Welcome to

CS 3516:
Advanced Computer Networks

Prof. Yanhua Li

Time: 9:00am – 9:50am M, T, R, and F
Location: Fuller 320
Fall 2016 A-term
Chapter 2: outline

2.1 principles of network applications
 - app architectures
 - app requirements

2.2 Web and HTTP

2.5 DNS
 Service Overview, Structure
 Resolution process
 Data Format
DNS: domain name system

people: many identifiers:
- SSN, name, passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System:
- *distributed database* implemented in hierarchy of many *name servers*
- *application-layer protocol:* hosts, name servers communicate to *resolve* names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
Resolving Name, Locating Service/Object

URL
http://users.wpi.edu/~yli15/courses/CS3516Fall16A/Schedule.html

WPI DNS Server

web server

Service → 121.121.121.121, tcp port 80
Object → ~yli15/courses/CS3516Fall15B/Schedule.html

Network File System Server
DNS: services, structure

DNS services
- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?
- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: *doesn’t scale!*
DNS: a distributed, hierarchical database

Client wants IP for www.amazon.com; 1st approx:
- Client queries root server to find com DNS server
- Client queries .com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

Analogy: Marshalls -> Physical Address
DNS: root name servers

- contacted by local name server that cannot resolve name
- root name server:
 - contacts authoritative DNS server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name servers worldwide

- a. Verisign, Los Angeles CA (5 other sites)
- b. USC-ISI Marina del Rey, CA
- c. Cogent, Herndon, VA (5 other sites)
- d. U Maryland College Park, MD
- e. NASA Mt View, CA
- f. Internet Software C. Palo Alto, CA (and 48 other sites)
- g. US DoD Columbus, OH (5 other sites)
- h. ARL Aberdeen, MD
- i. Netnod, Stockholm (37 other sites)
- j. Verisign, Dulles VA (69 other sites)
- k. RIPE London (17 other sites)
- l. ICANN Los Angeles, CA (41 other sites)
- m. WIDE Tokyo (5 other sites)
TLD, authoritative servers

top-level domain (TLD) servers:
- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:
- organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts
- can be maintained by organization or service provider
Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called “default name server”
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy
- Difference btw Local DNS and Authoritative DNS server?
 - Given an organization, e.g., WPI, one for its internal users, one for external users
Chapter 2: outline

2.1 principles of network applications
 ▪ app architectures
 ▪ app requirements

2.2 Web and HTTP

2.5 DNS
 Service Overview, Structure
 Resolution process
 Data Format
DNS name resolution example

- host at `cs.wpi.edu` wants IP address for `cs.umass.edu`

iterated query:

- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS name resolution example

recursive query:
- puts burden of name resolution on contacted name server
- **Cons:** heavy load at upper levels of hierarchy?
DNS: iterated queries

recursive query:
- puts burden of name resolution on contacted name server
- heavy load?

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited

- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, it may not be known Internet-wide until all TTLS expire
Chapter 2: outline

2.1 principles of network applications
 ▪ app architectures
 ▪ app requirements

2.2 Web and HTTP

2.5 DNS
 Service Overview, Structure
 Resolution process
 Data Format
DNS records

DNS: distributed db storing resource records (RR)

RR format: \((\text{name}, \text{value}, \text{type}, \text{ttl})\)

- **type=A**
 - name is hostname
 - value is IP address

- **type=NS**
 - name is domain (e.g., foo.com)
 - value is hostname of authoritative name server for this domain

- **type=CNAME**
 - name is alias name for some “canonical” (the real) name
 - www.ibm.com is really servereast.backup2.ibm.com
 - value is canonical name

- **type=MX**
 - value is name of mailserver associated with name
DNS protocol, messages

- *query* and *reply* messages, both with same *message format*

msg header
- **identification**: 16 bit # for query, reply to query uses same #
- **flags**:
 - query or reply
 - recursion desired (query)
 - recursion available (reply)
 - reply is authoritative (reply)
 - (DNS is an authoritative DNS to a queried name)

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
</tbody>
</table>

- questions (variable # of questions)
- answers (variable # of RRs)
- authority (variable # of RRs)
- additional info (variable # of RRs)
DNS protocol, messages

Query:
- Name, type fields for a query

Reply:
- RRs in response to query records for authoritative servers
- Additional "helpful" info that may be used

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># Questions</td>
<td># Answer RRs</td>
</tr>
<tr>
<td># Authority RRs</td>
<td># Additional RRs</td>
</tr>
</tbody>
</table>

- Questions (variable # of questions)
- Answers (variable # of RRs)
- Authority (variable # of RRs)
- Additional info (variable # of RRs)
Inserting records into DNS

- example: new startup “Networkabc”
- register name networkabc.com at DNS registrar (e.g., Network Solutions) (and pay a fee for it.)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 - (networkabc.com, dns1.networkabc.com, NS)
 - (dns1.networkabc.com, 212.212.212.1, A)
- Authoritative server
 - create type A record for www.networkabc.com;
 - create type MX record for networkabc.com
Attacking DNS

DDoS attacks
- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass
- Bombard TLD servers
 - Potentially more dangerous

Exploit DNS for DDoS
- Send queries with spoofed source address: target IP
- Requires amplification
Questions?