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CONVERGENCE THEOREMS FOR LEAST-CHANGE
SECANT UPDATE METHODS*

J. E. DENNIS, JR.5. AND HOMER F. WALKER*

Abstract. The purpose of this paper is to present a convergence analysis of least change secant methods
in which part of the derivative matrix being approximated is computed by other means. The theorems and
proofs given here can be viewed as generalizations of those given by Broyden-Dennis-Mor6 [J. Inst. Math.
Appl. 12 (1973), pp. 223-246] and by Dennis-Mor6 [Math. Comp., 28 (1974), pp. 549-560]. The analysis
is done in the orthogonal projection setting of Dennis-Schnabel [SIAM Rev., 21 (1980), pp. 443-459] and
many readers might feel that it is easier to understand. The theorems here readily imply local and
q-superlinear convergence of all the standard methods in addition to proving these results for the first time
for the sparse symmetric method of Marwil and Toint and the nonlinear least-squares method of Dennis-
Gay-Welsch.

1. Introduction. The methods of interest in this paper are iterative methods for
solving

(1.1) F(x) 0,

in the case when the complete computation of F’ is infeasible. In these methods it is
assumed that, after k iterations, Xk, F(Xk), and a nonsingular matrix Bk
are available. The next iterate Xk/l is chosen with the use of Sk, the quasi-Newton step
defined by BkSk --F(Xk). The goal is to be able, eventually, to take Xk/l Xk + Sk, and
to this end one wishes to choose Bk/l to look as much like F’(Xk/l) as is feasible.

Often, in practice, F’(xk/1) is partially available either from some special purpose
approximation method or from actual evaluation of partial derivatives. Thus we
consider approximations of the form

(1.2) F’(xk+l) Bk+l C(x/+l) q- Ak+l,

where C(Xk+) is a "computed part" of F’(x/) determined by a function C from
to In", the space of real n x n matrices, and where Ak/l is an "approximated part"
of F’(Xk/l) chosen to look asmuch like [F’(Xk+I)--C(Xk/I)] as is feasible.

Throughout this paper we need the following conditions on F and C.
The standard hypothesis on F and C. Let F be differentiable in an open convex

neighborhood f of a point x, e n for which F(x.)=0, and let 3’ =>0, 3’c _>-0 and
p e (0, 1], be such that, for x

IF’(x)-F’(x,)l<-_,lx-x,I and IC(x)-f(x,)l<-_lx-x,I,
where [. denotes a vector norm and its subordinate operator norm.

In the next section, we introduce an interesting and important example, which we
use for illustrative purposes in the sequel, in which (1.2) is a very natural form for Bk/
to take. A particular approach to choosing Ak/l, whi6h we review below, is funda-
mental to the methods considered here.

In choosing Ak/l, it is reasonable to make use of currently available information
about [F’(Xk/1) C(Xk /1)]. Information which is characteristically used in determining
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Ak+l is contained in vectors Sk Xk+l--Xk and Yk [F’(Xk+l)--C(Xk+l)]Sk. One requires
that Ak+l be in or near the affine subspace (Yk, Sk)

_
nn, where for any s, y n with

s 0, f(y, s) {M Rnn: MS y} is the set of matrix generalizations of quotients of
y by s. Also, it is often known that F’ or (F’-C) has some special structure such as
symmetry or a particular pattern of sparsity. This information about [F’(xk/l)-
C(Xk/x)] can usually be exploited by requiring that Ak/ be in some affine subspace
s4 R"", the elements of which reflect the special structure of F’ or (F’-C).

Dennis and Schnabel 14] outline a criterion for choosing Ak/ as follows. IfA/

is required to be in an affine subspace s4 c_"" then set s =Xk/--Xk, choose Yk
P[F’(Xk+)--C(Xk+x)]Sk, and select Ak+ to uniquely solve

min 11 -Ak[[,
(,(yk, sk))

where II" is a given inner-product norm on "", Pa is the corresponding projection
onto 4, and for any affine subspaces 41, 42 g"", /(11, 2) is the set of elements
of 1 for which the distance to 4 in the norm [[. is minimal.

This way of pickingA/1 is called the least-change secant criterion, because it calls
for making the smallest possible change inA to getA/1 consistent with makingA/

look as much like a matrix generalization of the quotient of yk by s as any element of
can. If A/I is determined according to this criterion, then we call it a least-change

secant update of A. The secant part of the name refers to the way y is usually chosen.
In a very important subclass of these methods, one uses C(x)=-O and chooses
y F(xk/)-F(x), so that if n 1 and d then.the secant method results

Both the affine subspace 4 and the norm I1" on play critical roles when
determining A+ by the least-change secant criterion. The norm I1" is often taken to
be the Frobenius norm on R", denoted here by I1"11 and defined by IIMII=
(tr {MMT})1/2 for M R"". With II. [I. II, C(x)=-o and Yk -F(xk+I)-F(xk), Broy-
den’s method [3], [7], [12] results when s4 N"n, and the Powell symmetric Broyden
(PSB) method [24], [7], [12] results when s4 is the subspace of symmetric matrices in
N"". If s4 is some subspace of sparse matrices, then the resulting method is the
Schubert or sparse Broyden method [27], [6], [21]. If the matrices in s4 are further
restricted to be symmetric as well as sparse, then one obtains the sparse symmetric
update methods of Marwil [21] and Toint [32]. (See [14] for proofs.)

In addition to the Frobenius norm, other norms on Nn are of interest when there
is some natural scaling associated with the problem (1.1). For example when F’ is
positive-definite and symmetric at a solution x, of (1.1), then a choice of a factorization
F’(x,)=J,J suggests a problem /()---J F(j,T-2)=0 induced by the scaling
2 TJ,x, which has the desirable property that F’(2,) =/, where 2, Jx,. To further
illustrate the desirable properties of this scaling, consider the problem of minimizing a
nonlinear functional f" Nn N, in which one seeks to solve F(x) Vf(x) 0. In this
case, the assumption that F’(x,) is positive definite and symmetric is reasonable, and
the scaling yields a variable space for which the contour curves of the quadratic
approximation of f at x, are circular. Of course, the matrix F’(x,) which determines
the ideal scaling is unknown in practice. Nevertheless, one can exploit the existence of
a natural scaling in iterative procedures for solving (1.1).

Once a scaling is chosen, then A/I can be determined by first scaling Ak, Sk and
Yk, to get/dtk, ffk and 33g, respectively, then obtaining Ak/ as a least-change secant
update on the scaled problem, and finally removing the scale to get A+. If 4
then Ak+l may be elusive but if a choice of a (nons)ngular) scaling matrix J is made
and if the norm on "" for the scaled problem is the Frobenius norm, then such a
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procedure is equivalent to selecting Ak/l to uniquely solve

min I1 --akllW,
fi(, (Yk, sk))

where W is the positive-definite, symmetric "weight" matrix W jjr and I1" IIw is the
"weighted" Frobenius norm on Rnn defined by

IIMII (tr {W-1MW-1Mr})1/2

for M Rnn.
TO clarify the relation between the weighted and unweighted Frobenius norms,

we note that if W is any positive-definite, symmetric matrix and if W jjr is any
factorization of W, then

IIMIl:w- tr {Jr-J-IMJT-tJ-MTI IIJ-XMJr-ll=
for M e N"". A useful conceptual way to view this relation is as IIMII I1 11, where

--1 T

By a fixed-scale least-change secant update method, we mean a method in which
each successive Ak+ is a least-change secant update of its predecessor Ak and in which
the same inner-product norm on" is chosen at every iteration. Examples of methods
of this type are those named above. There is a more general class of methods which
we call (iteratively) rescaled least-change secant update methods. In these methods, the
problem (1.1) is assumed to have an associated unknown natural scaling, and the norm
on "" used to determine each least-change secant update is itself updated at each
iteration to reflect current information about the natural scaling. Examples of rescaled
least-change secant update methods are a single-rank update method due to Pearson
[23], [7], which is obtained with "", and the Davidon-Fletcher-Powell (DFP)
method [8], [17], [7], [12], in which is the subspace of symmetric matrices in ,n.
In both of these methods, C(x)O, Yk =F(Xk+l)--F(Xk), and the norm on " used
to define a least-change secant update after k iterations is a weighted Frobenius norm
ll’[[w, where W is any positive-definite, symmetric matrix satisfying WSk y (SO=.

In addition to methods of the above type, in which all or part of Bk+ is determined
from Bk by the least-change secant criterion, there are methods in which all or part of

-1Bk+ is determined from B by an inverse analogue of the least-change secant
criterion. In these methods, one considers approximations of the form

-1 -1F’(x+ =B+ K+= C(x+)+A+,

where C(Xk+l) is a "computed part" of F’(Xk+l)- determined by C" Nn N"" and
)-1where Ak+l is an approximated part" of F’(Xk+l chosen to look as much like

[F’(Xg+l)--C(Xk+l)] as is feasible. The least-change inverse-secant criterion for
determining Ak+l is the following: If Ak+l is required to be in an ane subspace

N"", then set Sk Xk+l- Xk, choose Yk and Wk such that {P[F’(x+)-- C(xk+)]+
C(xk+)}yk Sk and Wk Pa[F’(Xk+x)- C(xk+)]yk, and select Ak+ to uniquely solve

min II-mll,
fi, l/t s, g2 k, Yt))

where I[" is a given inner-product norm on N"" and P is the associated orthogonal
projection onto M.

Notice that this is a different definition of the weighted Frobenius norm from that usually used in this

context. It has been changed to reflect invariance with respect to factorization of W.
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By a fixed-scale least-change inverse-secant update method, we mean a method in
which each successive Ak/ is determined from its predecessor Ak according to this
criterion with the same inner-product norm on "" at each iteration. With 11. [I- [[’ 1[,
C(x)---O, yk=F(Xk/)--F(Xk) and Wk=Sk, examples of fixed-scale least-change
inverse-secant update methods are provided by a method of Broyden [3], in which
4 -R"", and a method of Greenstadt [19] in which M is the subspace of symmetric
matrices in "". These methods have been found in practice to be generally less
successful than their respective least-change secant update counterparts, namely, the
usual Broyden’s method and the PSB method.

There are also (iteratively) rescaled least-change inverse-secant update methods, in
which the problem (1.1) is assumed to have an associated ideal scaling and the norm
on R"" used to determine least-change inverse-secant updates is updated at each
iteration to reflect current information about the ideal scaling. Examples of such
methods, in which C(x)=-O, Yk --F(Xk/)--F(Xk) and Wk Sk, are a single-rank update
method due to G. McCormick (see Pearson [23]), obtained by taking 4 -"", and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [4], [5], [16], [18], [28], [12],
[26], which results when 4 is the subspace of symmetric matrices in "". In both of
these methods, the norm on R"" after k iterations is taken to be weighted Frobenius
norm I1’ []w, where W is a positive-definite, symmetric matrix satisfying Wyk Sk (SO
again, g ).

We strongly suspect that the partially computed rescaled least-change inverse-
secant update methods may turn out to be valuable new tools for dealing with problems
in which C(x) is not only feasible to compute, but for which C(xk)s =--F(Xk) is more
desirable to solve than (C(xg)+Ag)s----F(Xk), where C and A take their meaning
from (1.2). We will suggest such a case in 5.

In this paper, we exploit the projections and associated techniques used by Dennis
and $chnabel [14] in deriving least-change secant updates in order to make general
convergence statements for methods using such updates. The results offered here unify,
simplify and extend previously known local convergence results for such methods [7].
Furthermore, the focus on the role of orthogonal projections onto approximating
subspaces, in the proofs of these results, seems better in keeping with the philosophy
of least-change secant updates than approaches taken in proofs of previous results.

