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Abstract. We consider the behavior of the GMRES method for solving a linear system Ax = b
when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not
affect the performance of GMRES, depending on the nature of the system and the initial approxi-
mate solution. For singular A, we give conditions under which the GMRES iterates converge safely
to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual
minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical pro-
cedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes
a threat to the performance of GMRES.

Key words. GMRES method, residual minimizing methods, Krylov subspace methods, iterative
linear algebra methods, singular or ill-conditioned linear systems

AMS subject classification. 65F10

PII. S0895479894262339

1. Introduction. The generalized minimal residual (GMRES) method of Saad
and Schultz [16] is widely used for solving a general linear system

Ax = b, A ∈ Rn×n,(1.1)

and its behavior is well understood when A is nonsingular. Our purpose here is to
examine the behavior of GMRES when A is singular or nearly so, i.e., ill conditioned,
and to formulate practically effective ways of recognizing singularity or ill conditioning
when it might significantly affect the performance of the method.

Abstractly, GMRES begins with an initial approximate solution x0 and initial
residual r0 ≡ b−Ax0 and characterizes the kth approximate solution as xk = x0 +zk,
where zk solves

min
z∈Kk

‖b−A(x0 + z)‖2 = min
z∈Kk

‖r0 −Az‖2.(1.2)

Here, Kk is the kth Krylov subspace determined by A and r0, defined by

Kk ≡ span{r0, Ar0, . . . , Ak−1r0}.

There are a number of ways of implementing GMRES, but in each one generates a
basis of Kk and then replaces (1.2) by an unconstrained k-dimensional least-squares
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problem. We shall not be more specific about the basis generating process at this
point, except to assume that it successfully generates a basis if and only if dimKk = k,
where “dim” denotes dimension.

Note that, trivially, dimA(Kk) ≤ dimKk ≤ k for each k. We shall say that
GMRES does not break down at the kth step if dimA(Kk) = k. In this case,
dimA(Kk) = dimKk and, hence, (1.2) has a unique solution. Furthermore, since
dimKk = k, a basis of Kk is successfully generated and the k-dimensional least-
squares problem also has a unique solution. This definition addresses two distinct
kinds of breakdown: rank deficiency of the least-squares problem (1.2), which occurs
when dimA(Kk) < dimKk, and degeneracy of Kk, which occurs when dimKk < k.
The definition is intended to focus on essential breakdown of the method, as opposed
to breakdown associated with any particular implementation or ancillary algorithm
used in it. Note that if dimA(Kk) < k for some k, then Kj = Kk for all j ≥ k and no
further improvement is possible, even if subsequent zj ∈ Kj are well defined in some
way.

For perspective, we recall that Proposition 2, p. 865, of [16] ensures that, if A is
nonsingular, then GMRES does not break down until the solution of (1.1) has been
found. Breakdown in [16, Prop. 2, p. 865] is associated specifically with breakdown
of the Arnoldi process used in the GMRES implementation in [16], but the statement
remains true with our definition (see section 2 below).

In contrast to the nonsingular case, anything may happen when A is singular.
Example 1.1 below shows that GMRES may break down before getting anywhere at
all, even when the system has a solution, or it may determine a least-squares solution1

or the pseudoinverse solution2 without breaking down. Example 1.2 shows that even
if a least-squares solution or the pseudoinverse solution is reached, this may not be
evident from the behavior of GMRES; indeed, GMRES may continue for a number
of additional steps without breakdown (or further progress).

Example 1.1. Suppose that

A =

(
0 1
0 0

)
, b =

(
1
0

)
, x0 =

(
0
0

)
.

Then r0 = (1, 0)T and Ar0 = (0, 0)T , and GMRES breaks down at the first step. Note
that x0 is not a (least-squares) solution. If A is changed to

A =

(
1 1
0 0

)
,

then, for the same b and x0, we have r0 = (1, 0)T = Ar0, and GMRES determines
without breakdown x1 = (1, 0)T , which is a least-squares solution but not the pseudo-
inverse solution. If we also change b to b = (1, 1)T , then, for the same x0, we have
r0 = (1, 1)T and Ar0 = (2, 0)T , and GMRES determines without breakdown x1 =
(1/2, 1/2)T , which is the pseudoinverse solution. Note that dimA(K2) = 1 in these
last two cases, so GMRES breaks down at the step after the least-squares or pseudo-
inverse solution has been found.

Example 1.2. For arbitrary n, let A be the “shift” operator with ones on the first
subdiagonal and zeros elsewhere. Then for b = (1, 0, . . . , 0)T and x0 = (0, . . . , 0)T ,

1 An x ∈ Rn for which ‖b−Ax‖2 is minimal.
2 The least-squares solution x such that ‖x‖2 is minimal.
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x0 itself is the pseudoinverse solution, but GMRES proceeds without breakdown (or
progress) until the nth step, at which point it breaks down with dimA(Kn) = n− 1.

In section 2 below, we explore the theoretical behavior of GMRES whenA is singu-
lar and, in particular, determine circumstances in which the GMRES iterates converge
without breakdown to a least-squares solution or the pseudoinverse solution of (1.1).
We also discuss the conditioning of the least-squares problem (1.2) prior to breakdown,
since this is crucial to the practical performance of the method. The results in sec-
tion 2 apply not only to GMRES but also to any mathematically equivalent method,
i.e., any method that takes steps characterized by the residual minimizing property
(1.2). (See [8, sect. 2.4] for a discussion of mathematically equivalent methods.) Thus
in section 2, one can think of GMRES as a generic minimal residual method that
characterizes corrections by (1.2). In section 3, we discuss further how singularity
or ill conditioning can appear in GMRES and affect its practical performance. We
outline an efficient and reliable way of detecting singularity or ill conditioning when
it threatens to cause breakdown or otherwise degrade the performance of the method.
In section 4, we discuss several illustrative numerical experiments.

