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EXPERIMENTS WITH QUASI-NEWTON METHODS IN
SOLVING STIFF ODE SYSTEMS*

PETER N. BROWN, ALAN C. HINDMARSHt AND HOMER F. WALKER"

Abstract. A nonlinear algebraic system must be solved at each step of the integration of a stiff system
of ordinary differential equations by methods based on backward differentiation formulas. Quasi-Newton

methods are of potential benefit in solving these algebraic problems. Three types of quasi-Newton methods
are studied for this purpose--Doolittle LU updates, and Broyden’s first and second methods performed
implicitly. Detailed algorithms are given. Tests on some large stiff systems show that significant benefits can
be obtained for some problems.

Key words, ordinary differential equations, stiff systems, quasi-Newton methods

1. Introduction. The numerical solution of stiff systems of ordinary differential
equations (ODE’s) relies heavily on methods for solving systems of algebraic equations.
if the ODE system is nonlinear, then so are the algebraic systems that one must solve.
Quasi-Newton methods, by which we mean primarily those which are in some sense
generalizations of the one-dimensional secant method, have been found to be very
successful methods for solving nonlinear algebraic systems. Over the last decade, a
great deal of progress has been made in determining very effective quasi-Newton
methods, especially for classes of problems which have in common some special
structure which can be exploited.

Recent developments in quasi-Newton methods have a potential for application
in the context of solving stiff ODE’s. The most challenging ODE problems, for which
the need for efficient algebraic system-solving methods is usually greatest, are generally
those for which the algebraic systems to be solved are very large, have a Jacobian
matrix which is sparse (e.g., banded), and have significant expense associated with
function and Jacobian evaluations. A major source of such ODE problems is the
solution of time-dependent partial differential equations by the method of lines (dis-
cretizing in space only) [15], [16]. Most quasi-Newton methods require relatively few
Jacobian evaluations (or function evaluations if Jacobians are being approximated by
difference quotients) and can often be implemented to offer savings on arithmetic as
well. Furthermore, algebraic systems with sparse Jacobians have special structure which
can be exploited in quasi-Newton methods. Preliminary studies of the use of quasi-
Newton methods in a stiff ODE method were done by Hindmarsh and Byrne [17] and
Alfeld [1 ].

In the following, we consider the application of three particular quasi-Newton
methods to the solution of stiff ODE’s. These methods are intended primarily for use
on large algebraic systems with sparse Jacobians. The focus here is on ODE’s for which
the associated algebraic systems have sparse Jacobians and are so large that not only
function and Jacobian evaluations but also storage and the cost of arithmetic are major
concerns. The remainder of this introduction provides a very brief background on stiff
ODE’s, certain procedures for solving them numerically, and quasi-Newton methods.
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In the sequel, we describe the specific quasi-Newton methods of interest, their
implementation in a particular algorithm for solving stiff ODE’s, and the outcome of
applying the resulting procedures to several test problems. We conclude with a summary
of overall results and an outline of future areas of investigation.

1.1. Still ODE’s. We consider an initial value problem for an ODE system,

(1.1) f(t, y), y(to) Yo

where the dot denotes d/dt and y is a vector of size N. The ODE in (1.1) is stiff if,
roughly speaking, it contains a rapid decay process--i.e, rapid by comparison to the
time scale of interest for the whole problem. Precise definitions of stiffness vary [22],
but usually make reference to the Jacobian matrix,

(1.2) of/oy (t, y).

Stiffness means that at least one eigenvalue of J(t, y) has a very large negative real
part, when evaluated on the solution curve.

A large and very popular class of numerical methods for ODE initial value
problems is that of linear multistep methods. These have the form

K K

(1.3)
j=l j=0

where Yk denotes the numerical approximation to y(tk), h tk--tk-1 is considered
fixed, and )k denotes f(tk, Yk)- (Variable-step analogues of (1.3) also exist but will not
be considered here.) The popular BDF (backward differentiation formula) method
corresponds to the case K2 0, K1 q method order, and this method has been used
extensively for stiff systems [11], [13], [16], [24]. We shall restrict our attention here
to the context of a general purpose initial value ODE solver called LSODE [14], [16],
which uses the BDF method in the stiff case. Thus at each time step, LSODE must
solve an algebraic system

(1.4)
0 Fn(y,) yn- hflof(tn, y)-

q

an =- oyn-
]=1

in which/3o> 0.
In its unmodified form, LSODE solves (1.4) by modified Newton iteration, in

which a prediction yn(0) is formed using an explicit formula of the type (1.3) and
corrected by iterations

(1.5) Pn(y,(m + 1)- yn(m)) =-F(yn(m)).

Here the iteration matrix Pn is an approximation to OF,,lOYn, i.e.,

OF.(1.6) P, I- hfloJ( t,, Yn),

that is held fixed for the iterations, and is usually also held fixed over several time
steps. The LSODE user has the option of specifying J as either a full or a banded
matrix, and as either supplied by a user subroutine or computed internally by difference
quotient approximations. In all cases, the linear system (1.5) is solved by doing an LU
decomposition of Pn (at the time it is formed) and using that for all iterations (on all
steps) until a decision is made to reevaluate P,. A convergence test is made on the
basis of iterate differences. The time step itself must also pass a test on estimated local
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truncation error, and the step size h and order q are adjusted dynamically on the basis
of such tests. A change of step size from h to h’ is accomplished, in effect, by
interpolating in the existing solution history (the Yn-j, spaced at h) to get history at
the new spacing h’.

