
SIAM J. APPL. MATH.
Vol. 35, No. 3, November 1978

1978 Society for Industrial and Applied Mathematics

0036-1399/78/3503-0002 $01.00/0

THE NUMERICAL EVALUATION OF THE MAXIMUM-LIKELIHOOD
ESTIMATE OF A SUBSET OF MIXTURE PROPORTIONS*

B. CHARLES PETERS, JR." AND HOMER F. WALKER

Abstract. In this note, we give necessary and sufficient conditions for a maximum-likelihood estimate of
a subset of the proportions in a mixture of specified distributions. From these conditions, we derive
likelihood equations satisfied by the maximum-likelihood estimate and discuss a successive-approximations
procedure suggested by these equations for numerically evaluating the maximum-likelihood estimate. It is
shown that, with probability for large samples, this procedure converges locally to the maximum-
likelihood estimate whenever a certain step-size lies between 0 and 2. Furthermore, optimal rates of local
convergence are obtained for a step-size which is bounded below by a number between and 2.

1. Introduction. Let x be an n-dimensional random variable whose density
function is a convex combination of density functions p0, pl p,,, on ’. In parti-
cular, suppose that the density function of x is p(x, d), a member of the parametric
family of density functions

p(x, d)= E aipi(x)+(1-)po(x)
i=1

for x n, where d =(al a,,)r and/3 satisfy the following constraints: (i)
0 <=/3 <- 1 and 0 <-ai <= 1 for 1,. ., m; (ii) Y’=I ai =/3. In this note, we assume that
/3 and the density functions p0,’" ", P,, are known, and we address the problem of
numerically estimating d, the vector of unknown mixture proportions, on the basis of
a given sample {Xk}k=l,...,r of independent observations on x.

To be more specific, we define a maximum-likelihood estimate of d , based on the
given sample, to be a choice of d which satisfies the constraints (i) and (ii) above and
which maximizes the log-likelihood function

N

L(d) 2 log p (Xk, d).
k=l

(We assume throughout this report that p(xk, d) 0 for k 1,..., N and for all d
satisfying the given constraints.) Taking advantage of the fact that the log-likelihood
function is concave, we derive necessary and sufficient conditions for d to be a
maximum-likelihood estimate of d. These conditions, in turn, lead naturally to a
particular successive approximations procedure for the numerical evaluation of a
maximum-likelihood estimate.

The results given here generalize those of [2], in which a restricted iterative
procedure is considered in the special case fl 1. We also remark that our results
apply to the problem of numerically evaluating a maximum-likelihood estimate of a

proper subset {O)}i=l,...,m of mixture proportions in a density p 27=1 a Tpg when the
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remaining s-m proportions are known. Indeed, this problem is seen to be of the type
considered here by taking

1 ofl 1 a/o and po Og Pi.
i=m+l 1-/

2. The likelihood equations. One easily verifies that the log-likelihood function
L is a concave function of 5 on the constraint set, i.e., the set of elements of R
satisfying the constraints (i) and (ii) given in the Introduction. It follows that a
necessary and sufficient condition for 5 to be a maximum-likelihood estimate of 5 is
that VL(5)(5’-5)<=0 for all 5’ in the constraint set, where VL(5)=
((OL/Oal)(5),..., (OL/Oa,,)(5)). Since this inequality holds if and only if it holds
whenever 5’ is an extreme point of the constraint set, one concludes that 5 is a
maximum-likelihood estimate if and only if, for i= 1,..., m, (OL/Oai)(5)<=VL(5)5,
with equality if ai >0. We reformulate this result as the following necessary and
sufficient condition for 5 to be a maximum-likelihood estimate of 5 0. For
1, ., m,

(1)
N pi(Xk) v (Xk)

[ 2 IE1 . aiPJ
k=I p(Xk, 5)-- k=l p(Xk, 5)’

with equality if ai > O.
Multiplying both sides of (1) by a and rearranging gives the following necessary

condition for 5 to be a maximum-likelihood estimate:

ap(x)
k/-’l= p(Xk, 5)

(2) oq Ai(5)---- rn N )’
p(x, )

for 1,..., m. This condition is not sucient in general for to be a maximum-
likelihood estimate. Indeed, this condition is satisfied by each extreme point of the
constraint set. However, this condition is sucient as well as necessary for to be a
maximum-likelihood estimate which lies in the interior of the constraint set, i.e., the
components of which satisfy > 0 for 1,. ., m. We refer to the equations (2) as
the likelihood equations.