Others have considered GMRES and related methods on singular or ill-conditioned
systems. It is noted in [3] and [15] that GMRES can be used to solve singular ho-
mogeneous systems that arise in Markov chain modeling. In [9], conditions are given
for the convergence of general Krylov subspace methods on singular systems, and
particular results are derived for the QMR [10] and TFQMR [7] methods (see section
2 below), with applications to Markov chain modeling. Deflation-like modifications
of GMRES based on truncated singular value decomposition solutions have recently
been considered in [12]; see also [13] and the references in [12] and [13] for more on
deflation techniques for nearly singular systems. In [14], extensions of GMRES are
considered in which Krylov subspaces are augmented with approximate eigenvectors
generated during previous iterations. These extensions appear to be most effective
when there are a few relatively small eigenvalues.

In the following, we denote the null space and range of A by N (A) and R(A),
respectively, and say that (1.1) is consistent if b ∈ R(A). We set rk ≡ b − Axk for
each k and denote the restriction of A to a subspace S ⊆ Rn by A|S . As a convention,
we always regard x0 as determined without breakdown at the “0th” step and define
K0 ≡ {0}. Also, we assume that GMRES terminates immediately upon breakdown.

2. Theoretical discussion. Although our interest is primarily in (1.1) when A
is singular, the results in this section also apply, as appropriate, whenA is nonsingular.
The questions of interest are the following:

• Will GMRES determine a least-squares solution without breakdown?
• When has a least-squares solution been reached by GMRES?
• When is a least-squares solution determined by GMRES the pseudoinverse

solution?
• How ill conditioned can the GMRES least-squares problem (1.2) become?

We begin with several general results.
Lemma 2.1. Apply GMRES to (1.1) and suppose that dimKk = k for some

k ≥ 0. Then exactly one of the following holds:
(i) dimA(Kk) = k − 1 and A(x0 + z) 6= b for every z ∈ Kk;
(ii) dimA(Kk) = k, dimKk+1 = k, xk is uniquely defined, and Axk = b;
(iii) dimA(Kk) = k, dimKk+1 = k + 1, xk is uniquely defined, and Axk 6= b.
Proof. First, note that if dimKk = k and k > 0, then dimA(Kk−1) = k − 1.

Indeed, in this case r0, Ar0, . . . , A
k−1r0 constitute a basis of Kk and, therefore,
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Ar0, . . . , A
k−1r0 constitute a basis of A(Kk−1). With this observation and the fact

that A(Kk−1) ⊆ A(Kk) for k > 0, it is clear that the assumption dimKk = k implies
k − 1 ≤ dimA(Kk) ≤ k for all k ≥ 0. Note also that r0 6∈ A(Kk−1) if k > 0.

If dimA(Kk) = k − 1, then conclusions (ii) and (iii) cannot hold. Furthermore,
k > 0 and A(Kk−1) = A(Kk) in this case, and, since r0 6∈ A(Kk−1), it follows that
r0 6∈ A(Kk). Then A(x0 + z) 6= b for every z ∈ Kk, and (only) conclusion (i) holds.

Suppose that dimA(Kk) = k. Then xk is uniquely defined; furthermore, since
A(Kk) ⊆ Kk+1, we have k = dimA(Kk) ≤ dimKk+1 ≤ k + 1. If dimKk+1 = k,
then we must have A(Kk) = Kk+1 and, hence, r0 ∈ A(Kk). It follows from (1.2) that
rk = 0 and Axk = b; thus (only) conclusion (ii) holds. If dimKk+1 = k + 1, then
r0 6∈ A(Kk), rk 6= 0, Axk 6= b, and (only) conclusion (iii) holds.

This lemma implies the following result.
Theorem 2.2. Apply GMRES to (1.1). Then, at some step, either
(a) GMRES breaks down through rank deficiency of the least-squares problem

(1.2) without determining a solution or
(b) GMRES determines a solution without breakdown and then breaks down at

the next step through degeneracy of the Krylov subspace.
Proof. We have dimK0 = 0. Assume that for some k ≥ 0 GMRES has proceeded

to the kth step with dimKk = k. Then exactly one of the three conclusions of Lemma
2.1 must hold. If conclusion (i) holds, then we have (a) above. If conclusion (ii) holds,
then we have (b). If conclusion (iii) holds, then Axk 6= b and the iteration continues
to the next step. The theorem follows by induction.

The alternatives of this theorem give useful insights into the eventual outcome of
applying GMRES to (1.1). For example, if (1.1) is not consistent, then breakdown
through rank deficiency of (1.2) will eventually occur; in practice, this may be preceded
by dangerous ill conditioning, as discussed further below. Conversely, breakdown
through degeneracy of the Krylov subspace occurs if and only if (1.1) is consistent
and the solution has been found. Also, these results imply the result in [16, Prop.
2, p. 865] cited earlier: if A is nonsingular, then GMRES does not break down
until the solution of (1.1) has been found. Indeed, if A is nonsingular, then GMRES
cannot break down through rank deficiency of (1.2), and the second alternative must
hold. However, the reader is cautioned to make inferences carefully; e.g., Example 1.1
above shows that there can be breakdown through rank deficiency in the consistent
case before a solution is found.