In 2, a new expression for the least-change secant update is offered. This
expression lends itself to the formulation of a theorem to the effect that least-change
secant updates exhibit a very general form of a phenomenon known as bounded
deterioration. In 3, the results of 2 are applied in conjunction with the results of
the appendix described below to obtain general local linear and superlinear conver-
gence theorems for fixed-scale least-change secant update methods. With the aid of a
lemma relating certain weighted Frobenius norms, these theorems are adapted in 4
to yield analogous results for rescaled least-change seqant update methods. In 5, the
corresponding theorems are stated for fixed-scale and for rescaled least-change
inverse-secant update methods. The results offered here are so formulated that if the
functions under consideration satisfy the standard hypothesis and if M is chosen
properly then local superlinear convergence is assured not only for the methods named
above but also for a broad range of variations of those methods in which C is not zero.
Examples of such variations are the nonlinear least-squares algorithms of Dennis-Gay-
Welsch [13], which we draw upon in the following for illustrative purposes, and the
Hessian approximation for the augmented Lagrangian exploited by Tapia [31].

Fundamental to our analysis are certain results concerning the local convergence
of general quasi-Newton iterations of the form

Xk/ Xk--B-F(Xk)
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for solving (1.1). These results are generalizations of the bounded deterioration
theorems of Broyden-Dennis-Mor6 [7] and of the characterization of superlinear
convergence given by Dennis and Mor6 [11]. We feel that they are interesting and
attractive in their own right, and we have accordingly separated them in an appendix
which is essentially independent of the main body of the paper.

2. Least-change secant updates. Suppose that one is given A R"", an affine
subspace

___
R"", and vectors s, y "" with s 0. Assume that an inner-product

norm I1" is specified on ", and denote (y, s) by for convenience. In accordance
with the introduction, we define the least-change secant update of A in (denoted by
A/) to be the unique solution of the problem

min lift. -All.
,(, 2)

This is to say that A/ is the element of nearest to A of all the nearest points of
to.

It is shown in [14] that, if A , then A+ is given by

(2.1) A+= lim (PPa)A.

Unless indicated otherwise, our convention throughout this paper is that the projection
which is orthogonal with respect to a given inner-product norm and which maps onto
a given affine subspace is denoted by "P", with the subspace or affine subspace
indicated as a subscript. The projection orthogonal to this projection is indicated by a
superscript "_t_". Thus P and P are the orthogonal projections onto and ,
respectively, while P I-P and P I-P. For questions concerning orthogonal
projections in inner-product spaces see Halmos [20].

In the case I1" I1" I1 and A t, the following expression is given in [14] for a/:

(2.2) A+=A +P(s/,
where is the parallel subspace to and where v is any solution of the linear
least-squares problem

min ]s-(y-As)
vN 2

in which I. 12 denotes the Euclidean norm on ".
To obtain an extension of (2.1) valid for an arbitrary A "", we observe that

A+ (PA)+ for every A "". Indeed, if (, ), then

I1 A 2 I1 PA PA = I1 PA + IleUm =,
and it follows that the solutions of

min II-All and min II-PAI[,
X(,) X(,)

are identical. From this observation and (2.1), one sees immediately that

(2.3) A+ lim (PaPa)kpaA

for every A "".
We now derive a general expression for A+ by a straightforward evaluation of the

limit of iterated projections in (2.3). This general expression is, of course, equivalent
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to (2.2) when I1" I1" and A 4. Although (2.2) and similar expressions in El4] are
very useful for deriving many of the best known update formulas, this general
expression is better suited to our purposes than (2.2) even in the case [[. 1[. 114 and
A . In the lemma below, we offer an expression for a general limit of iterated
projections and, in addition, a useful characterization of M (4x, 2) for general affine
subspaces 41 and 2. The expression in the lemma then yields the desired general
expression for A+.

Suppose that 41 and 22 are affine subspaces of R’. For a given inner product on
R’, let P1 and P2 be the respective orthogonal projections onto 1 and /z. For
appropriate subspaces 51, 5e2 and vectors x 5el, x2 5e-, one has

(2.4)
i {Xi "at-x" x i}, i=1,2,

eix Xi At- Oix, 1, 2, x

where Qi is the orthogonal projection onto and 6ei is the subspace parallel to i.
Note that Pi(O)= xi is called the normal to ’i.

LEMMA 2.1. For x

x+ lim (PIP2)kpIx
k-oo

(2.5) (OlO2) x+ (QIQ2) Qxz+Ox
/=o j=

QxO2) x+(I-OOz)-lOlx2+Ox,

where Q is the orthogonal profection onto x (q 52 and (I Qa Q2)-1 is the inverse of the
restriction of (I-QQ2) to (1 ("l S/2) -. Furthermore, (41, s42) is an affine subspace of

" with parallel subspace 51 f3 2, P(ul.2)x x+ for x ’, and

,/[/[(sI, 62) {(I-Q1Q2)-IxI +(I-QIQ2)-IQ1x2.+-x x ,.1 (’] ,.2}.

Proof. We use induction on k to establish that for any x s R",

(2.6) (P1P2)kPax (0102) Xl-[- (0102) QIX2+(Q1Q2)kpIx
/=o i=o

for all k => 1. If (2.6) holds for all k => 1, then one sees from the technical Lemma 2.2
below, by taking limits as k o, that

X+ (OaO2) Xl "+- (O102 Oxx2 + QPIX

(I-OQ2)-ax + (I-OiO2)-IOlX2 + QPlX.

Since QP1 Q, (2.5) follows. To start the induction, we have from (2.4) that for
any x

(2.7) (PxP2)Pxx Px(P2(Px(x))) xa + Ql(x2 + O2Pxx) Xl -t- QIX2 -t- OO2Px,

which is (2.6) for k 1. If (2.6) holds for any k >= 1, then since (PxP2)kPxx 1, we
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have from (2.4) and (2.7) that

(P1P2)k+Iplx Xl + Q[x2 + Q2(Pxp2)kpx] x + Qx2 + QIQ2[(PxP2)kPix]

x +(OlQ2 (OO2) x=
+Ox2+(OO2) 2 (OO2) Oix2+(OO2)(OlO2) 1X

2 (OO2) xx+ 2 (OlO2) OlX2+(OQ2)k+Xpx,
i=o /=o

and the induction is complete.
It is essentially shown in [14, lemma following Thin. 3.1] that dd(4, /2) is an

affine subspace of R" with parallel subspace Y’ 2. For completeness, we prove this
result here. Note that x dd (d, 42) if and oniy if x 41 and the distance from x to
d2 is minimal, i.e., if and only if x solves

min I15 P.II.

Now II-e=ll II x= Q2II IIO +/--

= x x=ll for every $ so x (d, d2) if and
oly if x solves

min IIQ-

This is to say that x e (, d2) if and only if x s and Q2 x is the (unique) orthogonal
projection of x2 onto the affine subspace Q(). Let Xo be any element of (, 2).
One sees that x (, 2) if and only if x s and Q2 x Qxo, i.e., if and only if
(x Xo) s Y 2. It follows that (, 2) is an affine subspace of with parallel
subspace Y 2.

It follows from [14, Thm. 3.1] that P(.u:) x x+ for x s 1. From this, one
concludes that P(,)x x+ for arbitrary x R via the same elementary argument
by which (2.3) is obtained from (2.1). An immediate consequence is that

(d, d2) {(I O02)-x + (I OO2)-Ox2 + x: x 5e2},

and the proof is complete. Note that [(I-OOE)-x +(I-QQ2)-QIX2] is in
Y’2)" and hence, is the normal to dd (all, 42).

LEMMA 2.2. Assume that, with respect to some inner product on "*, zrl and 71"2 are
orthogonal projections onto subspaces , and ,2 of "*. Let zr be the orthogonal projection
onto , ,l ,2. Then

(i) both "iTI"/’J’2 and I-TrTr2 map ,+/- onto itself and E onto itself;
(ii) the restriction of 77’17"/’2 tO __L has norm strictly less than 1 in the operator norm

induced by the inner product vector norm on ,+/-;
(iii) limk-,o (zrzr2) r on ";
(iv) hmk-,ooYi=o(Trtzr2) -----Y.i_o(Zrtcr2)=(I--crcr2) on
(v) (I rr2)-rr r on x.

The limits in (iii) and (iv) are taken in the operator norms induced by the inner-product
vector norm over " on , and ,+/-, respectively.

Proof. We prove (ii) and (v) only. (The proof of .(i) follows immediately from
x rzr2x + zr-zr2x + zr-x and (iii) and (iv) are immediate consequences of (i) and (ii).)
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To prove (ii), it suffices to show that IIrlr=xll < Ilxll for each nonzero x Z+/- since Y--+/- is
finite-dimensional and, hence, has a compact unit sphere. For any x [", one has
T/’2X l2X +2X SO

with equality if and only if either 2x =lWzX or zx =0. Now if x and
2x =zx, then zx ZZ={0}. Consequently, if x E, then equality holds
in (2.8) if and only if lzX =0. One concludes that for nonzero x Z, either
0 1112xll < Ilxll or 0 < 1112xll < II=xll Ilxll, and (ii) is proved.

To prove (v), note that on 1, i-z 2 so

(I 12)-1 z [ ]12 lim (1a) (I )
km =0

lim [I-()+]

This completes the proof of the lemma.
To obtain an expression for A+ from the general expression (2.5), note that
R (y, s) can be written as

T

}s+M" Me(s)

where (s) {M Nnn" Ms 0} is the subspace of annihilators of s. Denoting (s) by, one sees that

(2.9) = P +M’Me

Similarly, one can write

(2.o) s={AN+M" M e 6e},

where the "normal" An 6e+/-. Now (2.9) and (2.10) give the form (2.4) for 41 and
42 . We note for future reference that

p+/- { ysT"PM= Xks}+PxM and PM AN +PseM

for M Rn. Applying Lemma 2.1 in this case, one immediately obtains from(2.3)
and (2.5) the desired expression

A+ lim (PaP)’PaA

(2.11) [,=o (PseP)’]Av + [,=o (PeP)’]PseP(YSTIs/
+PsenvA

t, ,p(ysI(I-PsePa)-IA +(I-PsePa) a srs +PenaA
for A e Nn. Note that the normal to (s, ) is the sum of the first two terms on the
right-hand side of (2.11).
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At this point, we wish to introduce an example. Although the example is given
here for the specific purpose of showing how formula (2.11) can be applied, we refer
to it for illustrative purposes throughout the remainder of the paper. The reader is
almost certainly acquainted with the very important nonlinear least-squares problem
[9], [10], which can be viewed as

(2.12) min 1/2R (x)TR (X), R" n --> r,
l

In this case for f(x)= 1/2R (x)TR (x), the system of equations to be solved is

F(x) =- V/(x) R’(x)TR (x) O,

and the associated derivative matrix is

(2.13) F’(x) V2f(x) R’(x)TR’(x) + i Ri(x)V2Ri(x),
i=1

where R(x)= (R(x),... ,R,(x)) T. It is usual to assume that R’(x) is available either
analytically or from finite differences but that the component Hessians V2Ri(x) are
not. Hence (1.2) for this case has C(Xk+I)’-R’(xk+I)TR’(xk+I), and Ak+ is an
approximation to

i Ri(Xk+I)V2Ri(Xk+I)
i=1

A reasonable set of approximators for this case is s {M s:M Mr}.
Setting x+ x + s for a given point x and a step s of interest, one sees that a reasonable
choice for y P[F’(x+)-C(x+)]s is

(2.14) y R’(x+)rR(x+)-R’(x)rR(x+),
since this corresponds to the approximations

V2Ri(x+)(x. x) VRi(x+) VRi(x)
for 1,..., r.

If we take II" , then the update formula for A s resulting from (2.11) is a
Powell symmetric Broyden augmentation [1], [9], [13] of the Gauss-Newton Hessian
R’(x+)TR’(x+). To obtain it, we note that since , we have As 0; thus (2.11)
yields

(2.15) A+=(I-PP)-PP)(s/+PxA.
One easily verifies that P(M)=(M+Mr), Px(M)=M[I-ssr/s], P()=
Mss r/s and

P’m’(M)=[I-][(M+Mr)][sa s s
frMsx""

The steps of this verification are as follows. For each operator and subspace in
question: (1) show that the operator is an idempotent which is self-adjoint in the
Frobenius inner product; (2) show that the range of the operator is contained in the
subspace; and (3) show that the operator acts as the identity on the subspace. Since
A s , (2.15) simplifies to

S/
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and it remains to determine

(2.17) D=-(I-PPx)-IPxP (I-PPx)- -+
the normal to /(M, ).