1.2. Quasi-Newton methods. By a quasi-Newton method for solving an algebraic
system F(y) O, F" Rt Rt, we mean here any method which generates a sequence
of approximate solutions {Y(k)}k_-l,2,... from an initial approximation y(0) by means
of an iteration of the form

(1.7) y(k + 1) y( k) B-lF(y( k)).

Such methods are regarded as variants of Newton’s method, in which Bk is the Jacobian
matrix cgF/ay(y(k)), and so B is considered to be an approximation to aF/y(y(lc)).

Our particular interest is in quasi-Newton methods which are generalizations of
the one-dimensional secant method. There one obtains B/I from B for some /c by
updating B so that for s(k)=y(k+l)-y(k) and z(k)=F(y(k+l))-F(y(k)), the
secant equation

(1.8) Bk+lS(k)=z(k)

is satisfied as nearly as possible (in some sense) among all matrices satisfying any
auxiliary conditions which might be imposed on B/I. Auxiliary conditions on Bk+l
usually take the form of a requirement that B+I reflect some special structure of
OF/Oy such as symmetry or a particular pattern of sparsity. The qualifier "as nearly
as possible" is necessary because there may not always exist a matrix satisfying both
(1.8) and the auxiliary conditions. For a full discussion of these methods, see Dennis
and Mor6 [6] or Dennis and Schnabel [7].

As indicated at the outset, the focus here is on ODE’s (1.1) which are stiff and
for which N is large and the Jacobian J given by (1.2) is sparse. Our interest is in
considering secant-update quasi-Newton methods as alternatives to the modified
Newton algorithm (1.5) for solving the algebraic systems (1.4) which arise in applying
BDF methods to such ODE’s. In the remainder of this introduction, we touch on
several quasi-Newton methods which can potentially use the sparsity of J to advantage.
More specific descriptions of the methods of particular interest follow in the next
section.

The sparse Broyden update given by Schubert [21] and Broyden [4] determines
a quasi-Newton method which takes sparsity into account. This update has the property
that if B in (1.7) has a desired pattern of sparsity, then so does the updated matrix
Bk/l. A similar update which preserves not only sparsity but also symmetry in determin-
ing Bk+ from Bk has been given by Marwil [18] and Toint [23]. Methods employing
these updates have desirable local convergence properties but, unfortunately, require
new Jacobian factorizations after each update if direct linear algebra methods are used
to obtain each step -B-F(y(k)). Here, we assume that direct methods are used for
solving linear systems and, in particular, that matrix factorizations are LU factorizations
as in LSODE. It is further understood that the problems of interest here are of such
size that LU factorizations involve considerable expense, and so we regard the sparse
Broyden and sparse symmetric updates as unsuitable in the present context, although
they may well prove useful in situations which warrant the use of iterative methods
for solving linear systems.

The sparse Broyden update, however, is fundamental to the first quasi-Newton
method considered in the sequel, that which employs the Doolittle LU updating
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procedure of Dennis and Marwil [5]. To describe this method briefly, let us suppose
that in an iteration (1.7) one has obtained, for some value of k, a Doolittle decompo-
sition

(1.9) Bk PkLkUk,

using a partial pivoting strategy. In (1.9), Pk is a permutation matrix, Lk is a unit
lower triangular matrix, and Uk is an upper triangular matrix. Then further approximate
Jacobians are obtained by taking

(1.10) Bk+] PkLkUk+]
for as many values of j as possible, where the sequence of upper triangular matrices
{ Uk+j} is generated through (essentially) sparse Broyden updates. These updates are
done for some but not necessarily all values of ]; when done, they are determined by
the secant equations

(1.11) U+js(k +]- 1) L-’P-1z(k 4- j- 1).

If the successive matrices B/ are required to have a particular pattern of sparsity
which is associated with certain corresponding patterns of sparsity of L and U+ (as
is the case when the matrices B+ have a particular band structure), then the advantage
of the Doolittle updating method in exploiting sparsity is clear: One maintains (sparse)
factors of updated matrices having the desired pattern of sparsity without having to
pay for additional factorizations or storage.

The other two quasi-Newton methods considered here take another approach to
exploiting sparsity. In this approach, one obtains a factorization of B for some k and
maintains subsequent approximate Jacobians implicitly, i.e., without explicitly updating
B, its successors, or their factors, by creating (with B) and storing certain auxiliary
vectors which incorporate update information. (The number of auxiliary vectors needed
for each implicit update is equal to twice the rank of the update.)

Since quasi-Newton methods employing implicit updating incur certain storage
and arithmetic costs associated with the auxiliary vectors, such methods are most likely
to be effective for problems in which the price of some additional storage and arithmetic
might be outweighed by the use of low-rank updates which have proved to be highly
successful in solving general algebraic systems with full Jacobians. Matthies and Strang
[19], Engelman [9], Engelman, Strang, and Bathe [10], and Geradin, Idelsohn, and
Hogge [12] report effective implementations of implicit updating methods which
employ several generally successful rank one and rank two updates. Here, we consider
the implicit implementation of two updates due to Broyden [3]. The first Broyden
update is widely regarded as the most successful update for general systems of nonlinear
equations. The second Broyden update is considered to be less effective on general
systems than Broyden’s first update; however, it has been conjectured (see Alfeld [1])
that Broyden’s second update performs particularly well in the context of solving stiff
ODE’s.