For the case B 1, there is an interpretation of equation (2) which has consider-
able heuristic appeal. For B 1, equation (2) becomes

1 aiPi(Xk)
(2a)

(x,, ,)"k--lp

If the density functions pl,’" ", Pm are interpreted as conditional densities pi(x)=
p(x[Sj) for some partition {S,... ,S,,} of the underlying probability space into
measureable sets, and the coefficients aj are interpreted as a priori probabilities
ai P(Si), then equation (2a) states that the estimate of P(Si) is equal to the sample
average of the estimates of the conditional probabilities P(SilXk) of S. given the
observation Xk.

3. The iterative procedure. We now define an iterative procedure based on the
likelihood equations and discuss its applicability to the problem of numerically evalu-
ating a maximum-likelihood estimate of 5. Setting A(5)= (A 1(5),’’ ", A,,(5)), we
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write the likelihood equation as

(3) d A(d).

Equivalent to (3) is the equation

(4) ff (ff)= (1- e)ff +eA(d)

for any number e. (Of course, (4) becomes (3) when e 1.) Note that the continuous
nonlinear operator A maps the constraint set into itself. For any e and any d in the
constraint set, the components of (d) sum to 1; however, the components of (d)
are guaranteed to be nonnegative for all d in the constraint set only if 0_-< e _-< 1.

The iterative procedure suggested by (4) is the following: Beginning with some
starting value d (1 in the constraint set, define successive iterates inductively by

(5) d (j+l) (I)e (d 0"))
for j 1, 2,. .. We observe that if the sequence of iterates defined by (5) converges,
then its limit is a fixed point of and, hence, of A. Our first theorem gives sufficient
conditions for such a limit to be a maximum-likelihood estimate. The proof of the
theorem is virtually the same as that of the corresponding theorem in [2], and we omit
it.

THEOREM 1. Suppose that d (1) lies in the interior of the constraint set and that
0<e _-< 1. If the sequence of iterates defined by (5) converges, then its limit is a
maximum-likelihood estimate of d o

In order to give sufficient conditions for the convergence of the iterates defined by
(5), we need to make further assumptions concerning the density functions p0," ",

Henceforth, we assume that they are linearly independent, i.e., that any linear
combination 2i--o cipi, with i=0 c # 0, does not ’anish identically on 1". This insures
that, with probability 1, there exists a unique maximum-likelihood estimate for large
N which converges to d o as N approaches infinity. (See, for example, Appendix 1 of
[3].) Our aim is to establish the following result.

THEOREM 2. Suppose that d o lies in the interior of the constraint set and that
0 < e < 2. Then with probability 1 as N approaches infinity, is a local contraction on
the constraint set near d, the (unique) maximum-likelihood estimate ofd. If the density
functions po,’" ", pm are analytic as well as linearly independent, then is a local
contraction on the constraint set near d with probability 1 whenever d lies in the interior

of the constraint set and N >-_ m.
In saying that is a local contraction on the constraint set near d, we mean that

there exists a norm I1" I[ on R" and a constant h, 0 <_-h < 1, such that

(6)

for all d’ in the constraint set which lie sufficiently near d. Our sufficient conditions for
the convergence of the iterates defined by (5) are stated in the corollary below, which
is an immediate consequence of Theorem 2 and the inequality (6).