One sees from (2.16) that D 5. Hence,

+ (I- PePar)D PePrD
(2.18) r

1( ssD+D.2 ss ss /

Since D is also in ( )x, because it is the normal to (, ),

(O PnD I xI s
(2.19) r r r r

=D-D-D+D.

From (2.18) and (2.19), one obtains
T T T Tss ss ys + sy

D+TDT T
SS SS SS

Pre- and post-multiplying this expression by ss T/S TS yields
T T T Tss ss s yss--D-- s)’-----SS SS (S

and it follows that
T T T Tys + sy s yss

D- Ts s (ss)"
Substituting this expression for D in (2.16), one obtains the PSB update formula for
A/, i.e.,

( IA+ I-s/A I-s/+ S TS (STS)2
(2.20)

(y-As)s T +s(y-As)r sT(y--As)ss r
=A+ rs s (ss)

Later, we derive the analogous DFP update formula for A+, which works better in
practice than (2.20) (see [13]). This completes the discussion of the example for the
present.

Elements ofM(M, ) play an important role in both the statements and the proofs
of the convergence theorems in the sequel. We conclude this section with Theorem 2.3
below, which is intended to be a compendium of the properties of elements of M(M, 22)
which are of interest here. Of particular interest is the inequality (2.24), which shows,
in essence, that least-change secant updates exhibit a very general form of bounded
deterioration (see [7] or [12]). The inequality (2.24) is used in the sequel in conjunction
with the results of the appendix to obtain general local linear and superlinear conver-
gence results for least-change secant update methods and rescaled least-change secant
update methods.
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THEOREM 2.3. Let there be given vectors s, y R with s # 0, an affine subspace
M
_, and an inner-product norm II" on . Set 2 (y, s) and aV ag’(s). Then

/I(M, ) is an affine subspace of with parallel subspace 71; in particular,
P(.)A A+ for A and

(2.21) l(M, ) t (I PePa)-A + (I PsoP)-PeP M" M 2

If G, (M, then P+/-xG P, i.e., Gs s. Furthermore, if G l(M, ), then

(2.22)

and, ifA R, then

T,

(2.23) A+ PxA +PxG.
If G /l (M, ) and A, M "", then

p(2.24) [[a+-m]] [Px(A-M)[+[I x(G-m)[[.

Proofi The first part of the theorem through (2.21) follows directly from Lemma
2.1 with a= and 2=. The second part follows from the fact that if G,
(,), then (G-)NN_ so (G-)s =0 and Px(G-)=0.

To obtain (2.22), suppose that G(,). Since PP=P(I-PPx) and
G G+, one sees from (2.11) that

PPG P(I PPx)G+ - P YsP(I PPx)[ (I PPx)-AN + (I PPx) P x() +Px

PP(/.
To obtain (2.23), note that it follows from (2.21) and G G+ that

(2 25) PXxG (I PPx)-Au+(I PPx)-XPP(]
kS S/

for every G(,). One verifies (2.23) immediately from (2.11) and (2.25).
To obtain (2.24), let G(,) and A, M "". From (2.23), one has

A+ M Px(A M) +Px(G M),

and (2.24) follows from the triangle inequality. This completes the proof of the
theorem.

3. Fixed-scale least-change secant update methods. We now establish general
local linear and superlinear convergence theorems for fixed-scale least-change secant
update methods for solving (1.1). Theorem 3.1 below gives conditions sufficient to
insure local q-linear convergence for methods which are basically least-change secant
update methods but which offer the option of not updating either or both parts of the
approximation to F’ at each iteration. Theorem 3.3 shows that if the hypotheses of
Theorem 3.1 are satisfied, then q-linearly convergent sequences of iterates produced
by fixed-scale least-change secant update methods (in which updating both parts of the
approximation to F’ is required at each iteration) exhibit q-linear convergence which
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is asymptotically optimal in the sense of having the same associated q-linear rate
constant as the idealized stationary iteration that takes Bk =-- Pa[F’(x,) C(x,)] + C(x,),
the closest matrix to F’(x,) in 4+C(x,). Furthermore, necessary and sufficient
conditions are given in Theorem 3.3 for q-linearly convergent sequences produced by
these methods to be q-superlinearly convergent. The section ends with convergence
results for all of the example methods given in [14].

In methods of the type considered here, there are often several reasonable choices
of Yk Ps[F’(xk+l) C(Xk+x)]Sk. It is assumed in the following that there is associated
with F and C a choice rule for determining admissible values of y e Nn, given points x,
x/ e Nn. By such a choice rule, we mean, strictly speaking, a function X" N" x N" 2n",
which determines a set X(x, x/)c Nn of admissible values of y for x, x/ e Nn. After k
iterations of a method of interest for solving (1.1), one uses the choice rule to determine
/(Xk, Xk+I) and picks Yk X(Xk, Xk+I). In the nonlinear least-squares example of 2 the
reader saw in (2.14) a specific example of a choice of y which profitably reflects problem
structure. Another choice of y, given by Broyden and Dennis [9] for which only slightly
poorer performance is reported in [13], is s -x/-x and

(3.1) y R’(x+)7"R(x+)-R’(x)7"R(x)-R’(x+)7"R’(x+)s,
which is just a specific instance of the "default" condition given by

y F(x+) -F(x)- C(x+)s,

which is equivalent to requiring that

S X+--X,

B+s =F(x+)-F(x), s =x+-x,

as in the traditional case when C(x)= 0. A third choice of y tested in [13] and given
originally by Betts [2] is

(3.2) y R’(x+)7"R(x+)-R’(x)7"R(x)-R’(x)7"R’(x)s, s x+-x,

which corresponds to the condition

y =F(x+)-F(x)-C(x)s, s =x+-x,

which is equivalent to requiring that

B+s =F(x+)-F(x), s =x+-x,

where now B+ A+ + C(x), or to requiring that

[a+ + C(x+)]s F(x+)-F(x) + [C(x+)- C(x)]s.

To allow some flexibility in the choice of y, one might take

(3.3) X(x, x+)= {y(1), ),(2), y(3)},
where y(1), y(2) and y(3) are determined by (2.14), (3.1) and (3.2), respectively.

THEOREM 3.1. Let F and C satisfy the standard hypothesis and let sg have the
properties that

(3.4) A, P[F’(x,)- C(x,)] and B, A, + C(x,),

are such that B, is invertible and there exists an r, for which

(3.5) --1 _LIB, P[F (x,)-C(x,)]l<-r, < 1.
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Also assume that the choice rule X for y has the property with that there exists an t >- 0
such that for any x, x/ f and any y X(x, x+), one has

p+/- <__(3.6) ((G-A,)II cr(x, x+)

for every G//(z,(y,s)), where r(x, x+)=max {Ix-x,[, Ix+-x,[}. Under these
hypotheses, if r (r., 1), then there are positive constants er, 6 such that for Xo R and
AoR"" satisfying Ix0-x,l< and [A0-A,I<6, any sequence {xk} defined by
Bo Ao+ C(Xo) and

Xk+l Xk -B-IF(xk), Yk X(Xk, Xk+l),

Bk+l {Bk, Ak + C(Xk+I), (Ak)+ + C(xk), (Ak)+ + C(Xk+)},

satisfies IXk+--X,I <- rlXk --X,I ]:or k O, 1, 2," ., where (Ak)+ is the least-change secant
update with respectto Sk Xk+ Xk, Yk, and the norm II" II. Furthermore, (lIBll and (llB II}
are uniformly bounded.

Proof. The proof is a straightforward application of Theorem 2.3 and Theorem
A2.1 of the appendix with condition (3.5) exactly the same as II-BF’(x,)I <- r, < 1.
We begin with the definition of the update function U in a neighborhood N N x N2
of (x,, B,). Since B, is invertible and (3.5) holds, there exist neighborhoods N of x,
and N2 of B, such that N_ 12, N2 contains only nonsingular matrices, and x+
x-B-F(x)e f for any x eN and B eN2. (See the discussion of the inequality (3.5)
following the proof.) We define U on N-N N2 as follows’ For (x, B)e N, set
A [B C(x)] and

U(x,B)={B,A +C(x+)}{A++C(x),A++C(x+)" y eX(x,x+)},

where x+ =x-B-F(x) and A/ is the least-change secant update of A in with
respect to s x+- x, y e X(x, x+) and the norm I1"

We now show that the bounded deterioration inequality

(3.7) lIB+ B,I]--< liB B,II + (ce + 3/3yc)r (x, x+)p,
holds for (x, B) N and B/ U(x, B), where/3 is a constant such that IIMII --</3 IMI for
any M R"". With the inequality established, the theorem follows from Theorem
A2.1. We prove the inequality only in the case B/ A+ + C(x/) for some y X(x, x/).
The cases B/ A/ + C(x), B+ A + C(x/) and B/ B, follow more easily with respec-
tive smaller constants (a +/3yc), 2/33, and 0 multiplying or(x, x+)p. For convenience, set
C(x)=C, C(x/)=C/ and C(x,)=C,. Letting G J//(,(y, s)) and denoting
W’(s), we apply (2.24) with M B,-C/ to obtain

liB+-B,II--IIA+ + C/- B,II
<--[IPsenx(A + C+ B,)I[ + [IP(G + C+-

<--IIm + C-B, + (C+-C,)-(C-C,)II+IIPx(O-A, + C+- C,)ll
p+/- p-IIB-B,II/IIC/-C,II/IIC-C,II/II .(O-A,)II/II (C/-C,)ll

--<liB- B,II + (c + 3/3yc)r(x, x+)P.

The theorem now follows from Theorem A2.1.
Before discussing asymptotically optimal q-linear convergence and q-superlinear

convergence, we would like to shed some light on the conditions imposed by the
inequalities (3.5) and (3.6) of Theorem 3.1. Considering (3.5) first, assume that F is
continuously differentiable in I and suppose that one desires an iteration Xk/l

Xk--B-lF(xk) to produce iterates satisfying Ix/-x,l<-rlx-x,I for some re (0, 1).
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Since

Xk+l--X,-" {/-BI Io F’[x, + O(Xk--X,)] dO}(xk-x,),
a condition which implies[x+-x,] <_-rlx-x,[ for x near x, is that B be taken from
a set

(r- e) {B e R ’’" II -B-F’(x,)I < r- e}

for some e > 0. If Bk Ak + C(x) forA e M and x near x,, then B is near the affine
subspace M+C(x,). Thus in order to obtain Ix+-x,l<-_rix-x,I with Bk=
A, + C(x,), it is reasonable to require that (r-e)fl[M + C(x,)] # for some e >0.
If r, < r < 1, then (3.5) guarantees that Pa+ccx,[F’(x,)] B, e (r- e) fq [M + C(x,)]
for 0 < e < r r,. Indeed, for 0 < e < r r,, (3.5) yields

-1p. [F’(x,)- C(x,)]l <II-B-1F’(x,)[=IB,I[B,-F’(x,)]I=]B, =r,<r-e.
The essential reasoning underlying Theorem 3.1 is that if (3.5) is satisfied and if
Ix0-x,l<  and IAo-A,I=[Ao+C(x,)-B,I<,r, then one can use the bounded
deterioration inequality (3.7) to show that the matrices Bk remain in some set Ns(B,)
{B e R n"" liB-n,ll< }___ 6e(r-e). For clarification we offer Fig. 1.

FIG.

