet loss probability. A value of 0.1 would mean that one in ten
packets (on average) are lost and not delivered to the destination.

Corruption:
You are asked to specify a packet loss probability. A value of 0.2 would mean that two in ten
packets (on average) are corrupted. Note that the contents of payload, sequence, ack, or
checksum fields can be corrupted. Your checksum should thus include the data, sequence, and
ack fields.

Out Of Order:
You are asked to specify an out-of-order probability. A value of 0.2 would mean that two in ten
packets (on average) are reordered.

Tracing:
Setting a tracing value of 1 or 2 will print out useful information about what is going on inside the
emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn this off. A
tracing value of 5 will display all sorts of odd messages that are for emulator-debugging
purposes. A tracing value of 2 may be helpful to you in debugging your code. You should keep in
mind that real implementers do not have underlying networks that provide such nice information
about what is going to happen to their packets! You will certainly find tracing your own code is
helpful. When the time comes to show off your code, you must have a way of turning off all your
debugging messages. (We will be running with tracing = 1, so you can set your messages to be
displayed only for a higher tracing level – like 3 or 4.

Average time between messages from sender's layer5:
You can set this value to any non-zero, positive value. Note that the smaller the value you

choose, the faster packets will be arriving to your sender.

Randomization:
The simulation works by using a random number generator to determine if packets will or will not
be modified in some fashion. Setting 0 here (no randomization) means that you will get the same
result for each of your runs. This can be extremely valuable for debugging. However, for real
testing, you must run with randomization = 1 to see what problems you can shake out. When you
demonstrate your code, I expect to see randomization enabled.

Direction:
The possibilities are Unidirectional = 0, Bidirectional = 1 (Which should not be needed).

6. Environment
There are three files that you will use to implement your solution:
project2.c – contains the simulation code for the network layer and for the application layer 5.
student2.c – contains the stub of the numerous routines you are to write.
project2.h – various definitions and data structures that are included in both of the source
code modules.
You can download the project 2 package (including these environment code) from here
https://users.wpi.edu/~yli15/courses/CS3516Fall20A/projects/Proj2/project_2_A20.zip

Note that this simulation runs on both Windows and LINUX. You should modify the location in
Project2.h that specifies the OS. However your project will be evaluated on the machine
linux.wpi.edu.

Compile the sources using gcc –g project2.c student2.c

You may want to divide the file student2.c into three components – my description implies you
create three source files – but the details are up to you.

1. student2A.c contains the functions having well known names for the A Entity. The
interfaces are here, the state information is here, but the routines that do all the work are
kept in the common routine.

2. student2B.c contains the functions having well known names for the B Entity. The
interfaces are here, the state information is here, but the routines that do all the work are
kept in the common routine.

3. student_common.c contains all the code common to both A and B. Since A and B are
really identical, the methods are here. But don’t keep any state information here.

7. Actual Project
Now that you have an idea of the simulation environment and what you need to modify, we
can talk about what you need to implement.

Alternating bit Protocol (RDT 3.0)
You are to write the procedures, A_output(), A_input(), A_timerinterrupt(), A_init(), B_input(), and
B_init() which together will implement a stop-and-wait (i.e., the alternating bit protocol, which we
referred to as rdt3.0 in the text in Section 3.4.1) unidirectional transfer of data from the A-side to
the B-side. Your protocol should use both ACK and NACK messages.

You should choose a very large value for the average time between messages from sender's
layer5, so that your sender is never called while it still has an outstanding, unacknowledged
message it is trying to send to the receiver. I'd suggest you choose a value of 1000. You should
also perform a check in your sender to make sure that when A_output() is called, there is no

message currently in transit. If there is, you will need to buffer the message until the previous
transaction is completed.

8. Helpful Hints
Checksumming: You can use whatever approach for checksumming you want. Remember that
the sequence number and ack field can also be corrupted. A simple addition of all the bytes in the
packet will NOT work – this is because I have diabolically defined corruption to be the swapping
of bytes from two locations in the packet – a simple addition will give the same sum even with the
packet corrupted.

Note that any shared "state" among your routines needs to be in the form of global variables.
Note also that any information that your procedures need to save from one invocation to the next
must also be a global (or static) variable. For example, your routines will need to keep a copy of a
packet for possible retransmission. It would probably be a good idea for such a data structure to
be a global variable in your code. Note, however, that if one of your global variables is used by
your sender side, that variable should NOT be accessed by the receiving side entity, since in real
life, communicating entities connected only by a communication channel can not share global
variables.

There is a double global variable called CurrentSimTime that you can access from within your
code to help you out with your diagnostics messages. It represents the time as understood by the
simulation.

START SIMPLE: Set the probabilities of loss and corruption to zero and test out your routines.
Better yet, design and implement your procedures for the case of no loss and no corruption, and
get them working first. Then handle the case of one of these probabilities being non-zero, and
then finally both being non-zero.

Debugging: We'd recommend that you set the tracing level to 2 and put LOTS of printf's in your
code visible with debug level = 2. The output needs to be clean when we look at it. We will be
running with debug_level = 1.

Random Numbers. The emulator generates packet loss and errors using a random number
generator. Our past experience is that random number generators can vary widely from one
machine to another. You may need to modify the random number generation code in the
emulator we have supplied you. Our emulation routines have a test to see if the random number
generator on your machine will work with our code. If you get an error message:

• It is likely that random number generation on your machine\n");
• Is different from what this emulator expects. Please take\n");
• A look at the routine GetRandomNumber() in the emulator code. Sorry.

Then you will need to sort out the routine.

9. Evaluation Criteria
Alternating Bit Protocol:

• Is there a clean output, free from messy debugging messages?
• Does the project work with corruption on?
• Does the project work with lost packets?
• Does the project work with packet out-of-order?
• Does the project work with randomization?

Others:
• Is the code commented? Is it free of numerical constants sprinkled in the code? Is it

indented correctly?

• Is there a REAL makefile of the project?
• Is there is a sufficient README file for the project?

10. Submission
As a part of the submission you need to provide the following:

For Alternating-bit-Protocol (ABP), create a zip file "your-wpi-login_project2_ABP.zip"

1. All the code for the alternating-bit protocol (any .c and .h files), including any code that
was pre-provided as part of this project

2. A ReadMe (txt) file that spells out exactly how to compile and run the code
3. A PDF document with the output trace as described in the project description

Submit your document electronically via Canvas (https://canvas.wpi.edu) by 11:59pm on the day
the assignment is due. Make sure you choose "Project 2" under project drop-down in Canvas
before uploading the zip file.

11. Grading
Grade breakup (%) assuming all documents are present:

1. Functioning Alternating Bit-Protocol code = 75%
2. Alternating Bit-Protocol output trace (as explained in the project description) = 15%
3. README = 5%
4. Makefile = 5%

The grade will be a ZERO if:

1. If the code does not compile or gives a run-time error
2. If README with detailed instructions on compiling the running the code is not present

