
NITSOL: A NEWTON ITERATIVE SOLVER
FOR NONLINEAR SYSTEMS∗

MICHAEL PERNICE† AND HOMER F. WALKER‡

SIAM J. SCI. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 302–318, January 1998 021

Abstract. We introduce a well-developed Newton iterative (truncated Newton) algorithm for
solving large-scale nonlinear systems. The framework is an inexact Newton method globalized by
backtracking. Trial steps are obtained using one of several Krylov subspace methods. The algorithm
is implemented in a Fortran solver called NITSOL that is robust yet easy to use and provides a
number of useful options and features. The structure offers the user great flexibility in addressing
problem specificity through preconditioning and other means and allows easy adaptation to parallel
environments. Features and capabilities are illustrated in numerical experiments.
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1. Introduction. Our interest is in methods for solving a system of nonlinear
equations

F (x) = 0, F :Rn → Rn,(1.1)

where F is assumed to be continuously differentiable everywhere in Rn. Newton’s
method for solving (1.1) requires, at the kth step, the solution of the linear Newton
equation

F ′(xk) sk = −F (xk),(1.2)

where xk is the current approximate solution. A Newton iterative method, or truncated
Newton method, is an implementation of Newton’s method in which an iterative linear
solver is used to determine an approximate solution of (1.2). Newton iterative methods
are especially well suited for large-scale problems and have been used very successfully
in many scientific and industrial applications.

Our purpose here is to introduce a well-developed Newton iterative algorithm
and to describe its implementation in a Fortran solver called NITSOL. In brief, the
underlying nonlinear algorithm is an inexact Newton method with a backtracking
globalization1, previously formulated as Algorithm INB of [9, section 6]. In this, the
Newton equation (1.2) is relaxed to an inexact Newton condition (cf. [8])

‖F (xk) + F ′(xk) sk‖ ≤ ηk‖F (xk)‖,(1.3)
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1We use the term “globalization” in its traditional sense, i.e., to refer to strategies for improving
the likelihood of convergence from initial approximations that may not be near a solution.
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in which the “forcing term” ηk ∈ [0, 1) can be specified in several ways as in [10] to
enhance efficiency and convergence. An initial sk satisfying (1.3) is determined by
using a Krylov subspace method to solve (1.2) approximately; thus, our algorithm is
a Newton–Krylov method. The Krylov subspace methods implemented in NITSOL
are GMRES(m) [25], [33], BiCGSTAB [31], and TFQMR [12]. Once an initial sk has
been determined, it is tested and, if necessary, reduced in length through safeguarded
backtracking until an acceptable step is obtained.

With NITSOL, we have hoped to provide a robust, theoretically well-founded
solver that is simple and easy to use but which offers enough options and flexibility
to allow the user to implement sophisticated solution strategies that address specific
problem needs and particular machine capabilities. No preconditioners are provided
by NITSOL, but the structure allows the user to implement a preferred preconditioner
with minimal difficulty. The user is also allowed to specify or supply an inner product
and associated norm that are used throughout the algorithm; this capability not
only provides a means of addressing problem scaling but also allows easy adaptation
to parallel environments. There are options for producing a variety of diagnostic
information and also for passing to user-supplied routines information that can be
helpful in determining when to re-evaluate Jacobians or preconditioners.

Several Newton iterative solvers have been introduced previously by others. The
NKSOL Fortran code [3] implements a Newton iterative method with either back-
tracking or trust region globalization; the Krylov solver options are GMRES and
the full orthogonalization (Arnoldi) method [23]. The Scalable Nonlinear Equations
Solver (SNES) package [15], which is part of the very extensive C library PETSc [16],
offers a Newton iterative solver with either backtracking or trust region globalization
and provides various Krylov solvers and preconditioners. SNES and PETSc achieve
parallelism through message passing, using the Message-Passing Interface standard
(MPI) [28] for interprocessor communication. The more specialized parallel reactive
flow code MPSalsa [26], [27], also written in C, includes a nonlinear solver that, like
NITSOL, is based on Algorithm INB of [9]; various Krylov solvers and incomplete
factorization preconditioners are provided via the Aztec parallel iterative linear alge-
bra library [17]. Less closely related are the truncated Newton solvers LANCELOT
[6] and TN [21], [22], which employ the conjugate gradient method and are intended
primarily for optimization.

In section 2 below, we introduce the inexact Newton backtracking method, dis-
cuss its implementation as a Newton iterative method, and outline the Krylov solver
options. In section 3, we discuss the structure, features, and usage of NITSOL. In
section 4, we give illustrative examples of NITSOL applications and usage.

2. The algorithm. The inexact Newton backtracking method that we imple-
ment is the following from [9], which offers strong global convergence properties com-
bined with potentially fast local convergence. In this, the inexact Newton condition
(1.3) is augmented with a condition of sufficient reduction of the norm of F .

ALGORITHM INB (Inexact Newton Backtracking method [9]).

Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given.

For k = 0, 1, . . . (until convergence) do:

Choose initial ηk ∈ [0, ηmax] and sk such that

‖F (xk) + F ′(xk) sk‖ ≤ ηk‖F (xk)‖.
While ‖F (xk + sk)‖ > [1 − t(1 − ηk)] ‖F (xk)‖ do:

Choose θ ∈ [θmin, θmax].
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Update sk ←− θsk and ηk ←− 1 − θ(1 − ηk).
Set xk+1 = xk + sk.