We now turn to the condition imposed by the inequality (3.6) on the choice rule
X(x,x/) for yPa[F’(x/)-C(x/)]s. At first glance, the matrices Gl(M,(y,s))
seem to be a red herring in the matter of choosing y. On deeper consideration, however,
it is seen that they embody concepts that have been a?ound for some time. Implicit in
a choice of y is a determination of the affine subspa,ce (M, (y, s)) containing A/,
all of the members of which have, by Theorem 2.3, the same action on s. In fact, it
follows from Theorem 2.3 that if G, (/(M,(y,s)) then P+/-senac( (G A,)
p-senx((-A,). Thus if an inequality of the form (3.6) holds for one member of
(M, (y, s)), then it holds for. all members, including A+. Now in passing from A to
A+, one hopes to "correct" the action of A on s to approximate that of [F’(x+) C(x+)]
as well as possible among elements of M. It seems reasonable, then, to require that y
be such that A+s approximate A,s Pa[F’(x,)- C(x,)]s within O(o’(x, x+)"lsl). Since

p-(A+-A,)s nx(> (A+-A,)]s +[Psenx((A+-A,)]s
(3.8)

+/-

+ p+/-[Pax(,(A -A,)]s s,’cx(s(G-A,)]s
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for any G (M, 22(y, s)), one sees that if an inequality (3.6) holds for members of
t(M, (y,s)) and if K is such that [M[ =< K[IMII for all MRnn, then

(3.9) I(A+- A,)s[ cr(x,

In light of (3.8), it is doubtful that one can reasonably formulate a less restrictive
condition than (3.6), which implies an inequality of the form (3.9).

In practice, a choice rule g for y is usually suggested by the problem under
consideration. To apply Theorem 3.1, one must then determine whether such a
"natural" choice rule has the property that an inequality of the form (3.6) is satisfied.
The lemma below can sometimes be helpful. Following the lemma, we discuss condi-
tions which imply the existence of an inequality of the form (3.6) and which can be
easily verified in most interesting situations.

LEMMA 3.2. Given s, y with s # O, one has

(3 10) P’nco)(G-A,) (I-PsePx( -P ’P (y A,s)s
)) at(s)

S TS
for every G tl(sg, (y, s)).

Proof. Denoting W(s) by W, one obtains from Lemma 2.2, part (v), (with ;1 M)
and (2.22) that

Pnc(O a,) (I -1PPx) PeP (G A,)
T

for G e ///(M, (y, s)). Since A,(I-ssr/srs)W, one has PA, Pc(A,ssr/srs), and
(3.10) follows.

In most applications, one can determine without difficulty whether an inequality

(3.11) ly -a,sl <- (x, x/Ylsl
holds for x, x+ II and y X(x, x+). In light of (3.10), it is apparent that an inequality
(3.11) implies an inequality (3.6) if the operator (! PsePx(s)) PePa(s) is bounded in
norm uniformly in s x/-x for x, x/ [l. Although this uniform bound might be
difficult to verify in general, it is easily seen to be satisfied in two important cases.

The first case is that in which M 6 R"n. In this case, it follows from Lemma
2.2, part (v), that the operator norm induced by the inner product norm is not more
than one, since

(I PPx())-IPP() P+/-(s)
on nxn.

The second case is that in which sg 6e {M e N"": M Mr}, and the norm I1"
on N"" is a weighted Frobenius norm II, IIw for some pogitive-definite symmetric weight
matrix W. (This includes the case W I and [1. [[’ I1, of course.) Set W= W(s); since
PP)M e 2 f’l ( f’l W)+/- for all M e R"", it suffices to bound (I ppx)-i on Y f’l
(9o f’lW)z. Setting v Ws, one easily verifies in this case that PM 1/2(M +Mr),

T

PxM M(I SvVs), PJcM Ms, and PeoM I VvS-s)(M +Mr)(l SvVs).
Suppose that M St’ N (St N W)" so that PnxM 0, then

"sePxM:[M(I-svr)vrs/+ (! vs r)M]vrs/



964 J.E. DENNIS, JR. AND HOMER F. WALKER

and

PPx)2M

[PPxM+PxM]
Z

It follows, by induction, that (PsePx)JM 1/2J-IPePxM for/" >= 1 and, hence, that

k

(I PePx)-IM lira Y, (PeePx)iM
ka3 j=0

M + PsePxM

(I + 2PsePx)M.

It now follows that (I-PePx)-XP P-se x (I + 2PeePx)PeePc, and one concludes that
ap p+/-(I- PsePx)- se x is bounded in operator norm by 3 uniformly in s.

In the nonlinear least-squares example of 2, the update (2.20) is that obtained
for a given choice of y with ]]. ]1’ ]lr and M 6e {M e R """ M MT}. It follows
from the discussion here that for this choice of I1" and M, an inequality of the form
(3.6) holds if y X(x, x/) satisfies an inequality (3.11) for x, x+ f. It is easily verified
that an inequality (3.11) holds if X(x, x/) is given by (3.3) and if F(x) R’(x)TR (x) and
C(x) R’(x)TR’(x) satisfy the standard hypothesis.

A condition on ,V which is slightly stronger than (3.11) but which can also be easily
verified in most applications is that

(3.12) y-A,s=Es, whereE6e and IIPers)El[<-s:o’(x,x+)p

e-for x, x+ lq and y e X(x, x/) (Since Es erxs)E)s, it is clear that (3.12) implies an
inequality (3.11).) It follows from (3.12), (3.10) and Lemma 2.2, part (v), that

IIPm,) (O A,)l[ (I- PPx,))-PzPcs, Es/ II(z- PeP))-PePEII

IIPx(,)EII <= o’(x, x+)v

for G/(M,(y, s)). Thus (3.12) implies (3.6) with a to. One can verify without
difficulty that (3.12) is satisfied in the case of the nonlinear least-squares example if
X(x, x/) is given by (3.3) and if F(x)= R’(x)TR (x) and C(x)= R’(x)TR’(x) satisfy the
standard hypothesis. In general, under the standard hypothesis and the additional
assumption that F’ is continuous in lq, a choice of y for which (3.12) is satisfied is

(3.13) Y= P[/0 F’[x+t(x+-x)] dt-C(x+)]s.
While the choice (3.13) might appear somewhat artificial at first, the reader should
keep in mind that M is presumably chosen to reflect the structure of (F’-C). If
[F’(z)-C(x/)] M for all x/ f and z f, then (3.13) is just the default choice

y F(x+)-F(x)- C(x+)s.

We now address asymptotically optimal linear convergence and superlinear con-
vergence of fixed-scale least-change secant update methods, below in Theorem 3.3.-It
is interesting to note that for Fig. 1 in the case F’(x,) [M +C(x,)], Theorem 3.3.
guarantees q-superlinear convergence.
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It is worth pointing out that Theorem 3.3 applies to any sequence {Xk} generated
by a method of the type considered here and not just a sequence started from a
sufficiently good x0, B0 as required by Theorem 3.1. It is also in order to remark that,
as one would expect, much of the detail of the next proof is familiar to the specialist.

THEOREM 3.3. Suppose that the hypotheses of Theorem 3.1 hold and that ]’or some
Xo R and Ao R", {Xk} is a sequence defined by Bo=Ao+ C(xo) and

Xk+l Xk -B-1F(Xk), Yk e X(Xk, Xk+), Bk. (Ak). + C(Xk+I),

that converges q-linearly to x., where (Ak)/ is the least-change secant update OfAk with
respect to Sk =Xk/l--Xk, Yk and the norm I1" II, Set ek =Xk--X. for k =0, 1, 2,. . Then

lim ]ek+l -1 +/- ek
k-,oo -+B, P[F’(x,)-C(x,)] [-k =0,

where B, is given by (3.4). It follows that

and, hence, that {xk} converges q-superlinearly to x, if and only if

lim - F’ x
ek,)-

In particular, {Xk} converges q-superlinearly to x. if [F’(x.)-C(x,)] s.
Proof. In light of Theorem A3.1 of the appendix and the fact that I-BIF’(x,)

-B2,1p[F’(x.)-C(x.)], it suffices to show that limk-,o I(B -B,)sUIs I-O, Now, it
follows from Lemma 3.4 below that this is the case if and only if

(3.14) lim

Thus we establish (3.14) to prove the theorem.
Since the iterates satisfy Xk fI for k large enough we assume, without loss of

generality, that all the iterates are in
For convenience, we again set C(x.)= C. and let /3 be a constant such that

IIMil <-- tlMI for everyM "". For each k, set C(Xk)
and tr(Xk, Xk/l)=trk, and let Gk (sg, 2(yk, Sk)). Applying (2.24) with A =Ak, G
Gk, M B, Ck/ and V Vk, one obtains, as in the proof of Theorem 3.1,

Since Ps,’nx,< Pu’nx,, Pxk it follows that

(3.15) lIB,<+1-B,II--< (B< B,)II +

where K (a + 3/3yc).
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p+/-For each k, set r/k IIB-B.II and 0k (B- B.)II Our goal is to show that
limk_,oo tk 0. Note that for any M ..u"", one has

IIPMII-II(I-P
lip +/- ,11211/2(3.16) {IIMII=-, .....

p+/-. Mt2--< IIMII-(211MII)-I
Applying (3.16) to (3.15) with M Bk-B,, one obtains

(3.17)

It follows from (3.17)
k

"Ok + < T/k -t" KO’ < 9/0 "[- K E 0"’.
/=0

Since {xk} converges q-linearly to x,, the sum on the right-hand side of this inequality
converges to a finite limit. Consequently, there exists an rl such that rlk <= rl for k 0,
1, 2,. , and one obtains from (3.17) that

This inequality yields

(2r/)- --< r/k T/k+1 + KO’E.

(2r/)-1Y 0 <-- no + K Y. rg,
0

from which one concludes that limk_.oo 0k 0. This completes the proof of the theorem.
LEMMA 3.4. Let 1. denote a given vector norm on R" and the corresponding operator

norm on N"". There exist positive constants and such that

IMsl 211P)Mll

for all M e "" and all nonzero s

Proof. Suppose that M e N"" and a nonzero s N" are given. Denote (s)
for convenience. Since M PM+PxM, one has

IMs I(PM)sI < IPMi dlPMil

for a constant 2 such that 1[ N =1111 for every e N"". On the other hand, since
M(I ss/s)e/, P)M P(Mssrs) and

s llIIPMIi= M M Ms s,,
(3.18)

In this expression, Y is a constant such that II/rll <-YlI/II for every e R"", and K’
and g" are constants such that

for every x e N", where I’ 12 is the 12 norm on N". It follows from (3.18) that IIIPSMII <-

Mslllsl for/1-- ’/a".
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There is a very good chance that the techniques of this section can be extended to
obtain global theorems of the sort given by Powell [25]. We leave that and other more
general results for future work and end the section with an easy corollary that contains
all the known local convergence results for fixed-scale least change secant update
methods and one apparently new result. We believe this is the first complete local
q-superlinear convergence result for the Marwil-Toint sparse symmetric Broyden
method as generalized and strengthened in [14]. In this connection, it should be
mentioned that it has been shown by Toint [33] that (essentially) linear local conver-
gence implies local q-superlinear convergence for this method.

For brevity we assume the reader knows the algorithms by name and we appeal
to [14] for a proof that they are fixed-scale least-change secant update methods.

THEOREM 3.5. Let F satisfy the standard hypothesis and assume that F’(x,) -1

exists. Let F’(x,) Z, the set of matrices with a given fixed sparsity, and let S be the set
of symmetric matrices. Then the following are true:

(i) The sparse Broyden-Schubert method is locally q-superlinearly convergent.
(ii) IfF’(x,) $ then the sparse symmetric Broyden method is locally q-superlinearly

convergent.
Remark. If Z Rnn then i) and ii) guarantee the convergence of the Broyden

and PSB methods.
Proof. Since A, B, F’(x,) and r, 0, we need only verify (3.6) for X(x, x/)

{F(x/)-F(x)}; but that is the content of the discussion between Theorems 3.1 and 3.3,
and amounts to noting that IF(x+)-F(x)-V’(x,)(x+-x)l<-_’/r(x, x+)"ls[.

4. Rescaled least-change secant update methods. As stated in the introduction,
(iteratively) rescaled least-change secant update methods are of interest when there is
an unknown ideal scaling associated with the problem under consideration. In such a
method, the norm on Rn" used to define least-change secant updates is itself updated
at each iteration to reflect current information about the scaling. Throughout this
section, the only norms which we consider on "" are weighted Frobenius norms.
Theorems 4.2 and 4.3 below are analogues for the rescaled methods of Theorems 3.1
and 3.3 for fixed-scale methods respectively. The technical lemma preceding Theorem
4.2 is both of interest in its own right and of crucial importance in the proofs of
Theorems 4.2 and 4.3. It allows us to translate the weighted Frobenius norm bounds
on Bk/I-B,, obtained so easily from Theorem 2.3 for each different norm, to obtain
bounded deterioration in the Frobenius norm weighted by F’(x,), which is assumed to
be positive definite and symmetric in this section.