The next result characterizes circumstances in which a least-squares solution has
been reached.

Lemma 2.3. At the kth step, GMRES determines a least-squares solution of (1.1)
without breakdown if and only if

dimAT (Kk+1) = dimA(Kk) = k.(2.1)

Proof. By definition, GMRES does not break down at the kth step if and only if
dimA(Kk) = k. Thus we need only show that xk is a least-squares solution of (1.1)
if and only if dimAT (Kk+1) = dimA(Kk).

From (1.2), we have that xk is a least-squares solution of (1.1) if and only if it is
possible to reach a least-squares solution of (1.1) through some correction in Kk, i.e.,
if and only if there is some z ∈ Kk such that

0 = AT [b−A(x0 + z)] = AT (r0 −Az).(2.2)

But (2.2) holds for some z ∈ Kk if and only if AT r0 ∈ ATA(Kk), which is equivalent
to AT (Kk+1) = ATA(Kk). To complete the proof, we note that dimATA(Kk) =
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dimA(Kk). Indeed, we clearly have dimATA(Kk) ≤ dimA(Kk). If dimATA(Kk) <
dimA(Kk), then there is a w ∈ Kk such that Aw 6= 0 and ATAw = 0. But then
0 = wTATAw = ‖Aw‖22, which is a contradiction.

With Lemma 2.1, one can easily extend Lemma 2.3 to conclude additionally that
if (2.1) holds, then (1.1) is consistent if and only if dimKk+1 = k; i.e., GMRES breaks
down at step k + 1 through degeneracy of the Krylov subspace.

We use Lemma 2.3 to characterize the property of A that yields the most satis-
factory answers to the questions posed at the beginning of this section. This property
is N (A) = N (AT ), equivalently, N (A) = R(A)⊥, which holds when A is normal, e.g.,
when it is symmetric or skew symmetric. It also clearly holds when A is nonsingular.
In general, this property holds if and only if N (A)⊥ is an invariant subspace of A.
Also, it holds only if all eigenvectors of A associated with nonzero eigenvalues are
orthogonal to N (A). Note that it does not hold for the matrices of Example 1.1;
indeed, it holds for A ∈ R2×2 if and only if A is either nonsingular or symmetric.
Neither does it hold for the “shift” operator of Example 1.2.

Theorem 2.4. GMRES determines a least-squares solution of (1.1) without
breakdown for all b and x0 if and only if N (A) = N (AT ). If N (A) = N (AT ) and a
least-squares solution is reached at some step, then GMRES breaks down at the next
step, with breakdown through degeneracy of the Krylov subspace if (1.1) is consistent
and through rank deficiency of the least-squares problem (1.2) otherwise. Furthermore,
if (1.1) is consistent and x0 ∈ R(A), then the solution reached is the pseudoinverse
solution.

Proof. First, suppose that N (A) 6= N (AT ). One can choose b and x0 such that
r0 ∈ N (A) and AT r0 6= 0. Then x0 is not a least-squares solution. Furthermore,
dimA(K1) = 0, so GMRES breaks down at the first step before reaching a least-
squares solution.

Now assume N (A) = N (AT ). Then for each k, we have dimAT (Kk+1) =
dimA(Kk+1), and (2.1) becomes

dimA(Kk+1) = dimA(Kk) = k.

This condition must hold for some k, 0 ≤ k ≤ n, and it follows from Lemma 2.3
that GMRES determines a least-squares solution xk without breakdown at the kth
step. Furthermore, since dimA(Kk+1) = k, GMRES breaks down at step k + 1. One
concludes from Theorem 2.2 that breakdown is through degeneracy of the Krylov
subspace if (1.1) is consistent and through rank deficiency of the least-squares problem
(1.2) otherwise. If (1.1) is consistent, then xk is a solution and, furthermore, Kk ⊆
R(A). If in addition x0 ∈ R(A), then xk = x0 + zk ∈ x0 + Kk ⊆ R(A) = N (A)⊥.
Since a (least-squares) solution of (1.1) is the pseudoinverse solution if and only if it
lies in N (A)⊥, it follows that xk is the pseudoinverse solution.

If it is known that N (A) = N (AT ), then Theorem 2.4 provides theoretical assur-
ance not only that GMRES will determine a least-squares solution of (1.1) without
breakdown but also that reaching it will be indicated by breakdown at the next step.
If (1.1) is consistent as well, then choosing x0 ∈ R(A), e.g., x0 = 0, will yield the
pseudoinverse solution without breakdown, and reaching it will be indicated by zero
residual norm.