Note that, given an initial ηk, a satisfactory initial sk exists if the Newton equation
(1.2) is consistent, in particular, if F ′(xk) is invertible. If a satisfactory initial sk can be
found, then we have from remarks in [9, section 6] that in exact arithmetic Algorithm
INB does not break down in the while-loop, i.e., an acceptable sk is determined after,
at most, a finite number of step reductions. Furthermore, it is easy to see that an
inexact Newton condition (1.3) holds for each sk and ηk determined by the while-loop
and, in particular, for the final sk and ηk.

The principal theoretical result for Algorithm INB in exact arithmetic is the
following.

THEOREM 2.1 (see [9]). Assume that F is continuously differentiable. If {xk}
produced by Algorithm INB has a limit point x∗ such that F ′(x∗) is invertible, then
F (x∗) = 0 and xk → x∗. Furthermore, the initial sk and ηk are accepted without
modification in the while-loop for all sufficiently large k.

It follows that if Algorithm INB does not terminate and produces {xk}, then
exactly one of the following must hold:

• ‖xk‖ → ∞, i.e., {xk} has no limit points.
• {xk} has one or more limit points, and F ′ is singular at each of them.
• {xk} converges to a solution x∗ at which F ′ is invertible.

Note that in the case of the (desirable) third alternative, the initial sk and ηk are
accepted without modification for all sufficiently large k and, consequently, asymptotic
convergence to the solution is determined by the initial ηk’s as in the local convergence
analysis of [8].

To implement Algorithm INB as a Newton iterative method, one must first specify
various details in the algorithm and then choose a suitable iterative linear solver for
determining initial inexact Newton steps. In our implementation, relatively minor
details are specified as follows: as in [10, section 3.1], we use backtracking safeguard
values θmin = 0.1 and θmax = 0.5. We take the norm to be an inner-product norm and
choose θ ∈ [θmin, θmax] to minimize a quadratic that interpolates ‖F‖ in the direction
of the inexact Newton step. The value t = 10−4 is used to judge sufficient reduction,
and we use the upper bound ηmax = 0.9. Convergence is declared if either ‖F (xk)‖ ≤
FTOL or ‖sk‖ ≤ STPTOL · ‖xk‖, where FTOL and STPTOL are user-supplied tolerances.

In the remainder of this section, we first address a major detail: choosing the
initial forcing terms. We then discuss the Krylov solvers that are available in our
implementation.

2.1. Choosing the forcing terms. As noted above, if the iterates produced
by Algorithm INB converge to a solution of (1.1) at which F ′ is invertible, then
the ultimate speed of convergence is determined by the initial forcing terms ηk. In
particular, by the analysis of [8], desirably fast local convergence can be obtained by
making suitably small choices of the initial forcing terms near a solution.

The initial forcing terms can also significantly affect the performance of the al-
gorithm away from a solution. Indeed, choosing an initial ηk too small can lead to
oversolving the Newton equation, i.e., imposing an accuracy on an approximate solu-
tion sk of (1.2) that leads to significant disagreement between F (xk +sk) and its local
linear model F (xk)+F ′(xk)sk. Oversolving may result in little or no progress toward
a solution. Moreover, in a Newton iterative implementation, it may involve pointless
expense; a less accurate solution of (1.2) may be both cheaper and more effective in
reducing the norm of F .
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Here, we implement two choices of the initial forcing terms from [10] that give
desirably fast local convergence and also tend to minimize oversolving. These are as
follows:

Choice 1: Select any η0 ∈ [0, 1) and choose

ηk =

∣∣∣‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1) sk−1‖
∣∣∣

‖F (xk−1)‖
, k = 1, 2, . . . .(2.1)

Choice 2: Given γ ∈ [0, 1] and α ∈ (1, 2], select any η0 ∈ [0, 1) and choose

ηk = γ

(
‖F (xk)‖

‖F (xk−1)‖

)α

, k = 1, 2, . . . .(2.2)

Note that, for implementation in Algorithm INB, it is necessary to follow (2.1)
and (2.2) with the safeguard

ηk ←− min{ηk, ηmax}.(2.3)

Also, in our implementation, we use the initial value η0 = 0.5 with both Choice 1 and
Choice 2.

Theorems 2.2 and 2.3 in [10] give results concerning the speed of local convergence
to a solution of (1.1) when (2.1) or (2.2) is used to determine inexact Newton iterates.
Augmenting Theorem 2.1 above with those results immediately yields the following
extensions.

THEOREM 2.2. Assume that F is continuously differentiable and that each ηk in
Algorithm INB is given by (2.1) followed by (2.3). If {xk} produced by Algorithm INB
has a limit point x∗ such that F ′(x∗) is invertible, then F (x∗) = 0 and xk → x∗.
Furthermore, if F ′ is Lipschitz continuous at x∗, then

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖‖xk−1 − x∗‖, k = 1, 2, . . . ,(2.4)

for a constant β independent of k.
Remark. As noted in [10], it follows immediately from (2.4) that the convergence

is q-superlinear, two-step q-quadratic, and of r-order (1 +
√

5)/2.
THEOREM 2.3. Assume that F is continuously differentiable and that each ηk in

Algorithm INB is given by (2.2) followed by (2.3). If {xk} produced by Algorithm INB
has a limit point x∗ such that F ′(x∗) is invertible, then F (x∗) = 0 and xk → x∗.
Furthermore, if F ′ is Lipschitz continuous at x∗, then the following hold: if γ < 1,
then the convergence is of q-order α; if γ = 1, then the convergence is of r-order α
and of q-order p for every p ∈ [1, α).