Ideally we would choose F’(x,) to be the weight matrix at each iteration and the
least-change secant updates would be defined with respect to the fixed norm I1"
Of course, F’(x,) is unknown during the iteration and so we wish to choose a weight
matrix which incorporates whatever information is currently available about F’(x,).
After k iterations, currently available information about F’(x,) is usually contained in
vectors Sk Xk+l--Xk and Vk [F(Xk+I)--F(Xk)]. The idea is that if Sk is small and Xk is
neat x,, then Vk F’(x,)Sk. Thus it is reasonable to choose a weight matrix W which
is positive-definite and symmetric and which satisfies Vk WSk. Note that there exists
such a matrix W if and only if v sk O.

We assume in this section that there is a given choice rule for determining
admissible values not only of y =P[F’(x+)-C(x/)]s but also of v =F’(x,)s for x,
x/ " and s x/-x. By such a choice rule, we mean a function :n x n 2a"an,
which determines a set X(x, x/)

_
R" x " of admissible pairs (v, y) R" x for every

x, x/ Rn. It is also assumed that h’ is such that if s x/-x 0 and (v, y) X(x, x/),



968 J. E. DENNIS, JR. AND HOMER F. WALKER

then v Ts >0. This assumption insures that the set of positive-definite symmetric
matrices sending s to v is nonempty whenever s x/-x # 0 and v is an admissible
value determined by X(x, x/). This set, which we denote by /(v, s), can be regarded
as the set of admissible weight matrices for defining norms on Rnn to be used in
determining least-change secant updates. We remark that we have prescribed a joint
choice rule for v and y, rather than two independent choice rules, for two reasons: first,
a joint choice rule is more general; second, we see reason to anticipate in light of
condition (4.18) below that v and y cannot always be chosen independently.

In order to illustrate the role played by the choice rule X, suppose for the moment
that 5’= {M Rnn: M=MT}.Forx,x+ withs =x+-x # 0,let (v, y)x(x,x+)
and W /(v, s), and set W W(s). As remarked in 3, one has PeM 1/2(M + MT),
PxM M(I sv/vs), PM Msv/v s, and

PecxM - v/
(M +

where all projections are orthogonal with respect to I1" IIw, If A M ow, then (2.11)
yields

s-sYST] + (/ vSTA(IvTS/ svT)vA+ (I PsePx PseP
\

and, to specify A/, one must determine

(4.1) D =- I P x) s I PePx +-s/

in terms of s, v, y and A. Reasoning as in the nonlinear least-squares example of 2,
we observe from (4.1) that D 6e (SeW)+/-; hence

+ D +(4.2)
2 v s / S S

and

(4.3)
T T\ T T T T

( SsI)S)(ov_.._} I)S SU I)S S)
O= I------/D\I--vr /=D----v s D-D----+---v s v s

D
v sT""

From (4.2) and (4.3), one obtains
T T T Tvs sv yv + vy

D +--- D---#--= T
VS VS VS

Multiplying by vsTVS on the left and by sv TVS on the right yields
T T T Tvs sv s yvv
T D--- TS)Z,/) S /) S (V

and it follows that

(4.4)

T T T Tyv + vy s yvv
v s

=A+
(y-As)v T +O(y-AS)T sT(y--As)or

Tv s (vs)
This expression for A/ is also given in [12, Thm. 7.3] and in [13, Thm. 3.1].
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It is apparent from (4.4) that A/ is independent of the particular choice of
W e+(v, s). (We explain later just why this is the case.) If C(x)=-O and v =y
F(x/)-F(x), then A/ is just the usual DFP update of A, and the PSB update of A
results if v s, i.e., if I is an admissible weight matrix and I1’ I1 is an admissible norm.
Returning to the nonlinear least-squares example of 2, one sees that if C and y are
given as before and if v =F(x/)-F(x)=R’(x/)TR(x+)-R’(x)TR(x), then (4.4) is the
DFP analogue of (2.20), i.e., A/ is the DFP augmentation of the Gauss-Newton
Hessian R’(x)rR’(x) considered in [13]. Also, (4.4) reduces to (2.20) i v s.

LEMMA 4.1. Let W, R"" be positive definite and symmetric, and let K and e be
positive constants with e < 1. Suppose that positive parameters tr, p and vectors s, v
with s # 0 satisfy the following:

(i) (l-e)
0"v

(ii)

where I’ [2 denotes the 12 norm on Rn and the corresponding operator norm on ". Then
W, the BFGS update of W, sending s to v, is well defined by W, J,J,,

w rW,s
J,s, J J* + wrw W jjr,

and there exists a positive constant 1, independent of tr, p, s and v, ?’or which

(4.5) IIMII .--- (1 +

]’or every M e. If, in addition,

(i)’ crp
(1-e)e

then there exists a positive constant [2, independent of or, p, s and v, for which

(4.6)

for every M .
Remark. Note that

IIMII 

(1-e)e
f(e)<l-e

for 0 < e < 1. Thus condition (i)’ is more restrictive than condition (i). Now (i)’ is least
restrictive when f(e) is maximal, and one can verify that the unique value of e in (0, 1) at_. 4which f is maximized is e Since f()= , conditions (i) and (i)’ in the statement of
Lemma 4.1 can be replaced for convenience by the single condition

(i)" o-p -<
27xl WT, l:

and (4.5) and (4.6) remain valid with constants/31 and 2 independent of o-, p, s and v.
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Proof. For convenience, l" 12 is denoted simply by l’ [throughout the proof. To
show that W is well-defined, we verify that v s > 0. Indeed,

Tv s sW,s + (v W,s)s
K(T

p__>lw;X I-lsl= Isl =
_>lw
lwll-llsl>0,

For future reference, we note that

(4.7) Is[ 2 1
-<_- Iw;ll,

Now let J, be any matrix for which W, J,J. Then W is given by W jjT-, where

(v -J,w)w 7"

(4.8) J=J,+

rJ,s.

For any M IR"’,

-iiJjj-M(j)-(j)(j)-lb

Thus, to establish (4.5), it suces to show

(4.9) IJJ[= (1 +1)

for a constant B independent of , p, s and v.
From (4.8), one obtains

y;x (v-y,w)w
(4.10) jaj=/+ wla
We claim that

(4.11)
IJl(v-J*w)l (.1 +eX/)Iw[ --<lw’l "

Once this is established then it follows from (4.10) and (4.11) that

IJeJl<--l +K]WIt( l +e/-)O’’
from which (4.9) follows easily.

To verify (4.11), note that

-lw.
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Since Iwl v s and

it follows that

(4.12)

J; -Jwl< [J- I1- w,sl I- W,sllsl
Iwl (/.) TS)I/2

"[" T
/) S

=,,
(vs)/ + o’".

Using (4.7), one immediately obtains (4.11) from (4.12).
Reasoning as above, one sees that to establish (4.6), it suffices to show

(4.13) [J-J,[ <= (1 +/3r)

for a constant2 independent of r, p, s and v. Using the Sherman-Morrison-Woodbury
formula [22], one sees from (4.10) that

[ w’rj-(v-J*w)] -1J-l(v-J*w)w’l"(4.14) J-IJ, I- 1 + Iw[ Iwl =
if rp <- e(1-e)/(1 +4)KIW: 1, then it follows from (4.11) that

< lw; <=(1-.
In light of this inequality and (4.11), one verifies from (4.14) that

[J-1J,] l + tc[ wl [( l +e-) o.p,

and (4.13) follows easily. This completes the proof of Lemma 4.1.
Theorems 4.2 and 4.3 below are the counterparts for rescaled least-change secant

update methods of Theorems 3.1 and 3.3 for fixed-scale least-change secant update
methods. The discussion between Theorems 3.1 and 3.3 is valid here, mutatis mutandis,
and we do not repeat it. We remark that Theorems 4.2 and 4.3 together imply the local
superlinear convergence of, not only the method of Pearson [23], [7] and the Davidon-
Fletcher-Powell method, but also the nonlinear least-squares methods of [13] employ-
ing the update (4.4), when v F(x+)-F(x) and y is given by (3.3).

Before stating Theorems 4.2 and 4.3, we introduce some notation and offer an
explanation of the assumption concerning projections onto 6e in Theorem 4.2. The
norms of interest here are weighted Frobenius norms defined with respect to a variety
of weight matrices. To avoid confusion, we indicate the weighted norm with respect to
which a particular projection is orthogonal by writing the weight matrix as a subscript
to the projection symbol. Thus, for example, if W is a positive-definite, symmetric
weight matrix, then the projection onto which is orthogonal with respect to the norm
II’ IIw is denoted by P.w. Given x, x+ s R with s x+-x 0 and given (v, y) s X(x, x+),
our interest is in the least-change secant update A/ of A s Rn", defined with respect
to s, y and a norm I1’11 for w /(v, s). Now there are many possible choices of
W 2/(v, s), and making a particular choice of W and using it explicitly in determining
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A/ seems likely to be somewhat difficult. Thus it seems desirable that A/ be indepen-
dent of any particular choice of W/(v,s). In light of (2.11) and the facts that

_1_
Px(s,w (I-Pc(s.w) and

Psenx.w lim (Pe,wPx,w)k,
k

this is certainly the case if Pse,w and Px(,w are independent of W. Now

P>,wM M I--s for M a

and so Ps.w is independent of W +(v, s). One concludes that A+ is independent
of W a +(v, s) if 5 is such that P,w is independent of W +(v, s).

We assume the independence of P.w, W+(v,s), in the remainder of this
section and in the relevant parts of 5. This is a valid assumption for the important
case of symmetric matrices since P.wM 1/2(M +Mr) is independent of W, but there
is a very important instance of in which it is not valid. When 5 Z, the set of
matrices of a given sparsity, P,wM is not independent of W+(v, s). This really
complicates the search for iteratively rescaled sparse updates, and it is related to the
fact that for the scalings derived from factoring elements of +(v, s), .. The reader
will find a complete discussion in 14, 4].

THEOREM 4.2. LetFand Csatisfy the standard hypothesis. Let have the property
that for any s, v " with sTy >0, the pro]ection Pe,w is independent of W +(v, s). In
addition, let have the properties that

(4.15) A, P,F’(x,)[F’(x,)-- C(x,)] and B, A, + C(x,)

are such that B, is invertible and there exists an r, ]’or which

-P+/- [F’(x,)- C(x.)][ < r, < 1(4.16) [B. ,v,(.)

Also assume that the choice rule ) for v and y has the property, with respect to , that
there exist a 1, az >= 0 such that for any distinct pair x, x+ 12 determining s x+ x and
(v, y)e g(x, x+), one has

(4.17) Iv F’(x,)s <_- a lO’(x, x+)P[s[
and

p_t_(4.18) ex(,w(G-A.)[lw < ar(x, x+)

for every G e(, (y, s)), where r(x, x+)=max {Ix-x.I, [x+-x.]} and W e+(v, s).
Under these hypotheses, if r e (r., 1), then there are positive constants e, 6 such that for
Xo e n" andaoe n"" satisfying IXo x.[ < e and lab a .I < 6, a sequence {x} defined
by Bo Ao + C(xo) and

x+x x -B-XF(x), (v, y)e X(x, x+x)

B+ e {B,A + C(x+), (a)+ + C(x), (A)+ + C(x+)},

satisfies Ix+ x.I <= rlx x.l for k O, 1, 2," ", where (A)+ is the least-change secant
update of a with respect to s=x+-x, y, and any norm [l’llw, We+(v,s).
Furthermore, {llBllv’(x.} and {llB{a IIv,**)} are uniformly bounded.