COROLLARY. Suppose that do lies in the interior of the constraint set and that
0< e < 2. Then with probability 1 as N approaches infinity, the iterates defined by (5)
converge to d, the (unique) maximum-likelihood estimate of d, whenever d( lies
sufficiently near d. If the density functions po," p, are analytic as well as linearly
independent, then, with probability 1 whenever d lies in the interior of the constraint set
and N >- m, the iterates converge to d whenever d1 lies sufficiently near d.

Proof of Theorem 2. In proving the first statement of the theorem, it may be
assumed that the (unique) maximum-likelihood estimate d lies in the interior of the
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constraint set. (By the remarks preceding the theorem, the probability is 1 that this
occurs for large N.) Assuming 0 < e < 2, we must show that, with probability 1 as N
approaches infinity, an inequality of the form (6) holds.

For any norm on R", one can write

In this expression, ’@,(c) denotes the m xm matrix whose i/’th entry is the ith
component of (a/aai)(d). It follows that the first statement of the theorem will be
proved if it can be shown that, with probability 1 as N approaches infinity, there exist
a norm II" II on R" and a number A, 0-< A < 1, for which an inequality of the form

holds for all 37 in the subspace

", Z o
i=i

Using the fact that ci satisfies the likelihood equations (2), one verifies that
V(if.) I eQ. Here, Q is defined by

1 s
O b(a) O k=12 [g(Xk, a)+ (1-fl)60(x, a)elg(x, a),

where g= (1,..., 1), 6(x, a)= p(x)/p(x, ) for i= 0,..., m, g(x, if)=
(al(X, a), 6,,,(x, a))T, b -T-(Og) .,k= 101 6(Xk, a), and D is a diagonal matrix (dii) with
d, a for 1,..., m. One verifies without difficulty that f is invariant under Q
and, hence, under V(ci). To establish an inequality of the form (7), it suffices to
show that, with probability 1 as N approa’ches infinity, there exists a norm on with
respect to which the operator norm of V(c) is less than 1.

Define an inner product (.,.) on ’ by (/, /’)= /TD-I/’ for /and /’ in . It is
easily shown that, with respect to this inner product, O is symmetric (in fact, positive
semidefinite) on . Indeed, for 37 and 37’ in , the fact that e 3’ 0 yields

Similarly,

1 N
y. >- o.</’ Q/>- b(a) k=l

From the symmetry of O on ’ with respect to the inner product (., ), it follows
that, if p and r denote the largest and smallest eigenvalues of O corresponding to
eigenvectors in g, then the operator norm of 7(c7) on ’ with respect to this inner
product is equal to the larger of I1- epl and l1- e’rl. Thus, the first statement of the
theorem will be proved if it can be shown that p-<_ 1 and 0 < z. Now Q is a Markov
matrix and it follows that O <= 1. (See [1, pp. 265-270] for a discussion of Markov
matrices.) Noting that, with probability 1, c converges to if0 as N approaches infinity,
one can use arguments analogous to those employed in [3] to verify that, with
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probability 1, O converges to

1 DOIn [/3g(x, c)+ (1-/3)60(x, a)glg(x, a0) dx,

a positive definite operator on . Here DO= (d.) is a diagonal matrix with d a for
1,..., m. One concludes that, with probability 1 as N approaches infinity, O is

positive definite on ge and, hence, that 0 < r.
To prove the second statement of the theorem, suppose that N >= m, that c lies in

the interior of the constraint set, and that p0,’" ", p,, are analytic as well as linearly
independent. Repeating the above argument with only minor changes, one obtains the
desired result by finally observing that, as a consequence of the lemma in Appendix 2
of [3], O is positive-definite on with probability 1 whenever N => m. This completes
the proof of the theorem.