If N (A) = N (AT ) and (1.1) is consistent, then the least-squares problem (1.2)
will remain as well conditioned as the nature of A will allow until a solution of (1.1)
is reached. Indeed, if we denote

Ak ≡ A|Kk ,
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then the appropriate condition number for (1.2) is κ2(Ak), which satisfies

κ2(Ak) ≡
max

z∈Kk, z 6=0
‖Az‖2

/
‖z‖2

min
z∈Kk, z 6=0

‖Az‖2
/
‖z‖2

≤
max

z∈R(A), z 6=0
‖Az‖2

/
‖z‖2

min
z∈R(A), z 6=0

‖Az‖2
/
‖z‖2

≡ κ2(A|R(A))(2.3)

since Kk ⊆ R(A) in the consistent case. Note that, since R(A) = N (AT )⊥ = N (A)⊥,
κ2(A|R(A)) is just the ratio of the largest singular value of A to the smallest positive
one. Also, recall from above that, in the consistent case, if a solution is reached at
some step, then breakdown of GMRES at the next step occurs because of degeneracy
of the Krylov subspace and not because of rank deficiency of the least-squares problem
(1.2). These reassuring results are to be expected, for if N (A) = N (AT ) and (1.1) is
consistent, then everything reduces to the nonsingular case on R(A) = N (A)⊥.

If N (A) = N (AT ) but (1.1) is not consistent, then, despite the theoretical guar-
antee of Theorem 2.4 that GMRES will not break down, the least-squares problem
(1.2) may necessarily become dangerously ill conditioned before a least-squares solu-
tion of (1.1) is reached, regardless of the conditioning of A|R(A). This is shown by
Theorem 2.5 below. It is, perhaps, not surprising, because if a least-squares solu-
tion is reached at some step, then, in the inconsistent case, breakdown at the next
step occurs because of rank deficiency of the least-squares problem (1.2), rather than
degeneracy of the Krylov subspace.

Theorem 2.5. Suppose that N (A) = N (AT ), and denote the least-squares resid-
ual for (1.1) by r∗. If rk−1 6= r∗ for some k, then

κ2(Ak) ≥ ‖Ak‖2
‖Āk‖2 ·

‖rk−1‖2√
‖rk−1‖22 − ‖r∗‖22

,(2.4)

where Ak ≡ A|Kk and Āk ≡ A|Kk+span {r∗}.
Proof. Note that r∗ ∈ R(A)⊥ = N (A) and rk−1 − r∗ ∈ R(A) = N (A)⊥. Then,

since rk−1 − r∗ ∈ Kk + span {r∗}, we have

‖Ark−1‖2 = ‖A(rk−1 − r∗ + r∗)‖2 = ‖A(rk−1 − r∗)‖2
≤ ‖Āk‖2 · ‖rk−1 − r∗‖2 = ‖Āk‖2 ·

√
‖rk−1‖22 − ‖r∗‖22,

whence

‖Ark−1‖2
‖rk−1‖2 ≤ ‖Āk‖2 ·

√
‖rk−1‖22 − ‖r∗‖22
‖rk−1‖2 .(2.5)

Since rk−1 ∈ Kk, (2.4) follows from (2.5) and the definition of κ2(Ak) (see (2.3)).
If (1.1) is consistent, then r∗ = 0 and Āk = Ak. It follows that (2.4) is just

the trivial bound κ2(Ak) ≥ 1 in this case. In general, we have 1 ≥ ‖Ak‖2/‖Āk‖2 ≥
‖Ak‖2/‖A‖2, and (2.4) yields

κ2(Ak) ≥ ‖Ak‖2
‖A‖2 · ‖rk−1‖2√

‖rk−1‖22 − ‖r∗‖22
,(2.6)

which may be more easily applied in the inconsistent case.
If A is singular and N (A) = N (AT ), then it is evident from (2.6) that, for an

unfortunate choice of b and x0, the least-squares problem (1.2) will become so ill
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conditioned before breakdown that little or no accuracy can be expected in a solution
computed in finite-precision arithmetic. Indeed, in view of (2.6), one would expect
that, in many cases, the residual for the computed solution will first decrease in norm
for a number of iterations and then lose accuracy and perhaps increase as a least-
squares solution is approached and accuracy is degraded by increasing ill conditioning.
(This is seen in Experiment 4.2 below.) In such cases, it would clearly be desirable
to terminate the iterations when approximately optimal accuracy has been reached.
Note that the usual termination criteria based on the size of the residual norm are
unlikely to be of any use in this case; some alternative criterion is needed.

We show how (2.6) can be used to derive a heuristic guideline for terminating the
iterations at an approximately optimal point in finite-precision arithmetic. We make
two assumptions that are reasonable but by no means the only possible assumptions;
our main purpose is to demonstrate the method of derivation. (The guideline result-
ing from these assumptions is borne out well in Experiment 4.2 below.) The first
assumption is that κ2(Ak) is about as small as possible, given the lower bound (2.6),
i.e., that

κ2(Ak) ≈ ‖Ak‖2
‖A‖2 · ‖rk−1‖2√

‖rk−1‖22 − ‖r∗‖22
.

The second assumption is that the computed value of rk, denoted by r̂k, satisfies

‖r̂k − rk‖2
‖r0‖2 ≈ uκ2(Ak),

where u is unit rounding error. A rigorous worst-case bound on ‖r̂k − rk‖2/‖r0‖2
would require uκ2(Ak) multiplied by a polynomial of low degree in n and k (see [11,
Chap. 5]), but this is not necessary here. With these assumptions, we have

‖r̂k − r∗‖2
‖r0‖2 ≤ ‖r̂k − rk‖2

‖r0‖2 +
‖rk − r∗‖2
‖r0‖2

≈ uκ2(Ak) +

√
‖rk‖22 − ‖r∗‖22
‖r0‖2

≤ uκ2(Ak) +

√
‖rk−1‖22 − ‖r∗‖22

‖r0‖2

≈ uκ2(Ak) +
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

κ2(Ak)

= B(κ2(Ak)),

(2.7)

where

B(κ) ≡ uκ+
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

κ
.