It is observed in [10] that although the forcing term choices given above are usually
effective in avoiding oversolving, they occasionally become too small far away from a
solution. Accordingly, we implement the following safeguards suggested in [10]:

Choice 1 safeguard: Modify ηk by ηk ← max{ηk, η
(1+

√
5)/2

k−1 } if η
(1+

√
5)/2

k−1 > 0.1.

Choice 2 safeguard: Modify ηk by ηk ← max{ηk, γηα
k−1} if γηα

k−1 > 0.1.
These are applied after ηk has been determined by (2.1) or (2.2) and before applying
the safeguard (2.3). Note that if {xk} converges to a solution of (1.1) at which F ′ is
invertible and Lipschitz continuous, then, with either (2.1) or (2.2), we have ηk → 0.
It follows that the above safeguards eventually become inactive and do not affect the
asymptotic convergence given in Theorems 2.2 and 2.3.
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We employ one further safeguard with the above choices that plays a role near a
solution of (1.1) when a stopping criterion of the form ‖F (xk)‖ < ε is used. (Here, ε
represents either an absolute or a relative tolerance.) Maintaining agreement between
F and its local linear model means that

‖F (xk+1)‖ ≈ ‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖.

Thus, if ηk‖F (xk)‖ � ε, then it is likely that the stopping criterion can be satisfied
with less effort by using a larger ηk. On the other hand, if ηk‖F (xk)‖ is slightly larger
than ε, then it is possible that the stopping criterion can be satisfied without an
additional inexact Newton step by using a slightly smaller ηk. Therefore, we impose
the following final safeguard: if ηk ≤ 2ε/‖F (xk)‖, then ηk ←− 0.8ε/‖F (xk)‖.

In addition to the above choices, we also allow the user to specify a constant
choice ηk = η∗, where η∗ ∈ [0, 1) is independent of k. Such a choice is occasionally
useful, e.g., when only modest accuracy is desired in approximately solving (1.2). In
this case, augmenting Theorem 2.1 above with Theorem 2.3 in [8] immediately gives
the following convergence result for this choice.

THEOREM 2.4. Assume that F is continuously differentiable and that each ηk in
Algorithm INB is given by ηk = η∗ for some η∗ ∈ [0, 1) independent of k. If {xk}
produced by Algorithm INB has a limit point x∗ such that F ′(x∗) is invertible, then
F (x∗) = 0 and xk → x∗. Furthermore, for every η ∈ (η∗, 1), we have

‖xk+1 − x∗‖∗ ≤ η‖xk − x∗‖∗(2.5)

for all sufficiently large k, where ‖v‖∗ ≡ ‖F ′(x∗)v‖ for v ∈ Rn.

2.2. The Krylov subspace methods. In our Newton iterative implementation
of Algorithm INB, a Krylov subspace method is used to obtain each initial sk. Krylov
subspace methods comprise a very broad and successful class of iterative linear algebra
methods; see [13] for a recent survey.

As indicated in section 1, the Krylov solver options in our algorithm are
GMRES(m), BiCGSTAB, and TFQMR. These methods are well known, widely used,
and applicable to general linear systems. They are “transpose free”, i.e., in an im-
plementation, they require only products of the coefficient matrix with vectors and
do not require products involving its transpose. Being “transpose free” can be very
advantageous, particularly in the Newton iterative context, in which the coefficient
matrix is F ′(xk). If analytic evaluation of products of F ′(xk) with vectors is undesir-
able or infeasible, then these products can be approximated with finite differences of
F -values, as discussed further below.

At each step, GMRES(m) minimizes the residual norm over all corrections in the
current Krylov subspace and, ipso facto, enjoys a certain optimality among all Krylov
subspace methods. Because iterates are based on this norm minimization property,
the method does not break down in exact arithmetic, i.e., a new iterate can always be
constructed if the current iterate is not the solution, provided the coefficient matrix is
nonsingular. However, if the restart value m is not sufficiently large, then the method
may fail through stagnation, i.e., insufficient residual norm reduction over a cycle of m
steps to justify continuing. Since GMRES(m) requires O(mn) storage and O(m2n)
arithmetic operations per cycle of m steps, it may not be feasible to take m large
enough to overcome stagnation.

BiCGSTAB and TFQMR do not enjoy the residual norm minimization property of
GMRES(m). However, they are based on the nonsymmetric Lanczos process and, as
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a result, use short recurrences (see [13]). Because these recurrences are the result of
a Galerkin condition, BiCGSTAB and TFQMR may fail to produce a new iterate
and terminate prematurely. In the absence of this type of breakdown, they can
proceed indefinitely with only a fixed, very modest amount of storage and arithmetic
per iteration. Residual norm sequences produced by these methods usually decrease
fairly smoothly, if not monotonically. However, these methods are more sensitive than
GMRES(m) to roundoff error.

Our implementations of BiCGSTAB and TFQMR are standard; see [31] and [12],
respectively. Our implementation of GMRES(m) is not that of [25] but rather the
“simpler” Gram–Schmidt implementation of [33]. In this, the GMRES least-squares
problem emerges in upper triangular form, rather than upper Hessenberg form, so no
Givens rotations are necessary. Furthermore, the residual vector is maintained during
the iterations and, in particular, is returned at no cost for use in the backtracking
routine.