Proof. The proof very closely parallels that of Theorem 3.1. Since B, is invertible
and (4.16) holds, there exist neighborhoodsN of x. and Nz of B, which are sufficiently
small that Na

_
12, N contains only nonsingular matrices and x+ x -B-F(x)e 12 for
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every (x, B) e N N1 x N2. One sees from (4.17) that there exists a constant K for which

(4.19) Iv -F’(x,)s[2 <-_ Ktr(x, x+)Plsl2
for any distinct x, x+ e 1, s x+-x and (v, y)_ X(x, x+). If necessary, one can further
restrict the size of N1 and N2 so that if (x,B)N and x+ =x-B-XF’(x), then

(4.20) r(x, x+)p -<_
27 IF’(x.)-a["

Define an update function U on N as follows" For (x, B) N, set A [B C(x)] and

U(x,B)={B,A +C(x+)}U{A++C(x),A++C(x+)" (v, y)x(x,x+)},

where x+ x-B-XF(x) and A+ is the least-change secant update of A in with
respect to s x+-x, y and a norm I1’ IIw for W e +(v, s).

In order to apply Theorem A2.1, we now show that there exist constants 1 and
2 for which a bounded deterioration inequality

(4.21) liB+- B.llr(. < [1 + lO’(x, x+)]llB -B,llr(x. + x2r(x, x+),
holds for (x, B)N and B/ U(x, B). As in the proof of Theorem 3.1, it suffices to
consider the case B/ A/ + C(x/) for a choice (v, y) g(x, x/). In light of (4.19), (4.20)
and the remark after Lemma 4.1, one sees from Lemma 4.1, with W, =F’(x,) and
W F’(x,), that there exist constants/ and f12 independent of x, B, y and v for which

(4.22) IIMIIF’(.
and
(4.23) [IMII [1

for all M "", where F’(x,) denotes the BFGS update of F’(x,) sending s to

From (4.22), one obtains

(4.24) Iln+-B.llv,(x.)[1 +(x,
Since F’(x,)e+(v,s), one can use (2.24) to estimate [[B+-B,[[. Letting

G e(, (y, s)), apply (2.24) as in the proof of Theorem 3.1 to obtain

lib+ B,II liB B,II
(4.25) p

It follows from (4.18), (4.23) and (4.25) that

liB+ B.Ilr. [1 + 2(x, x+)]llB B.II,x.
(4.26)

+{a2 + 37[1 + fl2(x, x+)V]}g(x, x+)v,
where is a constant such that IIMIl,(. IMi for every M e "". Combining (4.24)
and (4.26) yields

liB+ B,li,(. 11 +[+
(4.27)

+ [1 + Bx(x, x+)V]{az + 3Bye[1 + B2(x, x+)V]}(x, x+)v.
From (4.20) and (4.27), one obtains (4.21) with

5r’(x,)-12
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and

K2 1+5K[F,-,)_ll2
a2+3Byc 1+5[F,(x,)_l[2

With (4.21) established, the theorem follows from Theorem A2.1.
THEOREM 4.3. Suppose that the hypotheses of Theorem 4.2 hold and that for some

Xo n and Ao n, {xk} is a sequence defined by Bo Ao + C(xo) and

Xk+l Xk -B-IF(xk), (Vk, yk) X(Xk, Xk+l),

Bk+l (A)+ + C(x+l),

which converges q-linearly to x,, where (Ak)+ is the least-change secant update 9f Ak
with respect to Sk=Xk+I--Xk, yg and a norm I1’11 , Set eg=x-x, ]:or
k =0, 1, 2,. . Then

-, - B Pa,F’(x,)[F’(x,)-C(x,)] ek

where B, is given by (4.15). It follows that

k-’ e-ilim
]ek+l]- 1-mk_.,oo [B,-1P+/-a,v,(x.)[F’(x.)-C(x.)] e[[[ <-r,

and, hence, that {Xk} converges q-superlinearly to x. if and only if

lim[ +/- e
k--,oo

P,F,(x.)[F’(x.)- C(x.)]- O.

In particular, {Xk} converges q-superlinearly to x, if [F’(x,)-C(x,)] 4.
Proof. As in the proof of Theorem 3.3, it suffices to show that

lim
I(B -B*)sI

O,(4.28)
k-,o Is l

in light of Theorem A3.1 of the appendix. For convenience, set C(x.)= C. and for
each k, set C(x) C, C(x/1) Ck/1, W’(s)
J//(4, (v, s)). It is understood throughout the proof that for each k, all projections
are orthogonal with respect to 1[. [[w, W +(yg, s) thus we denote +/-Pk,w simply by
p+/-xk, etc. Since {xk} converges to x., Lemma 4.1 implies the following For each k,
the BFGS update F’(x.) of F’(x.) is well defined in 2/(v,sg) and we denote
11’ I[v’(.) by [[. 1[ ;furthermore, there are constants/31 and/32 independent of k for which

(4.29) IIM[Iv’(x.) <-- (1 + flltYPk)llMIIk and

for everyM ". Since the convergence of {Xk} to X. jS at least q-linear, we also have
that fro _-> trl _-> t7"2

We observe that

[(B B,)s IP.(Bk B,)s <_ [p(B B,)IIs l
__<fl, +/-[IP(B

where/T is a constant such that IMI-<-/’IIMII,(. for every M "". Thus (4,28)is
implied by

(4.30) lim IIP. (Bk B.)ll,(x.) 0,
koo
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and we establish (4.30) to prove the theorem. (Not surprisingly, it can be shown, in the
spirit of Lemma 3.4, that (4.28) and (4.30) are equivalent; however, showing this is not
worth the trouble for the present purposes.) Apply (2.24) as in the proof of Theorem
3.3 to obtain

for k 0, 1, 2, . SincePx PxPx, it follows from this inequality and (4.29),
together with the hypotheses of Theorem 4.2, that

(4.31) IIB+1 u,Jl [[P(B B,)II +,
where a =[a:+3Brc(1 +Bang)I, in which fl is a constant such that IIMIIF’(.)IMI
for every M e "". Using (3.16) with M=B-B, and I1,11 I1’ I1, one obtains from
(4.31) that

(4.32) [In+l- B,I[ IIB U,ll [211B -B,II]-alIP(B B,)[I +.
Setting 0 IIP (B-U,)[lF’(.) and n IIU--u,llF’(x., one verifiesfrom (4.32) and
(4.29) that

(4.33)+ (1 +)(1 +
-[2(1 +1)(1 +2)nk]-0 +(1 +Bl)x.

Now, (4.33) yields

from which one obtains, by induction, the somewhat generous bound

/=0

Since {x} converges q-linearly to x., it follows that there is an such that for
k =0, 1, 2,.... One sees from (4.33) that

[2(1 + ,)(1 +)]- -+1+’,

where ’=(+ +lfl) + (1 +). Consequently,

[2(1 +,)(1 +)]- E o+’ E ,
k=0 k =0

which implies that lim 0 0. This completes the proof.

5. Lesl-hange inverse-seeanl p8ale melhoSs. In this concluding section, we
state analogues of the theorems of 3 and4 which are appropriate for fixed-scale
least-change inverse-secant update methods and (iteratively) rescaled least-change
inverse-secant update methods. Theorems .1, 5.2, 5.3 and 5.4 below correspond to
Theorems 3.1, 3.3, 4.2 and 4.3, respectively. Because the proofs of the theorems in
this section so closely parallel those of their counterparts in 3 and 4, with Theorems
A2.2 and A3.2 of the appendix used in place of Theorems A2.1 and A3.1, respectively,
we omit them here. Theorems 5.1 and 5.2 imply the local superlinear convergence of
G. McCormick’s method (see [23]) and the Broyden-Fltcher-Goldfarb-Shanno
method [4], [5], [16], [18], [28], [7], [26].

We consider here iterative procedures for solving (1.1) which employ approxima-
tions of the form

(.1) F’(x)- K C(x) +A,
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at the kth iteration, where C’RnRn" is a given function which determines a
"computed part" of F’(x)-1 for every x of interest and Ak -[F’(Xk)-1- C(xk)] is an
"approximated part" of F’(Xk)-1. In Theorems 5.1 and 5.2, it is understood that a fixed
inner-product norm I1" is specified on Rn". In addition, we assume in these theorems
that there is associated withF and C a choice rule X" n , 2Rnan which determines
admissible pairs (w, y) X(x, x/) for x, x/ . In accordance with the introduction,
our point of view is that w=P[F’(x/)-l-C(x/)]y and {Pa[F’(x/)-I-C(x/)]+
C(x/)}y s x/ x. We also assume that the choice rule is such that if x/ x, then y 0
for every (w, y) X(x, x/).

THEOREM 5.1. LetFand C satisfy the standard hypothesis and assume that F’(x,)
is invertible. Let g have the property that A,=P[F’(x,)-I-C(x,)] and K,
[A, + C(x,)] are such that there exists an r, for which

+/- F’x )-1 C(x )]}F’(x )1<= <1II K,F’(x,)[ I{Pa[ , , , r,

Also assume that the choice rule X for w and y has the property with sg that there exists
an >= 0 such that for any distinct pair x, x/ 1 determining (w, y) ((x, x/), one has

p+/-se()(G-A,)ll<=r(x, x/)"

for every G (, (w, y)), where or(x, x+) max {Ix x, [, Ix+ x, I}. Under these
hypotheses, if r (r,, 1), then there are positive constants s,, 8, such that for Xo " and
Ao e "" satisfying IXo- x, I< e, and IAo-A,l< ,, a sequence {Xk} defined by Ko
Ao+ C(Xo) and

xk+ xg KgF(x), (w, y)e X(x,, x,/),

K+I e {Kk, A + C(x+I), (A)+ + C(x), (Ak)+ + C(x+I)},

satisfies [Xk+l-- X, <- rlXk X, for k O, 1, 2,"., where (Ak)/ is the least-change
inverse-secant update of Ak as given by (2.11) with s Yk, Y Wk, and N (Yk).
Furthermore, {llg ll} and {llg II} are uniformly bounded.

THEOREM 5.2. Suppose that the hypotheses of Theorem 5.1 hold and that for some
Xoe " and Aoe, {Xk} is a sequence defined by Ko=Ao+C(xo) and

Xk+l Xk -KkF(Xk), (Wk, yk) e )(.(Xk, Xk+l),

Kk+l (A)+ + C(xk+l),

which converges q-linearly to x,, where (Ak)/ is the least-change inverse-secant update
OfAk as given by (2.11) with s Yk, Y Wk, and aV’= /’(Yk). Suppose further that
and {llg  are uniformly bounded and that {Yk} satisfies where
Sk Xk+l--Xk and limk-, Ck =0. Set ek Xk --X, for k =0, 1, 2,. . Then

lim --{P[F’(x , , =0.

It follows that

le/l ek
lim {P[F’(x,)-I-C(x,)]}F’(x,)k--[ekl k-

and, hence, that {Xk} converges q-superlinearly to x, if and only if

lim ]{P[F’(x,)-I-C(x,)]}F’(x,)el-kkll =0.
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In particular, {xk} converges q-superlinearly to x, if [F’(x, )-1 C(x, )]
The requirement in Theorem 5.2 that IK,yk Sk 1<---- ak [Sk 1, where Sk Xk+1 X and

limk-oak =0, is one of the hypotheses of Theorem A3.2 of the appendix and
essentially guarantees that the approximation {P[F’(x/I)-1 C(Xk+ l)] + C(Xk+l)}Yk
Sk is a good one. It is interesting to note that no such requirement is necessary in
Theorem 5.1. It is also naturally of interest to ask when the usual choice Yk
F(x+I)-F(x) meets this requirement. We observe that if [F’(x,)-l-C(x,)]eeg,
then

K,yk [Pa[F’(x, )-I- C(x, )]+ C(x, )]yk F’(x,

It follows easily, under the assumptions of Theorems 5.1 and 5.2, that yg
F(Xk/I)--F(Xk) satisfies the requirement in the case [F’(x,)-l-C(x,)] . Note also
that the sequence {Xk} generated by the iteration of Theorem 5.2 converges super-
linearly in this case.