It is easily seen that B is minimized when

κ = κmin ≡
√
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

u
,(2.8)
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which suggests a heuristic guideline as follows: If the iterations are terminated with
κ2(Ak) ≈ κmin given by (2.8), then (2.7) gives an approximate minimal bound

‖r̂k − r∗‖2
‖r0‖2 ≤ B(κmin) = 2

√
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · u .(2.9)

This can be simplified for practical purposes by assuming that ‖Ak‖2/‖A‖2 ≈ 1 and
‖rk−1‖2 ≈ ‖r̂k−1‖2. We discuss how to monitor κ2(Ak) efficiently in practice in section
3.

If N (A) 6= N (AT ), then it follows from Theorem 2.4 that, for some b and x0,
GMRES will break down before determining a least-squares solution of (1.1). How-
ever, there is an important special case in which GMRES still reliably determines a
least-squares solution, viz., that in which N (A)∩R(A) = {0} and (1.1) are consistent.
This occurs, e.g., in Experiment 4.3 below.

Theorem 2.6. Suppose that N (A) ∩ R(A) = {0}. If (1.1) is consistent, then
GMRES determines a solution without breakdown at some step and breaks down at
the next step through degeneracy of the Krylov subspace.

Proof. Since (1.1) is consistent, r0 ∈ R(A) and Kk ⊆ R(A) for each k. Since
N (A) ∩ R(A) = {0}, this implies that dimA(Kk) = dimKk for each k. Then there
cannot be breakdown through rank deficiency of the least-squares problem (1.2), and
the theorem follows from Theorem 2.2.

Conditions that are essentially equivalent to those in Theorem 2.6 appear in
[9]. The index of A, denoted index(A), is defined to be the smallest integer q such
that Aq and Aq+1 have the same rank. It is easily seen that index(A) = 1 if and
only if A is singular and N (A) ∩ R(A) = {0}. For a consistent system (1.1) with
index(A) = 1, general conditions are given in [9] under which a Krylov subspace
method is convergent. It is further shown in [9] that the QMR and TFQMR methods
are convergent for such a system.

IfN (A)∩R(A) = {0} and (1.1) is consistent, then κ2(Ak) satisfies (2.3). However,
note that if N (A) 6= N (AT ), then minz∈R(A), z 6=0 ‖Az‖2

/‖z‖2 may be smaller than
the smallest positive singular value of A, and so κ2(A|R(A)) may be larger than the
ratio of the largest singular value of A to the smallest positive one. Still, the least-
squares problem (1.2) is as well conditioned as the nature of A will allow and cannot
become arbitrarily ill conditioned before a solution is determined by GMRES through
an unfortunate choice of b and x0. This is not surprising, since GMRES breakdown
occurs because of degeneracy of the Krylov subspace, rather than rank deficiency of
the least-squares problem (1.2). As when (1.1) is consistent and N (A) = N (AT ),
the setting reduces to the nonsingular case on R(A), although now R(A) may not
be N (A)⊥. When (1.1) is not consistent, breakdown must occur because of rank
deficiency of (1.2), and in general we cannot expect (1.2) to remain well conditioned,
whether or not a least-squares solution is reached.

We conclude this section by noting that, in some applications, one can easily
project b onto R(A). For example, in each of Experiments 4.2 and 4.3 below, N (AT )
is one dimensional, and it is not difficult to determine a unit vector inN (AT ) and then
to project b ontoN (AT )⊥ = R(A). In such an application, if GMRES can be expected
to behave well on a consistent system, e.g., if N (A) = N (AT ) or N (A)∩R(A) = {0},
then it is clearly desirable to project b onto R(A) before starting GMRES. By doing
this, one can determine a least-squares solution for the original b without risking the
dangerous ill conditioning that may precede GMRES breakdown with rank deficiency
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of (1.2). In addition, if N (A) = N (AT ), then one can determine the pseudoinverse
solution by taking x0 ∈ R(A), e.g., x0 = 0.

3. Practical handling of (near) singularity. In section 2, we considered the
conditioning of the least-squares problem (1.2) and how it might be affected by A
and perhaps b and x0. In this section, we look further into how singularity or ill
conditioning can arise in GMRES and discuss how conditioning can be monitored
efficiently in practice.

Recall from section 1 that, prior to breakdown, an implementation of GMRES
generates a basis of Kk for each k. We denote the matrix having the basis vectors
as columns by Bk ∈ Rn×k. The kth GMRES correction zk, which is the solution of
(1.2), is not computed for each k, but when desired, it is determined by first finding
yk that solves

min
y∈Rk

‖r0 −ABky‖2(3.1)

and then forming zk = Bkyk. Thus ill conditioning or singularity is a concern in
GMRES only if it becomes manifested in ill conditioning or rank deficiency of ABk

or Bk.
Sound GMRES implementations are designed so that, as much as possible, each

Bk is well conditioned regardless of the conditioning of A. For example, the standard
implementation of [16] and Householder variants in [18] determine ideally conditioned
Bk such that BT

k Bk = Ik (in exact arithmetic). Other implementations in [2] and [19]
generate Bk that are usually well conditioned, if not ideally conditioned. In any event,
in well-constructed GMRES implementations, the conditioning of Bk does not suffer
directly from ill conditioning of A; furthermore, any ill conditioning of Bk seems likely
to be reflected in ill conditioning of ABk. Therefore, we focus on the conditioning of
ABk here.