In our algorithm, products of F ′(xk) with vectors that are required by the Krylov
solvers can be either evaluated analytically by a user-supplied subroutine or approxi-
mated using finite-difference formulas provided by the algorithm. The available finite-
difference formulas are of orders one, two, and four and are given, respectively, by

F ′(xk)v ≈ 1
δ
[F (xk + δv) − F (xk)],(2.6)

F ′(xk)v ≈ 1
2δ

[F (xk + δv) − F (xk − δv)],(2.7)

F ′(xk)v ≈ 1
6δ

[
8F

(
xk +

δ

2
v

)
− 8F

(
xk − δ

2
v

)
− F (xk + δv) + F (xk − δv)

]
.(2.8)

For each of these finite-difference approximations, the difference step δ is chosen based
on standard arguments to achieve accuracy by balancing estimates of floating point
error and truncation error.

Since F (xk) is already available, each of (2.6)–(2.8) requires a number of new
F -evaluations equal to its order. Thus, the greater accuracy of a higher-order formula
carries an increased cost. We wish to point out carefully just what this cost is for the
different Krylov solvers: in the case of BiCGSTAB and TFQMR, choosing a particular
higher-order formula results in that formula being used at each Krylov iteration, and
the increase in cost is likely to be significant. With GMRES(m), however, choosing
a particular higher-order formula results in that formula being used once at each
restart only to calculate the initial residual; the first-order formula (2.6) is always
used within each cycle of m steps. Thus, the increase in cost of using a higher-order
formula with GMRES(m) is likely to be very modest. Such selective higher-order
differencing has been observed in [30] to result in essentially the same accuracy as if
higher-order differencing were used throughout but at much less cost. Some practical
consequences of the use of higher-order differencing are illustrated in section 4.

3. NITSOL usage. We have striven to make NITSOL as simple to use as pos-
sible while still providing a large number of options and the flexibility needed to
implement sophisticated strategies. The simplest use of NITSOL requires only a min-
imal description of the problem to be solved: the size of the problem, an array that
provides an initial approximate solution on entry and contains the final approximate
solution on return, stopping tolerances, work space for the Krylov iterative method,
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and the name of a user-supplied routine for evaluating the nonlinear function F . The
name of a user-supplied routine for forming Jacobian-vector products is also required,
but this can be a dummy routine if finite-difference approximations are preferred. In
addition, the user is required to provide names of routines for calculating norms and
inner products; if the usual Euclidean norm and inner product are desired, then these
can be the DNRM2 and DDOT BLAS routines [1] (see section 3.3 below). The names
of all of these user-supplied subroutines must be declared EXTERNAL in the calling
program.

In our experience, effective preconditioning of the linearized systems is the most
crucial ingredient for obtaining good performance from the package. Since this is
highly problem dependent, no preconditioner is provided with NITSOL. Instead, the
code is structured to allow preconditioning to be implemented with minimal difficulty
in the user-supplied routines mentioned above; in particular, no separate precondi-
tioning routines are required. Left preconditioning, if desired, can be implemented
by simply preconditioning the problem, i.e., applying the preconditioner on the left
in the user’s routine for evaluating F and, if Jacobian-vector products are evaluated
analytically, in the routine for evaluating these as well. NITSOL explicitly accom-
modates right preconditioning; if this is desired, then the preconditioner is applied in
the user’s routine for evaluating Jacobian-vector products. See section 3.2 below for
more details.

The argument list for NITSOL also includes arguments for specifying various op-
tions in the algorithm and for providing workspace, parameters, or other information
to the user-supplied routines. The subsections that follow provide a more detailed
description of NITSOL usage.

3.1. Specification of the nonlinear problem. A user-supplied subroutine is
required to calculate F -values. Its signature is given by

SUBROUTINE F( N, XCUR, FCUR, RPAR, IPAR, ITRMF ),

where N is the size of the problem and XCUR is an array that contains the independent
variable. The routine must return with the value of F at XCUR in the array FCUR.
The arguments RPAR and IPAR are, respectively, real and integer arrays that may be
used to provide problem-specific information or workspace to F. For example, with a
discretized PDE problem, grid dimensions may be provided in IPAR, and workspace or
parameters describing the problem (such as the relative strength of diffusion or mesh
sizes in a nonuniform grid) may be provided in RPAR. These arrays are also passed to
the optional Jacobian-vector product routine, described in section 3.2 below. Thus,
these arrays can, if desired, be used to share information between F and the Jacobian-
vector product routine. NITSOL places no restrictions on the length of these arrays
and does not modify their contents. ITRMF is an integer flag that should be set to
indicate whether F has been successfully evaluated. It is possible, for example, for the
approximate solution to take on a value that will cause evaluation of F to produce a
NaN. NITSOL has no mechanism to detect this and other error conditions that might
arise in the evaluation of F and relies on the user-supplied routines to signal their
occurrence.

3.2. Specifying Jacobian-vector products and preconditioners. A user-
supplied subroutine is required that optionally calculates Jacobian-vector products
and applies a preconditioner to a vector. If only one of these operations is desired,
then the other need not be supplied; if neither is desired, then the routine may simply
execute a RETURN. Its signature is given by
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IF ( IJOB .EQ. 0 ) THEN ! Return a Jacobian-vector product.
... decide whether to update the Jacobian ...
... evaluate the Jacobian-vector product ...