2. The quasi-Newton methods. In this section, we describe more specifically the
quasi-Newton methods of interest. It is intended here that these methods be applied
to a sequence of problems (1.4) for many values of n and that useful information
about these problems be carried over from one value of n to the next. For convenience,
however, we describe these methods in the context of solving a single system F(y) 0,
F’RN R, with an iteration (1.7), beginning with an initial approximate solution
y(0) and an initial approximate Jacobian Bo-OF/Oy(y(O)). The reader is safe in
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assuming that F Fn, that y(0) is an initial approximation of yn, and that all discussion
below refers to the same time step, step n.

In describing the quasi-Newton methods below, our principal interest is in the
updating algorithms used in them. However, efficient implementations of the updating
algorithms must be well coordinated with the algorithms for determining iteration
steps, and so the algorithms given here are somewhat broader in scope than updating
algorithms per se. All of our quasi-Newton methods assume that B0 is given in a form
convenient for solving linear equations. They also depend on singling out particular
values of k in (1.7) at which to update subsequent approximate Jacobians Bk. The
rules for determining when to perform updates and when the iterates are sufficiently
near the solution are outlined in the next section, in the discussion of our implementation
of these methods in LSODE.

The updating algorithms described in the following are based on the well-known
first and second updates of Broyden and the sparse Broyden update (see, for example,
[6] or [7]). Here, we use variations of these updates which take into account an implicit
rescaling of the independent and dependent variables by a nonsingular diagonal scaling
matrix. Suppose that D is a given nonsingular diagonal scaling matrix such that 37 Dy
and the problem #(37)= DF(D-I;)=0 can be considered well-scaled. Such a scaling
matrix is determined automatically by LSODE from user-supplied tolerance informa-
tion. It is fixed throughout each time step, although it may vary from step to step. The
manner of incorporating such a rescaling in an update is illustrated in [7, p. 1 87] for
the first Broyden update.

We remark at this point that since our methods all take the full quasi-Newton
step s(k) -B-IF(y(k)) at each iteration of (1.7), one can save arithmetic by substitut-
ing F(y(k + 1)) for [z(k)-Bks(k)] wherever the latter expression appears in an update
formula. Since it is desirable to keep computational cost of updating as low as possible,
we incorporate this labor-saving substitution throughout our descriptions and
implementations of the methods of interest here, even though it is not always regarded
as advisable in other settings.

2.1. The Doolittle LU updating method. Suppose that at the initial iteration of
(1.7) one is given a Doolittle decomposition Bo=PoLoUo, and suppose that B0 and
its successors are required to have a particular pattern of sparsity which in turn imposes
a certain pattern of sparsity on their lower- and upper-triangular Doolittle factors.
Denote by the subspace of RNN consisting of all matrices having the pattern of
sparsity required of these upper-triangular factors. For i= 1,..., N, let Si indicate
the "sparsity" projection operator on RN which imposes the sparsity pattern of the
ith row of matrices in on vectors in R, i.e., which for j 1, N replaces the
jth component of a vector in R by zero if the ijth entry of all matrices in q/must

be zero and otherwise leaves it unchanged. Further denote the ith component of v R
by v(i), the ith row of U 0-//by U(, and the Euclidean norm on RN by [. [.

We are given a nonsingular diagonal scaling matrix D and a parameter e, 0 < e =< 1.
(The purpose of e is explained below.) The following is our algorithm for Doolittle
LU updating.

AIGORITHM 2.1.
At step 0 of (1.7). Suppose that one has y(0) and Bo=PoLoUo. Then compute

F(y(O)), s(O) =-BF(y(O)), and y(1)= y(0)+ s(0), and go on to step 1 if necessary.
At step k of (1.7), k=>l. Suppose that one has y(k), s(k-1), and Bk_

PoLoUk-1. Then do the following:
(1) Compute F(y(k)) and s(k) -LIeF(y(k)).
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(2) If no update is to be made, take Uk Uk-1; otherwise do the following for
i=1,... ,N"

(a) If elDs( k 1)1 < IDSis( k 1)1, set

s(k)U(k= U(k’--[S,s( k l)]rD[S,s( k 1)]
[S’s( k- 1)]TD2;

(b) otherwise, take Uk Uk-(3) Compute s( k) U-ls( k), y(k+l)=y(k)+s(k), and go on to step k+l if
necessary.

It is clear that Uk if Uk_ O and that (1.11) is satisfied provided each test
e[Ds(k- 1)1 <lDSs(k- 1)1 in (2.a) above is passed for i= 1,... ,N (in which case Uk
is just the usual scaled sparse Broyden update of Uk-1 in ). The purpose of these
tests on e is to insure that no correction is made in a row of Uk-1 when the projected
step Sis(k- 1) along that row is too small relative to the full step. These tests play an
important role in the convergence analysis given in [5]. It can be argued heuristically
that these tests are more than a theoretical convenience as follows: If Bk-1 PoLo Uk-1
is a good approximation to OF/Oy(y(k-1)), then w=L-dlp-lz(k-1) is almost but
not quite the result of operating on s(k-1) with an upper-triangular matrix. In light
of the qualifier "not quite," one sees that the ratios w()/ISis(k- 1)1 can be well-defined
but arbitrarily large; thus updating without these tests can do arbitrarily great violence
to the approximate Jacobians. Note that large values of e correspond to updating that
is more conservative in that fewer row updates are likely to be done. In the experiments
with Doolittle LU updating in LSODE reported in the sequel, we used a value of e

roughly equal to the unit roundott. Such a small choice of e implies that very few of
the tests on e will not be passed; a similarly small choice of e is reported to be effective
in the experiments in [5]. We also remark that there is a certain restart procedure for
periodically obtaining a new Jacobian or approximate Jacobian which is included in
the method of Dennis and Marwil and which is necessary for their convergence analysis.
Such a restart procedure is not necessary in the updating algorithm above because it
is provided for elsewhere in our implementation of the algorithm in LSODE.