Theorems 5.3 and 5.4 below are analogues for rescaled least-change inverse-
secant update methods of Theorems 5.1 and 5.2 respectively. As always in rescaled
methods, the norm on nn, used to define least-change inverse-secant updates, is itself
updated at each iteration to reflect current information about the ideal scaling associ-
ated with the problem at hand. We assume here that current information about the
ideal scaling after k iterations is incorporated in vectors yk and u F’(Xk/l)-lyk

Tsatisfying u k Yk > 0 and that the norm used to define least-change inverse-secant updates
is at each iteration a weighted Frobenius norm [[. [[w, W 2+(Uk, Yk). Specifically, it is
assumed in Theorems 5.3 and 5.4 that there is given a choice rule for determining
admissible values not only of w and y but also of u F’(x/)-ly for every x, x/ n. By
such a choice rule, we mean a function X --> which determines
admissible triples (u, w, y) X(x, x/) for x, x+ ". We assume that X is such that if
x+#x, then y#0 and uTy>0 for every (u, w, y)X(x,x+). In the case [F’(x,)-1-
C(x,)]54, one sees, as before, that the sequence {xk} generated by the iteration of
Theorem 5.4 converges q-superlinearly to x, if one chooses y F(x/)-F(x) for x,
x/ ". It is also interesting to note that for this choice of y, the choice u s x/-x

satisfies the condition ]u-F’(x,)-ly _-<.l(X, x+)lyl of Theorem 5.3 for an appropri-
ate a 1.

THEOREM 5.3. LetFand Csatisfy the standard hypothesis. Let have the property
that ]:or any y, u " with yTu >0, the projection Pe,w is independent of W +(u, y).
In addition, assume that F’(x,) is invertible and let 5g have the property that A,
P.F,x,)-I[F’(x,)-I--C(x,)] and K, =A, + C(x,) are such that there exists an r, for
which

[I K,F’(x,)I +/- -1[{P,F,x,)-IEF’(x,) -C(x,)]}F’(x,)[<-_r, < 1.

Also assume that the choice rule X for u, w and y has the, property with respect to 54 that
there exist al, a>-_O such that for any distinct pair x, x+I determining (u, w, y)s
X(x, x+), one has

[u F’(x,)-xy =< c lO(x, x/)ly

and

IIP,(),c(G -A,)llw <-_ ar(x, x+)

for every GJ/l(eg,(w,y)), where r(x,x+)--max{lx-x,l, lx/-x,I} and We
+(u, y). Under these hypotheses, if r (r,, 1), then there are positive constants Sr, 8such
thatfor Xo andAo satisfying Ix0 x,] < Sr and [ao A,[ < r, a sequence {x}
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defined by Ko Ao + C(Xo) and

Xk+l Xk --KkF(Xk), (Uk, W, y)e X(X, X+l)

Kk+I {K, A + C(x+), (Ag)+ + C(xk), (A)+ + C(x+I)}

satisfies ]X/l x, [_-< rlx x, for k O, 1, 2,..., where (A)/ is the least-change
inverse-secant update of Ak as given by (2.11) with s Yk, Y Wk, W W(y) and
I1’ I1’ live ]:or W +(uk, Yk). Furthermore, {llg llF,(x. -l} and {llg are uni-
formly bounded.

THEOREM 5.4. Suppose that the hypotheses of Theorem 5.3 hold and that for some
Xo R" and Ao gn,, {xk} is a sequence defined by Ko Ao+ C(xo) and

Xk+l x -KkF(x), (Uk, Wk, yk) X(Xk, Xk+l),

K+ (Ak)+ + C(xk+),

which converges q-linearly to x,, where (Ak)+ is the least-change inverse-secant update
OfAk as given by (2.11) with s yg, y
Suppose further that and {llg are uniformly bounded and that
{Yk} satisfies IK ,yg s <- cek ISk I, wheres xg +1 Xk and lim k-, ak 0. Setek Xk X,
fork=O, 1,2,.... Then

lim
e+ +/- )]}F’(x ek

’]]-{P,F,(x.)-I[F’(x,) -C(x, , --0.k

It follows that

lim le+ll 1- - - [-[I{Pa.F,(,.)-I[F’(x.) -C(x.)]}F’(x.) ek

k lek k

and, hence, that {Xk} converges q-superlinearly to x, if and only if

lim
+/- )]}F’(x ek{P.F,(,.)-IEF’(x.) -C(x. .

In particular, {x} converges q-superlinearly to x, if [F’(x,)-l-C(x,)]
To illustrate the potential applications of the methods considered in this section,

we again turn to the nonlinear least-squares problem. If f(x)=1/2R(x)TR(x) is the
functional to be minimized and R is small near a minimizer x, of f, then one can
expect the Hessian of f, given by (2.13), to be dominated by the term R’(x)’R’(x) for
x near x,. (Equivalently, one can expect the inverse Hessian V2f(x)-1 to be dominated
by [R’(x)7"R’(x)]-1 for x near x,.) With this in mind, one often wishes to proceed, at
the kth step of an iteration for determining x,, from xg to a better approximation
of x, by initially using the Gauss-Newton step, i.e., by initially defining

(5.2) Xk+l Xk -[R’(xk)7R’(x)]-IF(x.),
where F(x)=-Vf(x) as before. If this initial Xk+, or some standard modification of it,
is found to be unsatisfactory, then one might reasonably redefine xk/ by

Xk+a Xk -Kt,F(xt,),

where Kk is of the form (5.1) for some augmentation Ak of the inverse Gauss-Newton
Hessian C(xk) =-- [R’(Xk)7"R’(Xk)]-1. The inverse-augmentation method of proceeding
from the initial Gauss-Newton determination (5.2) to the final determination (5.3) has
the advantage over the direct-augmentation methods, discussed earlier, of requiring
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for each k only one matrix factorization, namely that necessary to determine Xk+l by
(5.2). The direct-augmentation methods require this factorization to determine the
Gauss-Newton step and, if this step proves unsatisfactory, another factorization to
determine the step obtained using the directly augmented Gauss-Newton Hessian.

How might one obtain a least-change inverse-secant update of the augmentation
Ak of the inverse Gauss-Newton Hessian C(xk), which will yield a procedure (5.3)
having desirable convergence properties? Suppose that one has distinct points x, x/ R
and A Rnn and that one wants a least-change inverse-secant update A+=
[F’(x+)-1 C(x+)] of A. It is reasonable to take as before 6 {M "M MT}
and to assume that A is symmetric. Since [F’(x,)--C(x.)]e with this choice of, a satisfactory choice of y for the theorems in this section is

(5.4) y =F(x/)-F(x),

according to the remarks between Theorems 5.2 and 5.3. It appears to us that the only
safe choices of w Pa[F’(x/)-1 C(x/)]y are the "default" choices

(5.5) w()=s-C(x/)y and w(2)=s-C(x)y,
where s x+ x. If one makes the choice of norm II" II" I1 and defines the choice rule
X for w and y by X(x, x/)= {(w(, y), (w (2, y)}, where w(1 and w(2 are given by (5.5)
and y is given by (5.4), then the least-change inverse-secant update A/ of A for
(w, y) X(x, x+)is

(5.6)

T T T Twy +yw y wyy
T

Y Y (yy)

=A+
(w-Ay)yr+y(w-Ay)T yT(w--Ay)yyT

T
Y Y (y ry)e

The update (5.6) is, of course, the Greenstadt augmentation-update analogue of the
PSB augmentation-update formula (2.20). Theorems 5.1 and 5.2 imply the local
q-superlinear convergence of the fixed-scale least-change inverse-secant update
method (5.3) with the successive augmentation matrices Ak obtained using the update
(5.6), whenever F(x)= R’(x)TR (x) and C(x)= [R’(x)rR’(x)]-1 satisfy the hypotheses
of Theorem 5.1. On the other hand, since the unsuccessful methods of Broyden and
Greenstadt result from C(x) 0, we don’t expect (5.6) to define a successful numerical
method.

If one desires a rescaled least-change inverse-secant update method, then u s
x/-x is a satisfactory choice of u for Theorems 5.3 and 5.4, according to the remarks
between Theorems 5.2 and 5.3. If one defines the choice rule X for u, w, and y by
X(x, x/)= {(s, w (), y)(s, w (2), y)}, where w (1) and w (2) are given by (5.5) and y is given
by (5.4), then the least-change inverse-secant update of A is

--sY
T

( wsT -[- SW
T yTwss T

A I y)A I-YsS-y) + Ts y (sy)------
(5.7)

(w-Ay)sT +s(w-Ay)T yT(w--Ay)ss T
=A+ Ts y (sTv)2

for (s, w, y)e2(x,x+) and w, W e)+(s, y). The update (5.7)is the BFGS
augmentation-update analogue of the DFP augmentation-update formula (4.4). Note
that if C(x) were 0, then w would be .s and (5.7) would be the usual BFGS update
formula. Theorems 5.3 and 5.4 imply the local q-superlinear convergence of the
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rescaled least-change inverse-secant update method (5.3), with the successive aug-
mentation matrices Ak obtained using the update (5.7) whenever F and C satisfy the
hypotheses of Theorem 5.3.

We feel that (5.7) is of great potential value and that computational testing on the
nonlinear least-squares problem is needed.

Appendix: Local convergence theorems for quasi-Newton methods.
A1. Introduction. Our interest here is in general quasi-Newton or Newton-like

methods:

(AI.1) Xk+l Xk -B-1F(Xk) Xk -KkF(Xk), Bk N,x,, Kk B-
for solving (1.1). It is assumed in the following that the standard hypothesis given in
the introduction to the main body of the paper is in force, although we have no explicit
interest here in a computed part C of F’.

The usual procedure for analyzing the iteration (AI.1) when it reduces to one of
the familiar least-change secant update methods (cf. Broyden-Dennis-Mor6 [7],
Powell [26], Sorensen [30]) is first to establish the local existence and q-linear
convergence of the iteration sequence {Xk } and then to show q-superlinear convergence
by the use of the characterization theorem of Dennis and Mor6 [11]. The technique
used for proving q-linear convergence is generally based on some variant of the
principle of bounded deterioration, which states that while the approximate partial
derivative matrices Bk need not get nearer F’(x,), they should only get worse in a
certain controlled way as the iteration proceeds.

Our intention here is to show how to extend this method of analysis to the case in
which the iteration (AI.1) uses a sequence {Bk} which is taken to have some desirable
property not necessarily shared by F’(x) at any x. A familiar example to illustrate this
case is the nonlinear Jacobi iteration in which Bk diag (F’(Xk)) even though F’(Xk) is
not a diagonal matrix. Certainly, we know for this iteration that no matter how near
x0 is to x ,, we can’t reasonably expect convergence unless there is some diagonal matrix
B, (perhaps B, diag (F’(x,)) for which Bk =-- B, would yield a convergent iteration
(A1.1).

In A2, the bounded-deterioration theorems of Broyden-Dennis-Mor [7] are
generalized to show that if {Bk} or {B} is of bounded deterioration as a sequence of
approximants, to some B, or B, then the iteration (AI.1) has the same local
convergence properties and arbitrarily nearly the same linear rate as would be achieved
by the stationary iteration which uses Bk B,. Then in A3, the characterization of
superlinear convergence given by Dennis and Mor6 11 is generalized to give necessary
and sufficient conditions on {Bk} for a linearly convergent iteration sequence {Xk} to
have the same q-linear rate constant as that of a sequence produced by the stationary
iteration which uses Bk =--B,. In case the convergence of the stationary sequence is
q-superlinear, then the theorems of A3 reduce to those of [11].

In formulating the results of this appendix, our primary purpose has been to
provide the tools necessary for the analysis of least-change secant update methods
carried out in the main body of the paper. However, we feel that the theorems here
are likely to prove useful beyond the present context. In support of this position, we
refer the reader to Dennis and Walker [15], in which the results given here are applied
to the convergence analysis of a computationally convenient modification of the Jacobi
secant method of Ortega and Rheinboldt [22] and Wegge [34] and to the analysis of
the rate of convergence of the general class of Newton iterative methods studied by
Ortega and Rheinboldt [22] and Sherman [29].
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A2. Convergence results. The results of this section are direct generalizations
along the lines mentioned above, of the results of Broyden-Dennis-Mor [7, 3]. We
also use their notion of an updating function here, and any reader who desires more
discussion of this useful abstraction is referred to the original paper.