ELSE IF ( IJOB .EQ. 1 ) THEN ! Apply the preconditioner.
... decide whether to update the preconditioner ...
... apply the preconditioning operation ...

END IF

FIG. 3.1. General structure for user-defined JACV.

SUBROUTINE JACV( N, XCUR, FCUR, IJOB, V, Z, RPAR, IPAR, ITRMJV ).

The arguments N, XCUR, FCUR, RPAR, and IPAR are as in section 3.1 above. IJOB
is an input integer flag that specifies whether to form a Jacobian-vector product
(IJOB=0) or apply the preconditioner (IJOB=1). JACV is called with IJOB=1 only if
right preconditioning is used. The array V contains the input data for the requested
operation, and the results are placed in the array Z. ITRMJV is an error flag that should
be set within the routine to indicate success or failure of the requested operation.

In general, JACV must test the value of IJOB and then perform one of two oper-
ations as indicated. Structuring JACV in this way may seem burdensome to the user,
but available alternatives are less desirable. One alternative is to require separate
routines for evaluation of Jacobian-vector products, calculation of a preconditioner,
and application of a preconditioner, all of which would be called directly by NITSOL;
however, this would make NITSOL’s argument list considerably longer and require
the user to supply additional, possibly unnecessary routines. Another alternative is to
employ reverse communication, but this would significantly complicate the interface
and structure of the algorithm and can be error-prone.

We explicitly note that, if desired, the RPAR and IPAR arrays can be used to
provide storage for the Jacobian of F or for any arrays needed by the preconditioner,
such as matrix factors associated with incomplete factorization preconditioners. In
practice, evaluating the Jacobian or preconditioner arrays may be very expensive but
also may need to be done only infrequently. NITSOL provides information on which
the user can base a strategy for occasionally updating the Jacobian or preconditioner
arrays. This is accessed through a common block NITINFO that contains information
on the progress of the algorithm, such as the nonlinear iteration count, the current
F -norm, and the status (success or failure) and average rate of convergence of the
previous Krylov iterations. NITINFO also has a flag that indicates the start of a new
nonlinear iteration. By monitoring this information users can implement a variety of
strategies for determining when to update the Jacobian or preconditioner.

A possible overall structure for JACV is illustrated by the code fragment in Fig-
ure 3.1. Of course, one can vary this structure to allow the use of a Jacobian-free
method while still providing desired right preconditioning. This is done by choosing
the option for finite-difference approximation of Jacobian-vector products, then se-
lecting right preconditioning, and finally setting ITRMJV to indicate failure when IJOB
.EQ. 0 is true in Figure 3.1. (This should never actually occur: if all the options to
NITSOL are set correctly, then JACV is only called with IJOB=1 in this case.)

3.3. Customizing the algorithm. As indicated in section 2, numerous options
are available in NITSOL. Most of these are obtained by appropriately setting values
in an input integer array called INPUT; for ease of use, setting an INPUT value to zero
results in a default choice in each case. Options that can be specified with the INPUT
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array include a choice of three different Krylov solvers, selection of finite-difference
or analytic Jacobian-vector products, several options for choosing the initial forcing
terms, specification of maximum iteration counts for the nonlinear and linear iter-
ations, specification of the restart value m when GMRES(m) is used, selection of
right preconditioning, and specification of the maximum number of backtracks al-
lowed at each nonlinear iteration. Note that the last option allows the user to turn
off backtracking by setting the maximum number of backtracks to zero. Turning off
backtracking can sometimes be useful, e.g., to allow the iterates to escape from a
non-zero local minimum of ‖F‖. As indicated in section 2, finite-difference approxi-
mations of Jacobian-vector products can be based on first-, second-, or fourth-order
differencing formulas.

As mentioned in section 3, user-defined norms and inner products can also be
specified. These can be particularly useful when the problem calls for a weighted
norm and inner product. Their signatures are the same as those of the corresponding
BLAS operations DNRM2 and DDOT:

DOUBLE PRECISION FUNCTION USRNRM( N, X, INCX ),
DOUBLE PRECISION FUNCTION USRNPR( N, X, INCX, Y, INCY ),

where N is the vector length, X and Y are vectors, and INCX and INCY are strides.
They can also be useful in adapting the code to parallel environments, as illustrated
in section 4.2 below.

3.4. Monitoring progress of the algorithm. Several different levels of di-
agnostic information about the nonlinear iterations may be requested by the user.
This information includes the current value of ‖F‖, the value of the initial forcing
term, step length and backtracking information, and convergence histories of the lin-
ear iterations. When GMRES is used, an estimate of the condition number of the
GMRES least-squares problem is also provided, as described in [4]; this provides a
lower bound on the condition number of the preconditioned Jacobian. The user may
also specify an output destination for this information. On return, NITSOL provides
a termination flag that indicates success or failure of the nonlinear iteration and an
array that contains performance statistics.

4. Examples. In this section we present several different examples to illustrate
the capabilities and flexibility of NITSOL and also to show the effects of selecting
different options in the algorithm.

4.1. The generalized Bratu problem. The generalized Bratu problem is

∆u + dux + λeu = 0 in Ω ≡ [0, 1] × [0, 1],
u = 0 on ∂Ω,

(4.1)

where d and λ are constants. The actual Bratu problem has d = 0 and appears in the
asymptotic theory of thermal self-ignition of an enclosed chemically reactive mixture
[11]. The solution u represents the difference in temperature between points interior
to Ω and points on ∂Ω. There is a λcrit > 0 such that solutions of (4.1) exist for
λ ≤ λcrit. Computing a solution becomes more difficult as λ increases to λcrit.