2.2. The implicit Broyden updating methods. To describe our implicit
implementation of Broyden’s first update, we begin by recalling that if D is a nonsingular
diagonal scaling matrix and Bk+l is obtained by a scaled first Broyden update of Bk, then

[z(k)- Bks( k)]s( k) rD2"(2.1) Bk/l Bk + s(k)rD2s(k)
(See Dennis and Schnabel [7, p. 187, formula (8.3.1)].) It follows from the Sherman-
Morrison-Woodbury formula (see Ortega and Rheinboldt [20]) that

{ [s( k) B-z( k)]s( k)TD} B_"B+I I+ s(k)rD2S_,z(k)

By extension, if updated matrices B1,"’, Bt are generated from Bo by (2.1) in
conjunction with an iteration (1.7), then one has

(2.2) B-fl=[I+v(l)w(1)T] [I+v(1)w(1)T]B-1,

where the auxiliary vectors v(i) and w(i) are given by

(2.3) v(i)
s(i- 1)-Bi-_llz(i 1)

s( i-1) TD2By,_11z(i-1
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and

(2.4) w(i) D2s(i 1),

for i= 1,. ., I.
Now suppose that at the initial iteration of (1.7) one is given Bo in factored form

or in some other form convenient for the solution of linear equations. In the applications
of interest here, for example, B0 is likely to be specified by its matrix factors together
with a set of auxiliary vectors such as those appearing in (2.2). Suppose also that a
nonsingular diagonal scaling matrix D is given. The following is our algorithm for
implicitly implementing Broyden’s first update.

ALGORITHM 2.2.
At step 0 of (1.7). Suppose that one has y(0) and B0 in a form convenient for

the solution of linear equations. Then compute F(y(0)), s(0)=-BIF(y(0)), and
y(1) y(0)+ s(0), and go on to step 1 if necessary.

At step k of (1.7), k_-> 1. Suppose that one has y(k), s(k-1), B0, and also
v(1),. , v(l) and w(1),. , w(1), if k > 1 and updates have been made for some
l, 1 _-< -<_ k- 1. Then do the following:
(1) Compute F(y(k)), s( k) -BlF(y( k)), and if updates (/>0) have been made,
compute

s(k) [I + v(1) w(l) 7"]... [I + v(1) w(1) 7"]s(k).
(2) If no update is to be made, then go to (3); otherwise, compute

w(l+l)=D2s(k-1),

v(/+l)=
s(k)

w(l + 1)7"[s(k- 1)- s(k)]’

s(k) [I+ v(l + 1)w(/+ 1)r]s(k).

(3) Compute y(k + 1) y(k)+ s(k) and go on to step k + 1 if necessary.

We note that at the end of part (1) of the algorithm at step k, k >= 1, one has
computed s(k)=-B-5IF(y(k)), where B51 is implicitly taken to be either B if no
updating has been done since the initial step or [I + v(l) w(l) T]... [I + v(1) w(1)’]B
if updates have been made since the initial step. If no update is made at the current

step, i.e., if B1= B_I implicitly, then one accepts this s(k) as the iteration step. If
an update is made, then one first computes v(/+l) and w(l+ 1) according to (2.3)
and (2.4), respectively, so that B-1=[I+v(l+l)w(l+l)7"] [I + v(1) w(1) 7"]B-d
implicitly, and then updates s(k) to obtain s(k)=-BaF(y(k)).

It is evident that each update that is made requires the formation and storage of
two vectors. If N is large, then storage and, hence, the number of updates that one
can make, may be sharply limited. In any case, there is certainly a maximum number
of updates that can be accommodated in practice. When this number is reached, one
has a variety of options such as obtaining a new (approximate) Jacobian from scratch,
discarding all update vectors and restarting the updating of Bo from scratch, replacing
the early update vectors with current ones, or simply doing no additional updating.
We chose the last option in our implementation with a maximum allowable number
of updates equal to 5, since our intention was to update only very infrequently and,
therefore, we felt it likely that the code would call for a new Jacobian more often than
this maximum allowable number of updates would be reached.

It should also be mentioned that some arithmetic is incurred not only in forming
the update vectors but also in using them to determine subsequent iteration steps.
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However, most of the work of forming the update vectors is also applied to forming
iteration steps concurrently. Furthermore, one sees from the algorithm that using the
update vectors to form an iteration step or an additional update vector is unlikely to
be regarded as costly, especially on a computer which performs vector operations
efficiently.

To describe our implicit implementation of Broyden’s second update, we first note
that this update is most conveniently written in the form of an inverse analogue of
(2.1), which is

[s(k)- B-’z( k)]z( k) TD2BI+I B + z(k)WDz(k)

B-,{l_[Z(k)-Bs(k)]z(k)w }z(k)WDz(k) D

If updated matrices B,,..., Bl are generated by this formula in conjunction with an
iteration (1.7), then the counterpart of (2.2) is

B-[’= B’[I--t(1)U(1)w] [I--t(1)U(1)r],
where

t(i)
[z(i-1)-Bi_,s(i-1)]
z(i--1)TDEz(i--1)

and

u(i)=D2z(i-1)
for i- 1,. ., I.