4. The optimal e. The corollary of Theorem 2 may be summarized by saying
that, if ci lies in the interior of the constraint set, then, with probability 1 for large
samples, the iterates defined by (5) converge locally to the maximum-likelihood
estimate ff whenever 0 < e < 2. Thus the iterative procedure (5), which is a general-
ized steepest-ascent (deflected-gradient) method, has the particularly important pro-
perty of converging locally to ff whenever the step-size e lies in an interval which is
completely independent of the particular mixture problem at hand. Furthermore, if e
is no greater than 1, then the successive iterates defined by (5) are guaranteed to
remain in the constraint set. It is readily ascertained that these properties are not
shared by the usual steepest-ascent procedure, given by

(q+l) [__ pi(Xk) 1 ", ]o," + ) E p(x,,)
k=l p(Xk, mN j=l =1 p(Xk, (q))

for 1,..., m. While determining a proper step size for the usual steepest ascent
procedure is not usually a serious problem, it can be a time-consuming nuisance.

We now observe that there exists a particular value of e, referred to as "the
optimal e ", which yields, with probability 1 for large samples, the fastest uniform rate
of local convergence of (5) near d. Indeed, suppose that d is an interior point of the
constraint set and that V(d) is positive-definite on . (Recall that, with probability
1, these assumptions are valid for large samples.) Then one sees from the proof of
Theorem 2 that the optimal e is the unique value of e which minimizes the spectral
radius of V(cT)= I-eO, regarded as an operator on g. (V(d) is symmetric on
with respect to the inner product (., defined previously. Consequently, its operator
norm with respect to this inner product is equal to its spectral radius and, hence,
minimal.) It is easily verified that the optimal e is given by 1-e" eo-1, i.e.,
e 2/(0 + ’), where O and r are, respectively, the largest and smallest eigenvalues of
the operator Q restricted to

It is shown in the proof of Theorem 2 that p is never greater than 1. Thus the
optimal e is bounded below by 2/(1 / -), where - lies between 0 and 1. In particular,
this lower bound on the optimal e lies between 1 and 2. It should be noted that, if O is
strictly less than 1, then the optimal e is actually greater than 2, even though Theorem
2 fails to guarantee the local convergence of (5) for such values of e. We also observe
that, despite the fact that the Markov matrix Q always has 1 as an eigenvalue, the
eigenvalue O of the restricted operator Q on g" can be arbitrarily small (and, hence,
the optimal e can be arbitrarily large). Indeed, Q is nearly the zero operator on g’ if
the component populations in the mixture are nearly identical.
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Suppose that the component populations in the mixture are "widely separated"
in the sense that, for /’,

pi(xk)pi(Xk)
p(x, ) 0

for k 1, ., N. Then O I and, hence, O and r must lie near 1. One concludes that,
with probability 1 for large samples, the fastest uniform rate of local convergence of
(5) is obtained for e near 1, and for the optimal e, Vq)(ff)= I-eO 0. Thus for
mixtures whose component populations are widely separated, the optimal e is only
slightly greater than 1, and rapid first-order local convergence of (5) to c7 can be
expected for this e.

Now suppose that two or more of the component populations in the mixture are
nearly identical in the sense that, for some pair of distinct, nonzero indices and
j, pi(Xk)" pj(Xk) for k 1,. ., N. Then O is nearly singular, and hence, r is near zero.
Consequently, the optimal e cannot be much smaller than 2. We remark that, if O is
near 1 in this case, then the optimal e must lie near 2. Then the spectral radius of
V(if) on is near 1, even for the optimal e, and it follows that slow first-order local
convergence of (5) to ff can be expected in this case.

From the above considerations, one concludes that e < 1 always gives a subop-
timal asymptotic rate of convergence. We also remark that experience indicates that
care should be taken in choosing e greater than 1, at least initially, since the con-
straints could then be violated for a poor choice of the starting value ff(l. We feel that
a rapid and reliable iterative procedure can be developed in which e is initially chosen
to be 1 and then, after a number of iterations, modified once to speed up convergence
near the maximum-likelihood estimate. Such a procedure would be especially useful
when the component populations are not well separated.
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