To apply NITSOL to this problem, we discretized (4.1) using second-order cen-
tered finite differences on a uniform 128×128 grid. A fast Poisson solver [29] was used
for right preconditioning. The arrays IPAR and RPAR were used to provide information
and storage needed by the fast Poisson solver: the grid dimensions, the mesh size, d,
λ, and two work arrays. We conducted experiments to compare how different choices
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TABLE 4.1
Execution times (in seconds) on an SGI Power Challenge.

Forcing term GMRES(50) BiCGSTAB TFQMR
Choice 1 4.94 6.52 6.41
Choice 2 5.37 6.16 6.43
η = 10−1 6.81 8.67 7.32
η = 10−4 7.94 9.81 8.46

of the forcing terms affect the various Krylov solvers. Choice 2 used the default val-
ues α = 2 and γ = 1.0. The initial approximation was taken to be u0 = 0, and the
iterations were halted when ‖F (uk)‖ < 10−6‖F (u0)‖. Results for parameter choices
d = 32, λ = 16 appear in Table 4.1.

More insight into the behavior of the method may be gleaned by examining con-
vergence histories for these experiments. Figure 4.1 shows plots of the nonlinear
residual norm obtained using GMRES(50). The first plot shows that the fixed choice
ηk = 10−4 reduced ‖F‖ fastest as a function of the number of nonlinear iterations.
However, the second plot shows that dynamically selecting the forcing term using
Choices 1 and 2 required less CPU time to reduce ‖F‖ to a given level than either
constant choice. Plots of ‖F‖ as a function of the number of Jacobian-vector products
are similar for this example. The convergence histories for BiCGSTAB and TFQMR
are similar. The time for solving this problem is dominated by the time spent form-
ing Jacobian-vector products. Problems that are dominated by the cost of nonlinear
function evaluations may benefit more from a strategy that reduces the number of
nonlinear iterations.

4.2. Flow in a driven cavity. The streamfunction formulation of flow in a
driven cavity is

1
Re

∆2u − (uy∆ux − ux∆uy) = 0 in Ω ≡ [0, 1] × [0, 1],

u = 0 on ∂Ω,(4.2)

∂u

∂n
=

{
1 if y = 1,
0 otherwise on ∂Ω,

where Re is the Reynolds number. This equation models the motion of a fluid in a
square container whose lid (the boundary y = 1) moves from left to right. To apply
NITSOL, we discretized (4.2) using piecewise-linear finite elements on a uniform grid
[3], [14], based on a code provided by P. Brown. A fast biharmonic solver [2] was used
for right preconditioning. As in section 4.1, the arrays IPAR and RPAR were used to
provide information and storage (grid dimensions, Reynolds number, mesh size, and
two work arrays) needed by the preconditioner.

As mentioned in section 2.2, NITSOL provides first-, second-, and fourth-order
differencing formulas for approximating Jacobian-vector products as an alternative to
analytic evaluation. In experiments, we examined the sensitivity of the performance
of the Krylov solvers to the choice of the finite-difference formula. For these, we
discretized the problem on a 63 × 63 grid, resulting in a system of 3969 nonlinear
equations, and used Re = 500. We used Choice 1 for the forcing terms, an initial
approximation u0 = 0, and halted the iterations when ‖F (uk)‖ < 10−7‖F (u0)‖. No
backtracking occurred. The results are summarized in Table 4.2.



312 MICHAEL PERNICE AND HOMER F. WALKER

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g(

||F
||)

Nonlinear Iterations

GMRES(50)

Choice 1    
Choice 2    
eta = 0.1   

eta = 0.0001

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

lo
g(

||F
||)

Time (secs)

GMRES(50)

Choice 1    
Choice 2    
eta = 0.1   

eta = 0.0001

FIG. 4.1. Convergence histories for the generalized Bratu problem using different choices of the
forcing terms and GMRES as the linear solver.

One sees from Table 4.2 that the performance of GMRES(50) was not affected
at all by varying the finite-difference formula. In fact, in this example, GMRES(50)
always terminated successfully in fewer than 50 iterations and never restarted. Since,
in our implementation, higher-order differencing is used in GMRES(m) only to cal-
culate the initial residual on restarts (see section 2.2), it follows that the higher-order
formulas were never invoked. With TFQMR, the numbers of nonlinear and linear
iterations were essentially unaffected by varying the finite-difference formula. How-
ever, since TFQMR uses higher-order differencing at each iteration, the number of
function evaluations increased significantly with higher-order differencing and, as a
result, so did the time. BiCGSTAB was by far the most sensitive to varying the
finite-difference formula. Although the number of nonlinear iterations remained sta-
ble with BiCGSTAB, the number of linear iterations dropped sharply in going from
the first-order formula to the second-order formula. However, there was a net in-
crease in the number of function evaluations and, consequently, a slight increase in
time. In going from the second-order formula to the fourth-order formula, there was
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TABLE 4.2
Effect of the order of finite differences for approximating Jacobian-vector products. NNI: number

of nonlinear iterations. NLI: total number of linear iterations. NFE: number of function evaluations.
Times are in seconds and were obtained on an SGI Power Challenge.