Suppose that B0 is given in factored form or in some other form convenient for
the solution of linear equations. Let D be a nonsingular diagonal scaling matrix.
Algorithm 2.3 below is our algorithm for implicitly implementing Broyden’s second
update. We note that remarks similar to those following Algorithm 2.2 above are also
appropriate for Algorithm 2.3.

ALGORITHM 2.3.
At step 0 of (1.7). Suppose that one has y(0) and B0 in a form convenient for

the solution of linear equations. Then compute F(y(0)), s(O)=-B-d’F(y(O)), and
y(1) y(0)+ s(0), and go on to step 1 if necessary.

At step k of (1.7), k_>-1. Suppose that one has y(k), F(y(k-1)), Bo and also
t(1),..., t(l) and u(1),..., u(l), if k> 1 and updates have been made for some
l, 1 _-< _-< k-1. Then do the following:
(1) Compute F(y(k)).
(2) If no update is to be made, compute

--BI[I--t(1)u(1)T] [I-t(l)u(1)T]F(y(k))
s(k) if > 0 updates have been made,

(-BlF(y(k)) otherwise

and go to (3). If an update is to be made, compute

z(k- 1)- F(y(k))-F(y(k- 1)),

u(l+l)=D2z(k-1), t(l+l)=F(y(k))/u(l+l)Tz(k-1),

s( k) -B-dl[I t(1)u(1) T]... [I-- t( + 1)u( / 1) T]F(y( k)).

(3) Compute y(k + 1) y(k)+ s(k) and go on to step k + 1 if necessary.
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3. Algorithmic implementation. In implementing each of the three update
algorithms described above, the LSODE package was modified so as to perform
occasional quasi-Newton updates. In order to describe precisely the algorithm for this,
we must first outline the structure and overall algorithm of LSODE, to the extent that
this is relevant here.

3.1. The unmodified algorithm. Aside from several auxiliary routines of secon-
dary importance, the structure of LSODE (unmodified) is shown in Fig. 1, with the
dashed line connections ignored. Subroutine LSODE is a driver, and subroutine
STODE performs a single step and associated error control. STODE calls PREPJ to
evaluate and do an LU factorization of the matrix P, of (1.6), and subsequently calls
SOLSY to solve the linear system (1.5). (Recall that P, approximates I- hfloJ(t,, y,).)
Both of these routines call LINPACK routines [8] to do the matrix operations.

FIG. 1. Simplified overall structure of LSODE package.

Within STODE, the basic algorithm for step n, in its unmodified form, is as follows"

(1) Set flag showing whether to reevaluate J.
(2) Predict y(0).
(3) Compute f(t, y(0)); set m=0.
(4) Call PREPJ if flag is on.
(5) Form F(y,(m)).
(6) Call SOLSY and correct to get y(m + 1).
(7) Update estimate of convergence rate constant C if m _>-1.

(8) Test for convergence.
(9) If convergence test failed:

(a) Set m<--rn+l.
(b) If m < 3, compute f(t, y(m)) and go to 5.
(c) If m 3 and J is current, set h <-- hi4 and go to 1 (redo step).
(d) If m 3 and J is not current, set flag to reevaluate J and go to step

(3) (redo step).
(10) If the convergence test passed, update history, do error test, etc.

In algorithm step (1) above, the decision is made to reevaluate J (and redo the
LU factorization of P-I-hfloJ) if either

(a) 20 steps have been taken since the last evaluation of J, or
(b) the value of hflo has changed by more than 30% since J was last evaluated.
In algorithm step (7), the iterate difference s, (m) y,(m + 1) y, (m) is used,

together with s,(m- 1) if m => 1, to form the ratio DEER= II .(m)ll/lls.(m- 1)11, and
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C is updated to be the larger of .2C and DEER. C is reset to .7 whenever J is
evaluated. The norm is a weighted root-mean-square norm, with weights determined
by user-supplied relative and absolute tolerance parameters RTOL and ATOL. (These
weights correspond to the diagonal scaling matrix D referred to in 2.) The convergence
test in step (8) requires the product IIs(m)ll min (1, 1.5C) to be less than a constant
which depends only on q. This is based on linear convergence, with the idea that
C s, (m)ll is a better estimate of the error in Yn (rn + 1) than s. (m)ll is. Algorithm
step (10) includes step and order selection for the next step (if the error test passed)
or for redoing the current step (if it failed), but the details of that are not relevant here.

3.2. The modified algorithm for updating. There are three main additions to this
structure, each of which is a call from STODE to one of the updating routines, shown
by the dashed lines in Fig. 1. Subroutines DOLIT, BROY1, and BROY2 erform
(respectively) Doolittle updates, Broyden’s first update, and Broyden’s second update.

Any implementation of an updating strategy in LSODE will necessarily have to

include rules which decide when to reevaluate J and when to perform an update of
P. Within LSODE, at any given step the only feasible measures of the quality of the
current P are the following:

(i) The ratio of the current value of h/30 to the value as of the last J evaulation.
(ii) The number of steps taken since the last J evaluation.
(iii) RCC I(hflo),,/(hflo)n-1 II, where (hfl0)k denotes the value of hflo at step k.
(iv) DEER= IIs,(rn)ll/lls(m- 1)]1 =the ratio of iterate differences (when m _-> 1).
The exact rules chosen for reevaluating J and updating P are based on these four

quantities, as follows. In the course of the algorithm, a set of six flags is set according
to the following rules:

(i) Flag 1 is turned on if either
(a) 60 steps have been taken since the last evaluation of J,
(b) the value of hflo has changed by more than 30% since J was last evaluated,
or
(c) the value of hflo has changed by more than 30% from the value on the
previous step (i.e., RCC> .3).