In practice, a reasonable course is to monitor the conditioning of ABk and ter-
minate the GMRES iterations if excessive ill conditioning or rank deficiency appears.
Typically, the solution of (3.1) is computed using a factorization ABk = QkRk, where
Qk ∈ Rn×k has orthonormal columns and Rk ∈ Rk×k is upper triangular. It is
reasonable to assume that this factorization is determined using one or more sta-
ble factorization techniques. For example, the implementations of [16] and [18] first
use modified Gram–Schmidt or, respectively, Householder transformations to produce
ABk = Bk+1Hk, where Hk ∈ R(k+1)×k is upper Hessenberg, and then use plane ro-
tations J1, . . . , Jk to obtain AkBk = QkRk with Qk = Bk+1J

T
1 . . . JTk (Ik, 0)T and

Rk = (Ik, 0)Jk . . . J1Hk. In general, each Qk may be only implicitly specified, as
in the implementations of [16] and [18], but each Rk is always produced explicitly.
Then, since the conditioning of ABk is determined by that of Rk, it suffices to moni-
tor the conditioning of Rk and terminate the iterations if excessive ill conditioning or
singularity appears.

In the important case in which BT
k Bk = Ik, as in the implementations of [16] and

[18], we have κ2(Rk) = κ2(ABk) = κ2(Ak) ≤ κ2(A), where Ak = A|Kk as above. This
inequality need not be strict; for example, if A is nonsingular and GMRES proceeds
for n steps without breakdown, then An = A and κ2(Rn) = κ2(An) = κ2(A). Thus
Rk can become fully as ill conditioned as A. However, if r0 lies in an invariant proper
subspace, then κ2(Rk) may remain much less than κ2(A). The following example
illustrates extreme behavior.

Example 3.1. Assume that BT
k Bk = Ik for each k. Suppose that we have σ1 ≥
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· · · ≥ σn−1 = σn > 0, and define

A ≡



0 · · · 0 σn−1 0

σ1
. . .

... 0 0

0
. . . 0

...
...

...
. . . σn−2 0 0

0 · · · 0 0 σn

 .

Clearly, σ1, . . . , σn are the singular values of A, and κ2(A) = σ1/σn. For i = 1, . . . ,
n, let ei denote the ith column of In. If r0 = e1, then we have Kk = span{e1, . . . , ek}
and κ2(Rk) = κ2(Ak) = σ1/σk for k = 1, . . . , n − 1. In particular, the solution is
reached at the (n− 1)st step with κ2(Rn−1) = σ1/σn−1 = σ1/σn = κ2(A). However,
if r0 = en, then the solution is reached at the first step with κ2(R1) = σn/σn = 1.

A very efficient means of monitoring the conditioning of Rk is provided by incre-
mental condition estimation (ICE) [4], [5]. This determines estimates of the largest
and smallest singular values of each Rk in O(k) arithmetic operations, given estimates
of the largest and smallest singular values of Rk−1. Thus one can begin with k = 1
and use ICE to estimate incrementally the condition number of each successive Rk

as k increases. Over a cycle of m GMRES steps, the total cost of estimating the
condition number of each Rk, 1 ≤ k ≤ m, is O(m2) arithmetic operations, which is
negligible in most applications. A well-developed Fortran implementation of ICE is
provided by auxiliary routine xLAIC1 of LAPACK [1], where x = S for single precision
or x = D for double precision. This implementation was used in all of the numerical
experiments reported in section 4.

4. Numerical experiments. In this section, we discuss several numerical ex-
periments that illustrate the theoretical and practical points brought out above. A
standard modified Gram–Schmidt GMRES implementation, as originally outlined in
[16], was used in all experiments. Recall that with this implementation, the basis ma-
trix Bk is ideally conditioned, with BT

k Bk = Ik. This implementation was augmented
with routine DLAIC1 of LAPACK for monitoring conditioning of the triangular fac-
tor of ABk as discussed above. In all experiments, we took the zero vector to be the
initial approximate solution and specified a stopping tolerance tol so that the GMRES
iterations would terminate when ‖rk‖2 ≤ tol‖b‖2. Of course, there was no expectation
of stopping on the basis of such a test in cases in which (1.1) was not consistent; in
these cases, termination was based on other criteria noted below. All computing was
done in double precision Fortran on Sun Microsystems Sparc architectures.

Experiment 4.1. This experiment, which involves a contrived problem, points out
the danger of not monitoring the conditioning of ABk and terminating when excessive
ill conditioning appears. The matrix A is from the example in [6, sect. 6],

A =


0 1

−1
. . .

. . .
. . .

. . . 1
−1 0

 .

We assume that n is odd, in which case A is singular with

N (A) = span{(1, 0, 1, 0, . . . , 0, 1)T }.
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Since A is skew symmetric, the conclusions of Theorem 2.4 hold, at least in exact
arithmetic, and GMRES should find a least-squares solution of (1.1) without break-
down and then exhibit breakdown at the next step. In floating point arithmetic,
however, GMRES produced misleading results.