Krylov method Order NNI NLI NFE Time
GMRES(50) 1 10 135 146 7.85
GMRES(50) 2 10 135 146 7.84
GMRES(50) 4 10 135 146 7.81
BiCGSTAB 1 10 277 545 29.4
BiCGSTAB 2 9 207 822 30.5
BiCGSTAB 4 10 216 1699 46.6
TFQMR 1 9 94 210 11.2
TFQMR 2 10 95 419 15.1
TFQMR 4 10 95 827 22.5

a slight increase in the number of linear iterations and large increases in the number
of function evaluations and in the run time.

4.3. Natural convection in an enclosed cavity. Natural convection in an
enclosed cavity is a standard benchmark problem that is frequently used to test dif-
ferent numerical schemes and solution methods [7]. We use this example to illustrate
how NITSOL can accommodate strategies that are essential for more complex, large-
scale problems. The governing equations consist of the incompressible Navier–Stokes
equations coupled to an energy transport equation:

(u2)x + (uv)y + px − 1
Re ∆u = 0,

(uv)x + (v2)y + py − 1
Re ∆v − Gr

Re2 T = 0,

ux + vy = 0,

(uT )x + (vT )y − 1
RePr ∆T = 0,

(4.3)

where Gr is the Grashof number, Re is the Reynolds number, and Pr is the Prandtl
number. Following [20], Re is fixed at 1, Pr is fixed at 0.71, and the Rayleigh number
Ra ≡ GrPr is varied. The problem is defined on the unit square Ω = [0, 1] × [0, 1]
with boundary conditions as depicted in Figure 4.2.

To apply NITSOL, we discretized (4.3) using finite volumes on a staggered grid.
The computational domain was divided into a grid of m × m cells. The horizontal
components of the velocity field were located at the midpoints of the vertical faces of
the cells; the vertical components of the velocity field were located at the midpoints of
the horizontal faces of the cells; and the scalar fields (pressure and temperature) were
located at the centers of the cells. Our choice of fluxes at the faces of the finite-volume
cells resulted in a second-order discretization [19]. Because of the conditional stability
of the resulting scheme, we report results only for a modest value of Ra.

The preconditioner was a simple adaptation of ILUT(τ , fill) [24]. This is an
incomplete factorization that retains entries in the factors based on their size up to
a prescribed number of elements per row. Nonzero elements are dropped if they are
smaller than a prescribed tolerance τ . In addition, the number of nonzeros per row
of each factor is limited to the number of nonzero values in the unfactored row plus a
prescribed number fill. Because the locations of fill elements in the factors cannot
in general be predicted, ILUT uses the compressed sparse row (CSR) format for the
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u = v = ∂T/∂y = 0

u = v = ∂T/∂y = 0

u = 0
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T = 0

u = 0
v = 0
T = 1

FIG. 4.2. Boundary conditions for the natural convection problem.

matrix and its factors; in the usual implementation, the entire matrix is stored. For
large-scale problems of the type of interest here, it may be impractical or impossible
to store the entire Jacobian F ′. In our adaptation, we eliminated the need for this
by modifying ILUT to generate the incomplete factors using one row of F ′ at a time.
Since the ith row of each incomplete factor depends only on the previously factored
rows and the ith row of F ′, all that is required for this is a procedure that provides
the factorization routine with a CSR description of each row of F ′ as it is needed.
This “on-the-fly” computation makes it possible to use ILUT in a fully Jacobian-
free manner, in which only the incomplete factors are stored, and not F ′. This can
substantially reduce the required storage; see, for example, [18].

The ILUT factors can be expensive to compute, especially when a large value of
fill is needed to obtain an effective preconditioner. In addition, there are applica-
tions for which evaluating the Jacobian is very expensive. Consequently, it may be
advantageous to update the preconditioner only infrequently and to use the existing
factors for as long as they are effective. For a 32 × 32 grid and Ra = 1000, we fixed
τ = 0 and fill = 16 and observed how sensitive the various Krylov solvers were to
the frequency of updating the preconditioner. In this case the arrays IPAR and RPAR
were used to provide grid dimensions, mesh size, and Rayleigh number, as well as
work arrays for ILUT and for storing the CSR description of the factors. Informa-
tion available in the NITINFO common block was used to decide when to update the
preconditioner. We used Choice 1 for the forcing terms, an initial approximation of
u0 = v0 = p0 = T0 = 1, and first-order differencing for approximating Jacobian-vector
products. The iterations were halted when ‖F‖ was reduced by a factor of 10−6.

The results appear in Table 4.3. (No backtracking occurred for this problem.)
BiCGSTAB and TFQMR failed to converge when the preconditioner was based only
on the original Jacobian and never updated, while in this case GMRES shows its
best performance, as measured by run time. The Lanczos-based algorithms failed in
this case by reaching the maximum allowable number of linear iterations (which was
set to 100 by using the INPUT array) without sufficiently reducing the linear residual
norm to justify continuing. We note that increasing the maximum allowable number
of linear iterations might not have helped. Indeed, in the cases in which the Lanczos-
based algorithms succeeded, we also observed that these methods failed for the same
reason if the maximum number of linear iterations was set at a somewhat higher
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TABLE 4.3
Results of varying the frequency of updating the preconditioner in the natural convection prob-

lem. NNI: number of nonlinear iterations. NLI: total number of linear iterations. NFE: number of
function evaluations. Times are in seconds and were obtained on an SGI Power Challenge.