(ii) Flag 2 is turned on if .2 < RCC-< .3.
(iii) Flag 3 is turned on if .1 < RCC-< .2.
(iv) Flag 4 is turned on if m-> 2 and DEER -< .1.
(v) Flag 5 is turned on if m >- 2 and. 1 < DEER =< 1.0.
(vi) Flag 6 is turned on if m-> 2 and DEER> 1.0.
Then time step n of the integration is given by substituting the following modified

steps in the STODE algorithm given in 3.1 (i.e., replacing step (1) by (1’), etc.):

(1’) (a) Set flag 1 showing whether to reevaluate J.
(b) Set flag 2 and flag 3 showing whether to update Pn.
(c) Set IUP 1 if flag 2 or flag 3 is on; otherwise set IUP 0.

(6’) Update the matrix Pn if IUP 1 and m > 0; call SOLSY as appropriate; correct
to get y(rn + 1).

(8’) (a) If flag 2 is on and m =0, set m m + 1, compute f(t,, y,,(m)) and go to (5)
(forcing at least two corrections).

(b) Test for convergence.
(9’) If convergence test failed:

(a) Set mm+l.
(b) If m <2, compute f(t,, y,(m)) and go to (5).
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(C) If m => 2, compute DELR= Ils(m)ll/lJs(m-1)ll. Set flag 4, flag 5, and flag
6 according to value of DELR.

(d) If flag 6 is on, go to (h).
(e) If m < 5 and flag 4 is on, set IUP=0, compute f(tn, yn(m)), and go to (5).
(f) If m < 5 and flag 5 is on, set IUP= 1, compute f(tn, y,(m)), and go to (5).
(g) If m =5, go to (h).
(h) If J is current, set h hi4 and go to (1’) (redo step). Otherwise, set flag to

reevaluate J and go to (3) (redo step with the same h).

We note that updating is done when either .1 < RCC=<.3 or .1 < DELR -< 1.0
(with m >-2), and that at least two corrections are performed when .2 < RCC =< .3. If
DELR =<. 1 and m ->_ 2, then no updating is done regardless of what the other strategies
imply. Also, the maximum number of iterations allowed per step in the modification
is 5 (compared to 3 in unmodified LSODE) to allow for steps in which the current P
is initially somewhat out of date but after several updates are performed should be
sufficiently good to complete that step and possibly several more. The structure of
step (6’) in the above algorithm depends significantly upon the particular updating
scheme being employed, following the algorithm given in 2. Further details are given
in [2].

4. Numerical tests. The algorithms described above, and implemented in modified
versions of the LSODE package, were tested on various ODE test problems. In this
section we give, for each of four problems, a brief description of the problem, numerical
results obtained, and some discussion. Three of the four test problems are obtained
from time-dependent partial differential equation (PDE) systems solved by the method
of lines. Further details on the problem specifications are available in [2]. All of the
tests were done on a Cray-1 computer with the CFT compiler.

The algorithms tested included the unaltered LSODE package (as discussed in
3.1) and versions modified to perform Doolittle and implicit Broyden updates of

first and second kinds (as described in 3.2). In addition, an algorithm was tested
which uses the modified Newton strategy from the updating algorithms (of 3.2) but
which never performs matrix updates. This tests the value of the new corrector loop
strategy as distinct from the updates themselves.

In what follows, we will use the following abbreviations for the various algorithms:
LSODE: unaltered LSODE package;
DOLIT: LSODE with Doolittle LU updating;
IMPBI: Implicit updating by Broyden’s first method;
IMPB2: Implicit updating by Broyden’s second method;
LSODE*: LSODE with new strategy but no updates.
Unless otherwise stated, the algorithms are as described in detail in 3. However,

the various heuristic parameters in the updating strategy were varied somewhat in
many of the test runs. Where meaningful, results for altered parameter values are also
given.

For each problem and each algorithm, a test run was made and yielded various
statistics. Those of interest are defined as follows:

R.T. run time (CPU sec);
NST number of time steps;
NFE number of f evaluations;
NJE number of J evaluations (=number of LU decompositions);
NUP number of matrix updates.

In all cases, the J evaluations were done by a user-supplied subroutine.
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4.1. Test problem 1. This problem is based on a pair of PDE’s in two dimensions,
representing a simple model of ozone production in the stratosphere with diurnal
kinetics. (See also [16] for comparison tests on this problem.) There are two dependent
variables c representing concentrations of O1 and 03 (ozone) in moles/cm3, which
vary with altitude z and horizontal position x, both in km, with 0 -< x =< 20, 30 <= z -< 50,
and with time in sec, 0=< t_-<86,400 (one day). These obey a pair of coupled
reaction-diffusion equations"

c3C
Kh_X2 q..

C O [ OCiqKo(z) Oz.l+R’(c’,c,t) (i 1, 2),

Kh "-4 "10-6, K,(z) 10-8 ez/5,

RI(c1, c2, t) =-klcl- k2clc2d k3(t 7.4. 1016-t k4(t)c2,

R2( c c2, t) k c kec c2- k4( t)c2,
k 6.031, k 4.66" 10-16,

)exp[-22.62/sin (rt/43,200)] for t<43,200,
k3(t) [o otherwise,

exp [-7.601/sin (rt/43,200)] for < 43,200,
k4(t)

0 otherwise.

