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GLOBALLY CONVERGENT INEXACT NEWTON METHODS*

STANLEY C. EISENSTATt AND HOMER F. WALKEI:

Abstract. Inexact Newton methods for finding a zero of F 1 1 are variations of
Newton’s method in which each step only approximately satisfies the linear Newton equation but
still reduces the norm of the local linear model of F. Here, inexact Newton methods are formulated
that incorporate features designed to improve convergence from arbitrary starting points. For each
method, a basic global convergence result is established to the effect that, under reasonable assump-
tions, if a sequence of iterates has a limit point at which F is invertible, then that limit point is a
solution and the sequence converges to it. When appropriate, it is shown that initial inexact Newton
steps are taken near the solution, and so the convergence can ultimately be made as fast as desired,
up to the rate of Newton’s method, by forcing the initial linear residuals to be appropriately small.
The primary goal is to introduce and analyze new inexact Newton methods, but consideration is
also given to "globalizations" of (exact) Newton’s method that can naturally be viewed as inexact
Newton methods.

Key words, inexact Newton methods, Newton iterative methods, truncated Newton methods,
Newton’s method, globally convergent Newton-like methods, global convergence analyses for Newton-
like methods
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1. Introduction. Consider the system of nonlinear equations

(1.1) F(x) =0,

where F :Rn -- Rn is continuously differentiable. To simplify the following discussion,
we assume only for the remainder of this introduction that (1.1) has a solution x, such
that F(x,) is invertible.

A classical algorithm for solving (1.1) is Newton’s method.

ALGORITHM N (Newton’s method).
LET X0 BE GIVEN.
FoR k 0 STEP 1 UNTIL "CONVERGENCE" DO"

So w F’ -F(x ).
SET Xk+ Xk -- 8k.

The major strength of Newton’s method lies in its local convergence properties: If
x0 is sufficiently close to x,, then {xk} converges q-superlinearly to x,. Usually, F
is Lipschitz continuous at x,, and the convergence is q-quadratic. (See, e.g., Ortega
and Rheinboldt [13, 10.2.2].)

At each stage of Newton’s method, the Newton equation
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must be solved. Computing the exact solution can be expensive if n is large and, for
any n, may not be justified when xk is far from a solution. Thus, one might prefer to
compute some approximate solution, leading to the following algorithm.

ALGORITHM IN (inexact Newton method [4]).
LET x0 BE GIVEN.

FOR k 0 STEP 1 UNTIL ’CONVERGEhICE" DO:
FIND some vlk i [0, 1) AND 8k THAT SATISFY

(1.3)
SET Xk-t-1 Xk 2. 8k.

Since F(xk) / F’(xk) sk is the residual of (1.2), as well as the local linear model of F
evaluated at sk, each rk reflects how accurately sk solves (1.2); however, the method
of determining sk is not otherwise restricted. We say that sk satisfying (1.3) is an
inexact Newton step (at the level k) and refer to (1.3) as an inexact Newton condition.

If x0 is sufficiently close to x. and the rik’s are uniformly bounded below one, then
a sequence of inexact Newton iterates (xk converges q-linearly to x. in a well-chosen
norm. If limk_ k 0, then the convergence is q-superlinear. If F is Lipschitz
continuous at x. and k OIIF(x)II, then the convergence is q-quadratic. In any
case, the convergence can be made as fast as that of a sequence of exact Newton
iterates by taking the k’s to be appropriately small. (See Dembo, Eisenstat, and
Steihaug [4].)

The convergence of Algorithms N and IN is only local, i.e., the iterates need
not converge if x0 is not near a solution. There are a number of "globalizations"
of Algorithm N that help to improve the likelihood of convergence from arbitrary
starting points. Most modern globalizations fit within the following framework at
each iteration.

Determine an initial trial step in some way related to the Newton step.
Test the trial step to determine whether it gives adequate progress toward

a solution; if it does not, then obtain a "more conservative" trim step according to
the globalization strategy and repeat the test.

Trial steps are determined in a variety of ways but typically reduce the norm of the
local linear model of F; thus these globalizations provide instances of Algorithm IN.
In requiring adequate progress, a decrease in I]FII is imposed at each iteration that
makes convergence to a solution likely. Nevertheless, the nature of the problem may
still preclude convergence, and even if the iterates converge, the limit may be a local
minimizer of IIFII that is not a solution, at which F’ is necessarily singular.

The purpose of this paper is to introduce and analyze globally convergent inexact
Newton methods. These are instances of Algorithm IN that fit within the above glob-
alization framework for Algorithm N. All use a test for adequate progress that is based
directly on the norms of F and its local linear model and is particularly compatible
with the inexact Newton framework. This test can be viewed as an extension to the
inexact Newton context of the type of tests considered by Mor and Sorensen [12]
and Shultz, Schnabel, and Byrd [16] for unconstrained optimization and by Powell
[14], E1 Hallabi [7], and E1 Hallabi and Wapia [8] for general nonlinear equations. It

Newton iterative or truncated Newton methods, which use iterative methods to solve (1.2)
approximately, constitute an important class of inexact Newton methods. Although these methods
have provided considerable motivation, the developments in this paper are valid in the more general
inexact Newton setting.
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requires a decrease in ]IFII at each iteration that makes convergence to a solution
likely, although, as above, this may be precluded by the nature of the problem. For
each algorithm, we establish, among other results, a basic global convergence result
to the effect that, under reasonable assumptions, if a sequence of iterates has a limit
point at which F is invertible, then that limit point is a solution of (1.1) and the
sequence converges to it. These results are counterparts for general nonlinear equa-
tions of results of Mor6 and Sorensen [12] and Shultz, Schnabel, and Byrd [16] for
unconstrained optimization. When appropriate, we show in addition that initial in-
exact Newton trial steps are taken near a solution; therefore, as in the local theory of
Dembo, Eisenstat, and Steihaug [4], the convergence can ultimately be made as fast
as desired, up to the rate of Newton’s method, by choosing the initial inexact Newton
levels to be appropriately small.