We took n = 49, tol = 10−6 and first ran GMRES with

b = (1/
√

2, 0, . . . , 0,−1/
√

2)T ,

for which (1.1) is consistent. GMRES safely terminated with a computed residual
norm of 1.57× 10−16 when the pseudoinverse solution was reached at the 24th step;
the largest observed condition number estimate was 12.7. We then ran GMRES
with b = (1/

√
2, 0, . . . , 0, 1/

√
2)T , for which (1.1) is not consistent; the least-squares

residual norm is
√

2/5. In exact arithmetic, a least-squares solution would have been
obtained at the 24th step, and this would have been indicated by breakdown at the
25th step in the form of rank deficiency in the least-squares problems (1.2) and (3.1).
Because of rounding error, exact breakdown did not occur, nor were any arithmetic
exceptions such as overflow observed. However, the condition number estimate went
from 12.7 at the 24th step to 1.47 × 1016 and 1.79 × 1030 at the 25th and 26th
steps, respectively. We allowed GMRES to continue, restarting every 49 steps, until
it declared successful termination at the 185th step with a computed residual norm of
6.68×10−7. Of course, this was the value of the residual norm maintained recursively
by GMRES and not the true residual norm, which was 9.14× 1012 on termination!

We also note that the GMRES implementation used in these experiments did not
re-evaluate the residual and its norm directly at each restart; i.e., it did not multiply
the current approximate solution by A and subtract the result from b. Instead, it
updated the residual at each restart by forming a certain linear combination of the
Arnoldi basis vectors generated in the previous cycle of steps. Such updating saves
an A-product at each restart and is usually a safe thing to do, unless extreme residual
norm reduction is desired. In this example, however, it was not safe, and re-evaluating
the residual directly at restarts would have indicated that GMRES had gone astray.

The next two experiments involve discretizations of boundary value problems for
the partial differential equation

∆u+ d
∂u

∂x1
= f(x), x = (x1, x2) ∈ Ω ≡ [0, 1]× [0, 1],(4.1)

where d is a constant and f is a given function. In the experiments reported here,
we discretized (4.1) with the usual second-order centered differences on a 100 × 100
mesh of equally spaced discretization points, so that the resulting linear systems were
of dimension 10, 000. We took d = 10 and preconditioned the discretized problems
on the right with a fast Poisson solver from FISHPACK [17]. This preconditioner
is very effective for this fairly small value of d. We took tol = 10−10 in order to
see how GMRES behaved with a tight stopping tolerance. We also stopped the
iterations when the condition number estimate became greater than 1/(50u) ≈ 1014.
In the trials outlined below, there was no need to restart GMRES; in each case,
there was termination because of either sufficient residual norm reduction or excessive
ill conditioning before the maximum allowable number of iterations (50) had been
reached.

In each of these two experiments, it is possible to give a simple characterization
of N (AT ). In each, then, we first consider a b for which (1.1) is not consistent and
then project it onto R(A) to obtain a consistent system that is effectively solved by
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Table 4.1

GMRES iterations 9–19 on problem (4.1) with periodic boundary conditions.

Iteration GMRES recursive Computed Condition no.
no. residual norm residual norm estimate

9 99.000000080681 99.000000080680 7.80× 103

10 99.000000005202 99.000000005201 4.17× 104

11 99.000000000146 99.000000000145 1.65× 105

12 99.000000000008 99.000000000007 9.97× 105

13 99.000000000002 99.000000000000 4.71× 106

14 99.000000000002 99.000000000000 3.20× 107

15 99.000000000001 99.000000000001 1.76× 108

16 98.999999999935 99.000000000068 1.33× 109

17 98.999999997323 99.000000002679 8.41× 109

18 98.999999811806 99.000000188196 7.05× 1010

19 98.999990468226 99.000009534599 5.02× 1011

GMRES. The result is both an approximate solution of the consistent system and an
approximate least-squares solution of the original inconsistent system.

Experiment 4.2. In this experiment, we imposed periodic boundary conditions:
u(x1, 0) = u(x1, 1) and u(0, x2) = u(1, x2) for 0 ≤ x1, x2 ≤ 1. The matrix A is given
as follows:

A =
1

h2


Tm Im Im

Im
. . .

. . .
. . .

. . . Im
Im Im Tm

 , Tm =


−4 α+ α−

α−
. . .

. . .
. . .

. . . α+

α+ α− −4

 ∈ Rm×m,

and m =
√
n = 100, h = 1/m, and α± = 1 ± dh/2. It is easy to verify that A is

normal and that

N (A) = N (AT ) = span{(1, 1, . . . , 1)T };(4.2)

then Theorems 2.4 and 2.5 are applicable.
We first took b to be a discretization of f(x) = x1 + x2. For this b, (1.1) is

not consistent; the least-squares residual norm is 99. GMRES began with an initial
residual norm of 107.1 and terminated after 21 iterations with a condition number
estimate greater than the termination value 1/(50u) ≈ 1014. A subset of the itera-
tions is shown in Table 4.1, which gives to 14-digit accuracy both the residual norm
values maintained recursively by GMRES and the directly computed residual norms,
as well as the condition number estimates. Note that the two norm values agree well
and decrease toward the least-squares residual norm through iteration 15, but then
the computed norms begin to increase while the recursive norm values continue erro-
neously to decrease below the least-squares residual norm. Since u ≈ 2.2×10−16 here,
the heuristic guideline developed in section 2 would have called for termination when
the condition number estimate was about 108. Table 4.1 shows that this would have
been a very good point at which to terminate: the computed residual norm would
have been near its minimum value, and the recursive residual norm value would have
still been accurate. Note the pessimism of the bound (2.9) in this case.