Homogeneous Neumann boundary conditions are posed. The initial condition functions
are polynomials chosen to be slightly peaked in the center and consistent with the
boundary conditions:

cl(x, Z, 0)= 1060(X)(Z), C2(X, Z, 0)= 1012Cg(X)(Z),

a(z) =-- 1-(.lx-1)2+(.lx-1)4/2, (z)= 1-(.lz-4)2+(.lz-4)4/2.
The PDE’s are treated by central differencing, on a rectangular grid with uniform
spacings, Ax 20/(J-1), Az 20/(K- 1). The differencing for the vertical diffusion
term is

(1/AZ)[K(Zk+l/2) C.i,k+ C.ik) K,, Zk-1/2) C.ik Cj,k- 1) ].

(all k) and similarly onThe boundary conditions are simulated by taking Co,k C2,k
the other boundary segments. The size of the ODE system is N 2JK. The variables
are indexed first by species, then by x position, and finally by z position. Thus in
y=f(t, y), we have Cik=ym, m=i+2(j-1)+2J(k-1).

For these tests, we chose J 20 and K 20 (N 800). The problem is stiff because
of the kinetics, and the Jacobian has half-bandwidths ML-MU=2J=40. (The
diffusion terms are a potential cause of stiffness also, but are not in fact, for these
choices of Ax, Az, Kh, Kv.) A mixed relative/absolute error tolerance was chosen, with
RTOL 10-5 and ATOL 10-3.

The results of testing the five algorithms on this problem are shown in Table 1.
In this case, all three updating algorithms produced shorter run times than LSODE
or LSODE*, with IMPB2 being the fastest. By comparison with LSODE, IMPB2
trades 22 updates for a reduction in Jacobian evaluations by 21--a tradeoff that saves
over 6 sec. (22%) of CPU time.

4.2. Test problem 2. This problem is based on a reaction-diffusion system arising
from a Lotka-Volterra competition model, with diffusion effects in two space
dimensions included. There are two species densities c, varying over the spatial habitat
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TABLE
Test results for problem 1.

Algorithm R.T. NST NFE NJE NUP

LSODE 27.76 459 661 85 0
DOLIT 23.20 408 587 67 31
IMPB1 26.73 456 655 80 32
IMPB2 21.64 388 544 64 22
LSODE* 28.06 471 714 83 0

f {(x, z): 0 -< x -< 1, 0 =< z =< 1.8}, and time in sec, 0 -<_ -< 10. These obey

--OC [02C 02ci
di-x+-’z2) +fi(cl c2) (i 1, 2),

Ot

dl .05, d2 1.0,

fl(cl, c2) c1(bl-allcl-a12c2),
f2( c c2) c2( b2- a2 c azzc2),

all= 106, a12 1, a21 106-1, a22-- 106, bl b2 106-1 + 10-6.

Homogeneous Neumann boundary conditions are imposed. Initial conditions are
chosen consistent with the boundary conditions:

c(x, z, 0)= 500 + 250 cos (Trx) cos (107rz/1.8),

c2(x, z, 0)= 200+ 150 cos (10rx) cos (rrz/1.8).

Given the above parameter values and initial conditions, the solution of this reaction-
diffusion system converges as t to the equilibrium solution cl=c1= 1-10-6,
c2-- c2= 10-6. The two partial differential equations are again treated by central
differencing, on a rectangular J by K grid with uniform spacings, with boundary
conditions treated as before. The size of the ODE system is N 2JK, and the variables
are indexed by species, then by x position, and finally by z position.

For this test, we chose J 20 and K 20 (N 800). The problem is stiff mainly
because of the interaction terms, and the Jacobian has half-bandwidths ML MU
2J 40. A mixed relative/absolute error tolerance was chosen, with RTOL 10-6

and ATOL 10-9.
The test results on this problem are given in Table 2. Here, in all three updating

algorithms, the updates seem to have had no beneficial effect, and simply increased
the cost. The reason may be that for this problem the step size grows steadily throughout
the problem, at a rate which forces reevaluations of both the Jacobian matrix and P
every 8-10 steps, regardless of updating method.

TA3LE 2
Test results for problem 2.

Algorithm R.T. NST NFE NJE NUP

LSODE 23.92 582 665 66 0
DOLIT 25.20 583 696 69 30
IMPB1 25.20 583 696 69 30
IMPB2 25.33 588 708 70 31
LSODE* 25.63 583 700 72 0
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4.3. Test problem 3. This problem is an ODE system in population biology which
models the interaction of N species competing for the same limited resource. It is also
of Lotka-Volterra type and has the form, with time in seconds,

d--- ui bi- ajuj i= l, ,N).
j=l

The matrix A (a) is taken to be symmetric and banded. For test purposes, we
chose N 100, half-bandwidths ML MU 20, and coefficients

all a25,25 1, a26,26 a5o,50 106,

a51,51 a75,75 101, a75,75 alOO,lOO 1011,

a =.0002a, for j, li-j[ <= 20.
We define b=(bi) by setting u*=(1,...,1) and b=Au*. Then u(t) =u* is an
equilibrium solution of the ODE system, to which the solution of the ODE system
converges as t--> oo. We chose initial conditions u(0) 1.5 i, and took 0 <- <= 10. The
problem is stiff for the parameters chosen. A mixed relative/absolute error tolerance
was chosen with RTOL ATOL 10-6.