In our theorems we find it convenient to use two norms. As in the main body of
the paper, it is useful to denote a vector norm by Iv] for v R and the subordinate
matrix operator norm by [Ai for A e ". The notation IIAII for A n stands for
any arbitrary but fixed norm on Rnn which may not be subordinate to a vector norm.
We make strong use of the equivalence of all norms on Nn"; in particular for 1. and
[[" we assume for some/z, r/> 0 and any A , that

IIAII -< IAI-< nllAII.
THEOREM A2.1. Let F satisfy the standard hypothesis and let B, have the

property that BI exists and for some operator norm

II-BF’(x,)l<-r, < 1.

Let U Nn x - 2R"" be defined in a neighborhood N N1 x N2 of (x,, B,) where
N1 c II and N2 contains only nonsingular matrices. Assume that there are nonnegative
constants al and 012 such that for each (x,B)N, and for x+=x-B-1F(x), every
B/ U(x, B) satisfies

IIB/-B,II <- [1 -[-t 10"(X, x+Y]. lIB-B,l[+a2o(x, x+)

for r(x, x+) max {Ix
Under these hypotheses for any r (r,, 1), there exist constants F,r, 8r such that if

[X0--Xh < E and [.B0-Bh < 8r, then an)] iteration sequence {Xk} defined by

Xk+l X -B-1F(xg), Bg+l s U(x, Bk),

k O, 1,. , exists, converges q-linearly to x. with

IXg+l-X.l-<-r.lxg-x,I,

and has the property that {IBI} and {[B1 [} are uniformly bounded.
Proof. Let r (r,, 1) and choose 8, er so small that for fl -> IB211 and 4’ => IF’(x,)l,

one has 2/3r/8 < 1,

/3 e
p

r>-r*+ 1-2/3rt6
(yer+2/3rt08) and (2alS+a2) l_rP=

Now select 8 small enough so that lib-B,II< whenever IB-B.[ < 8r. If necessary
further restrict er, 8r SO that (x,B)sN whenever [B-B,I<-218 and ]x-x,[<er. Let
IBo- B,I < & and [Xo- x,I < er.

It follows from the Banach perturbation lemma [22, p. 45], since IB:[.IBo
B,I<-13niIBo-B,II<I3n8 <2/3,8 < 1, that B exists and that 1.B1[<=/(1-218).
Thus, from standard arguments,

[x-x,[-< IB-dl lF(xo)-F(x,)-F’(x,)(Xo-X,)l + JI-B-dF’(x,)l IXo- x,I
<_- [IB I,,,e f + II B;F’(x,)I + IB;1 BI. IF’(x,)l] IXo-

p --1<=[[ul[(’yer +[B, [.[Bo-B,l.O)+r,]’[Xo-X,[

1-2/3rt6
(yer + 2/3rt80)+ r, [Xo- X,[ <- r[xo- x,[.
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Assume by way of induction that for k 0, 1,..., m-l, [[Bk-B,II<--28 and
[Xk+I--J’I<rIXk--- x,]. Then, I[Bk+l B,I [[Bk B,[[<2alep’pIc--rt + O2EP"Pkry We can
sum both sides from k -0 to m- 1 to obtain

E
p

<28, soIIB,-B,II<=IIBo-B,II+(2al,3 +az) l_rP

and again by the Banach lemma. B exists and IB fl/(1 2fl8). To complete
the induction we proceed as for m 0:

[x+-x,l[[B[ (Ts

1-2Bn6(Ye+2n60)+r* "[x-x,r’lxm-x,.

Note that we have easily that IB{[B/1-2B6 and that IB[2 +IB,I, and
this completes the proof.

Sometimes it is useful to have conditions directly on {B{ } rather than on {B}.
THZOZM A2.2. Let F satisfy the standard hypothesis and let K, be an invertible

matrix with II- K,F’(x,)] r, < 1.
Let U x 2"" be defined in a neighborhood N Na x N2 of (x,, K,),

where N . Assume that there are nonnegative constants 1, a2 such that for each
(x, K) in N, and for x+ x -KF(x), the function U satisfies

ILK+- g,l 1 +(x, x+)311g g, + 2(x, x+)

for each K+ U(x, K). Then for each r (r,, 1) there exist positive constants e, such
that for Ixo-x,l < r and Igo-g,I < , any sequence {xg} defined by

x+a x -KF(x), K+I U(x, K)

k O, 1,..., exists, converges q-linearly to x, with [x+x-x,I r Ix- x,[, and has the
property that {Igl and {IK{ [} are uniformly bounded.

Proof. Let r (r,, 1) and choose e, 6 so that

(2a6+a)
1 r6 and [F’(x,)l’2n6+r,+(lK,[+2W6)refr.

Now select 8 small enough so that ]K K,I < & implies that IlK g, < . f necessary,
further restrict e, 6 so that (x, K) N whenever [K K,] < 2W6 and Ix x,] < e.

Let Xo, Ko be chosen to satisfy ]Xo-x,[ < e and ]Ko-K,I < 8. Then

Ix1 x,[-<_ IKol [F(xo) F(x,) F’(x,)(Xo- x,)l + [I KoF’(x,)l IXo- x,I
_-< [(]K,[ + ]Ko K, 1) /s + 1I K,F’(x,)] + [K, Ko[. Ir’(x,)l]" IXo- x,[
<-[(Ig, + (S)/s + r, + r/8. IF’(x,)l]’ Ixo-x,I
<=rlxo-x,I.

Now assume by way of induction that

IIg-g,ll_-<2 and

for k 0, 1, ., m 1. It follows that

ilg/ K, [Igk g,[I <= 2al8e p_Pkrr q_Ol2Errp_pk

and, again as in Theorem A2.1, by summing from k 0 to m 1, we obtain [[K, K,[[ _<-
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Ilgo-g, + (20lt "+" a2)e/1 rp =< 28. Thus,

IX/l-X,I [[g[, +[z- gF’(x,)[]. Ix
[([K,I + 28)7e f + r, + 28. [F’(x,)13. Ix -x,[

and the induction is complete.
In order to finish the proof we need to derive the bounds for {Ig l) and {IK

These follow readily from the induction relations; in fact we already have
IK,I+IIKk-K,IINIK,[+2nS. Furthermore, II-g,F’(x,)lNr, < 1, implies that

exists and [F’(x,)-l[NlK,[/(1-r,). Thus we have [I--KkF’(x,)I<
r, + 28. [F’(x,)[ N r < 1, and so K exists and [K[N [F’(x,)[/(1 r).

A3. Speed oI convergence. In this section we will present theorems which give
necessary and sucient conditions for the iteration (AI.1) to have the same q-linear

-1F(Xk). Whenrate of convergence as some idealized stationary iteration x+ Xk --B,
this stationary iteration is q-superlinear, our theorems reduce to the Dennis-Mor6
results 11 ].

Some remarks are in order about q-linear convergence and the use of different
norms. Given any vector norm, Ortega and Rheinboldt [22, p. 281] define the linear
q-factor of {Xk} as

0 ifxk=X*, ksomeko,

01{x I=
Ix +l-X,[

k [Xk L- if Xk X,, k ko,

+m otherwise.

For a given norm, the statement that {Xk} converges q-linearly to x, means that
Ql{Xk} < 1, and q-superlinear convergence means that Ql{Xk} 0. Since all norms are
equivalent, the condition that Ql{Xk} 0 is clearly norm-independent. On the other
hand Ql{Xk} < 1 in one norm only ensures that Ql{Xk} < +eo in any other norm.

In this terminology, the following theorems give norm-invariant necessary and
sufficient conditions for any sequence {Xk} generated by (AI.1), which is q-linearly
convergent to x, in some norm, to have

ll{Xk } lim
k-eo

Xk --X[I-B;1F’(x*)] [Xk --X,I
in every norm. With these remarks in mind, perhaps the reader will be patient with the
attention given to norm independence in the statements of the following theorems.

THEOREM A3.1. Suppose that F satisfies the standard hypothesis and that {xk} is
a sequence generated by (AI.1) which converges to x, with Xk X, for all but finitely
many k and that for some norm 1. [1 and some r (0, 1),

(A3.1) Ix+.-X,llr[x-x,ll, k =0, 1, 2,....

If Sk Xk+l--Xk and B, Rnn is any invertible matrix, then the norm-independent
condition

(A3.2) lim
I(B -B,)sl

0,
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holds if and only if the norm-independent condition

(Xk--X,) (Xk+I--X,)(A3 3) lim [I BIF’(x,)] 0,

holds. In particular, if (A3.2) holds in some norm, then for any vector norm l" l,

]X+l-X,] IF, (x-x,(A3.4) Ol{Xk} lim [! B (x,)] <--_

and {xk} converges q-superlinearly to x, if and only if
(x -x,)

(A3.5) lim [I-B,1F’(x,)] O.

Proof. Notice that (A3.2), (A3.3) and (A3.5) hold in every norm if and only if they
hold in some norm. Now

(B B,)s [B, F’(x,)](x x,) B,(x+1 x,) + F’(x,)(xk x,) F(x),

and since an inequality IF’(x)-F’(x,)[1 < alx -x,I can be shown to hold in f for a
constant 3’1, one has

lim IF’(x,)(Xk-x,)-F(xg)]l<_ lim 7lr 0,

where crg =max {[xg-X,]l, IXk+l-X,ll}. It follows that (A3.2) holds if and only if

[EB,- F’(x,)](x x,)-B,(x+- x,)ll
lim 0.
k-oo ISkl

Since.(1-r)lx-x,ll <--Isk[-<_(1 + r)[x-x,[1, one has

and

lIB, F’(x,)](xg x,) B,(xk+1

Ski1

=(l-r[) Ix S;-

[[B, F’(x,)](x x,) B,(x,+1

>
1 [I_B_IF,(x,)] (xk-x,) (x+-x,)

--IB111(1 + r) * I-k --X--i IXk X,I1

Thus (A3.2) holds if and only if (A3.3) holds, and the proof is complete since only
norm-independent "zero" limits have been used.

It is easy to see from Theorem (A3.1) that condition (A3.2) and hence (A3.3) and
(A3.4) follow from lim_,B B,. This is not so easy to see from the following
theorem, because the sequence {y} in condition (A3.6) is unfamiliar. In fact if limk_,
K K,, then {y}= {B,s} will certainly do, since with a 0 and any norm, (A3.6)
holds. We hope these remarks will make the statement of Theorem A3.2 easier to
understand.

THEOREM A3.2. Suppose that the hypotheses of Theorem A3.1 hold. Suppose
further that {llgll} and {llg II} are bounded and that {yk} is a sequence satisfying the



CONVERGENCE OF LEAST-CHANGE SECANT UPDATE METHODS 985

norm-independent condition

(A3.6) [K,yk s <= [s l,
where sk X+l-X, K, is some invertible matrix, and lim_,o a =0. Then the norm-
independent condition

I(g -K,)ykl
(A3.7) lim 0

holds if and only if the norm-independent condition

lim [I-K,F’(x,)] (xg--X,)__(Xk+I--X,) =0,

holds. In particular, if (A3.7) holds in some norm, then for any norm,

Xk+l
lim 1- [I K,F’(x,)]

(Xk X,) <=[I-K,F’(x,)I,

and {Xk} converges q-superlinearly to x, if and only if the norm-independent condition

(x -x,)
lim [I-K,F’(x,)] Ix-x,] =0,

holds.
-1 -1Proof. Set B, K, and B K for k 0, 1, 2,. ., and note that

(B-B,)sk (B,-B)(K,y-s)-B(Kk-K,)y.

It follows that

(A3.8) I(B-B,)sI<IB,_BI
and, since [Bvl >_-(1/IKI) Iv[ for v a,
(A3.9) [K[Isl
Now (A3.6) yields

(A3.10)

and

(A3.11)

](K -K,)y,I_[B,_B IK,y, -sl< I(B -B,)s,l
lyl Is[ Isl

[yl > ]K..,y[> 1 1

[K,I --[K,---- (Is[-[K,y-s[)>=- (1-c)[sl,

and since {[IKII} and {IIBI[} are bounded and lim_ a 0, one sees from (A3.8)
(A3.9), (A3.10) and (A3.11) that (A3.7) holds if and only if

I(Bk -B,)sI
lira 0.

The theorem then follows from Theorem A3.1.
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