Using the characterization of N (AT ) in (4.2), we next projected the above b onto
R(A) to obtain a consistent system. The initial residual norm was 40.82. After 17
iterations, GMRES successfully met the termination test based on tol = 10−10 and
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terminated with a residual norm of 2.441× 10−9. No major inaccuracy was observed;
the recursive residual norm value agreed with the directly computed residual norm to
five significant digits. Since N (A) = N (AT ) and the initial guess was zero, the final
iterate was an approximate pseudoinverse solution of not only the consistent system
but also the inconsistent system with the original b.

Experiment 4.3. In this experiment, we imposed Neumann boundary conditions:
∂u(x)/∂ν = 0 for x ∈ ∂Ω. The matrix A is now given by

A =
1

h2


Tm 2Im
Im Tm Im

. . .
. . .

. . .

Im Tm Im
2Im Tm

 , Tm =


−4 2
α− −4 α+

. . .
. . .

. . .

α− −4 α+

2 −4

 ∈ Rm×m,

and m, h, and α± are as in Experiment 4.2. We have N (A) = span{(1, 1, · · · , 1)T } as
before, but now N (AT ) 6= N (A). Indeed, we determine N (AT ) as follows: Set

Dm ≡ diag (1, 2/α−, 2α+/α
2
−, . . . , 2α

m−3
+ /αm−2

− , αm−2
+ /αm−2

− ) ∈ Rm×m,

and define a block-diagonal matrix D = diag (Dm, 2Dm, . . . , 2Dm, Dm) ∈ Rn×n.
Then one can verify that DA is symmetric, and it therefore follows that N (AT ) =
span{D(1, 1, . . . , 1)T }. With this characterization of N (AT ), one sees that N (A) ∩
R(A) = {0}; then Theorem 2.6 applies when (1.1) is consistent.

The procedures and observations in this experiment were much like those in Ex-
periment 4.2. We first took b to be a discretization of f(x) = x1+x2+sin 10x1 cos 10x2+
e10x1x2 . This gave somewhat more dramatic results than the choice of f in Experi-
ment 4.2. For this b, (1.1) is not consistent; the least-squares residual is 5.302× 104.
GMRES began with an initial residual norm of 1.232 × 105 and terminated after
30 iterations with a condition number estimate greater than 1/(50u) ≈ 1014. The
final computed residual norm was 6.305 × 104, which suggests that the GMRES it-
erates were not converging to a least-squares solution (at least not in any practical
sense, given the very large condition number). We next used the characterization
N (AT ) = span{D(1, 1, . . . , 1)T } to project this b onto R(A) and to obtain a consis-
tent system. The initial residual norm was 1.112× 105. After 23 iterations, GMRES
successfully met the termination test based on tol = 10−10 and terminated with a
residual norm of 8.716 × 10−6. No major inaccuracy was observed; the recursive
residual norm agreed with the directly computed residual norm to three significant
digits. In this case, the final iterate was not a pseudoinverse solution of either the
consistent system or the inconsistent system with the original b.

5. Summary discussion. We have addressed the performance of GMRES on
a linear system Ax = b when A is singular or ill conditioned. Theoretical results
are given that are of interest primarily in the singular case; these hold not only for
GMRES but also for any mathematically equivalent method. In general, at some
step, GMRES will either (a) break down through rank deficiency of the GMRES
least-squares problem without determining a solution or (b) determine a solution
without breakdown and then break down at the next step through degeneracy of the
Krylov subspace.

More extensive results hold when N (A) = N (AT ). This condition is necessary
and sufficient for GMRES to determine a least-squares solution without breakdown
for all b and x0. If N (A) = N (AT ) and the system is consistent, then the condition
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number of the GMRES least-squares problem remains bounded by κ2(A|R(A)), which,
in this case, is the ratio of the largest singular value of A to the smallest positive one.
If x0 ∈ R(A) as well, then the solution determined by GMRES is the pseudoinverse
solution. If N (A) = N (AT ) and the system is not consistent, then, for some b and x0,
the GMRES least-squares problem will necessarily become dangerously ill conditioned
before a least-squares solution is reached, despite the theoretical guarantee of no
breakdown. However, one may be able to use the condition number of the GMRES
least-squares problem to determine when to terminate with nearly the best obtainable
accuracy.

If N (A) ∩ R(A) = {0} and the system is consistent, then GMRES will produce
a solution without breakdown, even if N (A) 6= N (AT ). In this case, the condition
number of the GMRES least-squares problem again remains bounded by κ2(A|R(A)),
but this may be larger than the ratio of the largest singular value of A to the smallest
positive one. Still, this condition number cannot become arbitrarily large through an
unfortunate choice of b and x0.

In some applications in which the system is not consistent, it may be possible
to project b onto R(A). If GMRES can be expected to solve consistent systems
reliably, e.g., if N (A) = N (AT ) or N (A) ∩ R(A) = {0}, then applying GMRES to
the consistent system with the projected b will safely yield a least-squares solution of
the original inconsistent system.

In practice, the kth GMRES step is obtained by reducing the GMRES least-
squares problem to an unconstrained k-dimensional least-squares problem, which is
solved through QR factorization. In numerically sound GMRES implementations,
singularity or ill conditioning of A is a concern only if it becomes manifested in
singularity or ill conditioning of the upper-triangular factors, which may or may not
occur before a solution is found. The condition numbers of these factors can be
estimated very efficiently using incremental condition estimation (ICE) [4], [5].
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