Never update preconditioner

Krylov method NNI NLI NFE Time
GMRES(100) 8 272 281 86.6
BiCGSTAB – – – –
TFQMR – – – –

Update preconditioner
every fifth Newton step

Krylov method NNI NLI NFE Time
GMRES(100) 8 256 265 163
BiCGSTAB 10 202 409 162
TFQMR 9 557 2242 178

Update preconditioner
every other Newton step

Krylov method NNI NLI NFE Time
GMRES(100) 9 231 240 318
BiCGSTAB 9 177 357 394
TFQMR 8 450 1809 329

level. This is because, on this problem, the linear residual norms produced by the
Lanczos-based algorithms initially decrease but subsequently increase beyond their
original values; thus, early termination can lead to an adequate inexact Newton step
while later termination may not.

Note that, overall, as the frequency of preconditioner updating is increased, the
number of linear iterations and the number of nonlinear function evaluations both
decrease. However, for this problem, these gains are not enough to compensate for
the expense of updating the preconditioner more frequently, and the result is longer
overall execution time.

4.4. Flow in a porous medium. User-defined inner products and norms in
NITSOL allow the user to employ weighted inner products and norms that are best
suited to the problem being solved. They can also be used to adapt NITSOL for
execution on distributed memory parallel computers. All that is needed to create a
parallel code is to provide distributed versions of these operations (which are easy
to construct using, for example, MPI) and appropriate user-supplied routines for
function evaluations, Jacobian-vector products, and preconditioning. In particular,
no internal changes to NITSOL are needed. This approach to parallelism adheres to
the general philosophy of NITSOL, which is to provide implementations of algorithms
that are relatively well understood and theoretically well founded, and to leave the
implementation of problem- or machine-specific strategies (in this case, data partition
and communication strategies) to the user.

In this example, we show how the above approach to parallelism can be carried
out. The problem we consider is
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TABLE 4.4
Parallel performance of NITSOL as subdomain overlap is varied. NLI: total number of linear

iterations. Wall clock times are in seconds and were obtained on four processors of an IBM SP2.

ovlp=1 ovlp=2 ovlp=3

Krylov method NLI Time NLI Time NLI Time
GMRES(50) 226 64.1 242 70.4 254 71.9
BiCGSTAB 193 63.8 203 73.3 192 67.2
TFQMR 294 81.7 272 96.2 279 88.9

∆(u2) + d ∂
∂x (u3) + f = 0 in Ω ≡ [0, 1] × [0, 1],

u =
{

1 if x = 0 or y = 0,
0 if x = 1 or y = 1 on ∂Ω,

(4.4)

which is a steady-state special case of a general equation that models the influence
of capillary pressure and gravity on flow in a homogeneous porous medium [32]. To
apply NITSOL, we discretized (4.4) using centered differences on a uniform grid. The
function f was a point source of magnitude 50 at the lower-left grid point, and we
took d = 50. The initial approximate solution was u0(x, y) = 1 − xy on the interior
grid points.

For parallel implementation, we partitioned the discrete domain into a p × q
grid of rectangular subdomains of equal size and assigned one domain to each of
P = pq processors. The distributed norm and inner product were simple to implement:
the respective BLAS operations DNRM2 and DDOT were used to compute the local
contributions to the global norm and inner product, and a global sum operation
provided by MPI was then used to accumulate the local contributions. Because of the
local dependency of the discretization scheme, parallel code for evaluating F requires
only the exchange of a grid line between neighboring subdomains. By using finite-
difference evaluation of Jacobian-vector products, no parallel code for this operation
was needed.

For a parallel preconditioner, we used a single-level version of the additive Schwarz
method [5], using ILUT with τ = 0 and fill = 4 to approximately solve each local
problem. In this example, the preconditioner was updated at the start of every non-
linear iteration. IPAR and RPAR were used to provide problem parameters (mesh size,
d, f , boundary conditions) and storage needed for the incomplete factorization. In
addition, IPAR was used to provide information regarding the structure of the parallel
implementation: the rank of each process, a list of neighbors of each process, and the
amount of overlap between neighboring subdomains. We also used the “on-the-fly”
ILUT strategy described in section 4.3 in this situation.

To demonstrate the performance of NITSOL in this context, we investigated how
the amount of overlap between subdomains affected the performance of the nonlinear
solver. The results for a 2 × 2 partition of a 256 × 256 grid are in Table 4.4. Each
experiment was repeated five times, and the numbers that appear in this table were
obtained by removing the largest and smallest times and averaging the remaining
three.

In all but two cases, increasing the overlap between subdomains increased the
execution time. This general trend is expected since the size of the local problems
grows as the overlap increases. The total number of linear iterations also increased
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with increasing overlap in all but two cases. However, in only one instance did both
execution time and the total number of linear iterations decrease. Indeed, an interest-
ing phenomenon occurs for TFQMR when the overlap is increased from two to three:
while the number of linear iterations increases, the execution time decreases. This
is due to the fact that our implementation of TFQMR uses an inexpensive estimate
of the residual norm to check for convergence (cf. [12]), but it does not terminate
until the directly computed residual satisfies the stopping criterion. When the overlap
was set to two, the residual was evaluated directly 97 times, whereas this calculation
was performed only 17 times when three overlapping grid points were used. This was
easily determined by using NITSOL’s output options to provide convergence histories
of the linear iterative method.
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