The test results on this problem are given in Table 3. Here only IMPB1 and
IMPB2 were competitive with LSODE, while DOLIT was not. The explanation may
be as offered for Problem 2--steadily and rapidly growing step sizes.

TABLE 3
Test results for problem 3.

Algorithm R.T. NST NFE NJE NUP

LSODE 5.32 652 770 80 0
DOLIT 6.22 694 871 100 36
IMPB1 5.39 646 773 83 24
IMPB2 5.31 642 765 81 29
LSODE* 5.66 670 820 85 0

4.4. Test problem 4. Like Problem 2, this problem is based on a reaction-diffusion
system arising from a Lotka-Volterra predator-prey model with diffusion effects in
two space dimensions. Here the prey and predator species densities vary over fl
{(x, z): 0-<_x<= 1, 0<= z-< 1} and 0_<- t=<3. The equations are the same as in Problem 2
except with

fl(cl, c2)=1(b1-a122), f2(cl, c2)=c2(-b2+a21cl),

bl 1, a12 .1, a21 100, b2 1000,

and initial conditions

c l(x, Z, 0) 10- 5 cos (arx) cos (10,rz),

c2(x, z, 0)= 17+5 cos (107rx) cos (Trz).

Here the solution becomes spatially homogeneous as c, and tends to a time-
periodic solution of the Lotka-Volterra ODE system modeling the predator-prey
interaction without spatial effects, namely dc/dt=f (i 1, 2). This last system is
alternately stiff and nonstiff depending on the position of the solution in phase space.



QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 31

The two PDE’s are differenced just as in Problem 2, except that the mesh
dimensions are J =K 10 (N= 200), and hence the Jacobian has half-bandwidths
ML MU 2J 20. The tolerance parameters used were RTOL 10-6 and ATOL
10-4.

The test results on this problem are given in Table 4. Here IMPB2 gave an 8%
reduction in run time, trading 50 updates for 16 fewer Jacobian evaluations. But
DOLIT and IMPB1 gave little or no overall cost reduction for this particular algorithm.
However, runs were also made with slightly different parameter values in the updating
strategy (50% in place of 30% in criterion (b) for flag 1, and .4 in place of .3 in the
setting of flag 1 (criterion (c)) and of flag 2; see the detailed algorithm in 3.2). In
these runs, all three updating algorithms ran faster than LSODE, from 15% faster
(IMPB2) to 9.5% faster (DOLIT). However, LSODE* ran 12% faster than LSODE
also.

TABLE 4
Test results for problem 4.

Algorithm R.T. NST NFE NJE NUP

LSODE 8.84 1,248 1,635 129 0
DOLIT 8.80 1,125 1,630 125 53
IMPB1 8.86 1,270 1,677 129 58
IMPB2 8.14 1,180 1,560 113 50
LSODE* 8.79 1,242 1,632 127 0

5. Discussion. We have presented three quasi-Newton methods and discussed
their application to solving the nonlinear algebraic equations arising in the solution of
stiff ODE systems by BDF methods. Our focus has been on the case in which the
ODE system is very large and the Jacobian of the system is sparse, and the quasi-Newton
methods considered here were chosen because of their potential for exploiting sparsity.
This investigation has not been exhaustive. For one thing, the testing of the methods
chosen here has been somewhat limited; for another, there are other quasi-Newton
methods, as well as variations of those considered here, which might also be appropriate
for this setting.

It must be recognized, however, that the area under investigation is broad and
largely unexplored. From the point of view of solving algebraic equations, the ODE
setting is markedly different from that of a fixed algebraic problem. In particular, it
is clear that for best results a great deal of interaction should take place between the
ODE integration algorithm (the step and order selection and its various heuristic
decision rules) and the algorithm implementing any given quasi-Newton method (and
its heuristics). We do not claim to have achieved an optimal merge of the two, but we
believe that we have made the most serious attempt to date at doing so.

Our test results show that, for some problems, the combined ODE and quasi-
Newton algorithms considered here can offer significant improvements over the
unmodified algorithm. We found further that, in our tests, the implicit updates by
Broyden’s second method came the closest to being consistently beneficial (when
updates of any kind were beneficial). The Doolittle method and updates based on
Broyden’s first method usually (but not always) did a poorer job.

The test results also suggest that, for some problems, the quasi-Newton methods
studied here may not be capable of reducing the total costs. Specifically, the potential
helpfulness of the updates used here seems to be precluded for problems in which the
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order and step size values vary rather rapidly during the integration. (However, other
quasi-Newton updates, which are applicable only in the small-system case, offer hope
of dealing effectively with such rapid variations.) The most favorable results with
updates seem to occur when the updated values of (0Fn/0yn)-1 (actual or virtual) are
as accurate (or produce the same speed of convergence) as those that would be gotten
by reevaluating OFn/Oy, from scratch, but are obtained at much lower cost. With the
updates considered here, this fortunate situation seems most likely to occur when
sizeable numbers of consecutive integration steps are taken over which the step sizes
and Jacobian values change only relatively little. In a general purpose solver like
LSODE, a natural approach to the design of the algorithm is to try to detect when
such conditions hold and when they do not, and attempt to restrict the use of updates
in a dynamic way accordingly. This idea has been a guiding principle in our work, but
there is certainly more to be done towards that end.
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