Our primary goal is to provide a theoretical foundation for new inexact Newton
algorithms. However, the analysis here also provides a general framework for treating
globalizations of Algorithm N and other Newton-like algorithms, and we explore this in
a number of applications. In 2, we introduce a general global inexact Newton method,
on which all subsequent algorithms are based. In 3, we prove global convergence
results for it. These developments primarily provide a foundation for 5-8, but in 4
we give two applications to globalized Newton-like methods that show them to be of
interest in their own right. In 5, we introduce and analyze two general algorithms;
these serve as paradigms for more specific algorithms in 6-8 that can be implemented
as practical algorithms. The algorithms in 6 are backtracking methods" In these, if an
initial inexact Newton step is unsatisfactory, then shorter steps in the same direction
are taken until a satisfactory step is found. The algorithms in 7 are equality curve
methods: In these, all trial steps satisfy specified inexact Newton conditions with
equality; if an initial inexact Newton step is unsatisfactory, then steps at higher
inexact Newton levels (which may vary in direction as well as length) are tried until
a satisfactory step is found. In 8, we give two applications of the results in 7. In
9, we conclude with a summary discussion; the reader is encouraged to consult this
at any time for a more detailed overview that indicates all algorithms in the paper,
summarizes their properties, and shows their interrelationships.

For work that is similar in spirit to some of the work here, although differing in
major details, see Steihaug [17, Chap. 5] and Brown and Saad [3, 3]. Less closely
related, more specialized work can be found in Bank and Rose [2] and Deuflhard [6].

Preliminaries. For the remainder of the paper, we assume only that F" Rn

Rn is continuously differentiable. We make no assumptions about the invertibility of
F or about the existence of solutions of (1.1) unless otherwise noted.

The norm I1" II is arbitrary, except where explicitly assumed to be an inner product
norm or the Euclidean norm 11"112 in 7 and 8. We denote N(x) {y] Ily-x]l < 5} for
5 > 0. We let arg minxes f(x) denote the set of arguments that minimize f"Rn -- tt
over S c_ Rn; if this set is a singleton, then we may treat it as a point.

We use the following technical results.
LEMMA 1.1 ([13, 2.3.3]). Assume that F’(x) is invertible. Then for any e > O,

there exists > 0 such that F(y) is invertible and

IIF’(y) -x F’(x)-Xll < e

whenever y E N x
LEMMA 1.2 ([13, 3.2.10]). For any x and > O, there exists > 0 such that
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whenever y, z E N(x).
In saying that x, is a limit point of a sequence (Xk}, we mean that for every

i > 0, there are infinitely many values of k for which xk N(x,). Note that x, is a
limit point of (Xk if Xk X, for infinitely many k.

In general, the existence of an inexact Newton step sk satisfying (1.3) depends
on f(xk), F’(xk), ?Tk, and the norm I1" II. There exists an inexact Newton step for
every k e [0, 1) if and only if F(x) e range F’(x), which always holds if F’(x) is
invertible. Recall that x is a stationary point of IIFII if IIf(x)ll <_ liE(x)+ F’(x) sll for
every s. There is no inexact Newton step for any k [0, 1) if and only if F(xk) = 0
and x is a stationary point of IIFII; equivalently, there exists an inexact Newton step
for some k [0, 1) if and only if either F(xk) 0 or x is not a stationary point of

IIFll. When I1" is an inner-product norm, there exists an inexact Newton step for
some ? [0, 1) if and only if either F(xk) 0 or F(xk) - range F’(xk).

Many of the algorithms below are like Algorithm IN in calling for steps that
satisfy inexact Newton conditions and perhaps other conditions but are not uniquely
specified. We always assume that such suitable steps are found if they exist.

In saying that an algorithm breaks down at some x, we mean that it is somehow
precluded from determining a suitable xk+l. For example, Algorithm IN breaks down
at some xk if and only if there is no inexact Newton step from xk, equivalently, if and
only if F(xk) 0 and x is a stationary point of IIFII. To discuss convergence in the
following, we state algorithms so that they continue indefinitely if they do not break
down. Thus, in saying that an algorithm does not break down, we mean simply that
it generates an infinite sequence of iterates. In most cases below, we give conditions
under which specific algorithms do not break down.

2. A global inexact Newton method. Our general global inexact Newton
method below is obtained by augmenting the inexact Newton condition with a suffi-
cient decrease condition on IIFII. This provides the test for acceptability of an inexact
Newton step that is used, in one form or another, in all of our algorithms.

ALGORITHM GIN (global inexact Newton method).
LET x0 AND t (0, 1) BE GIVEN.

FOR k 0 STEP 1 UNTIL oo DO:

FIND some r/k [0, 1) AND 8k THAT SATISFY

(2.1) IIF(xk) / F’(xk)Sk[[ <_ Wk[[F(xk)[]
AND

(2.2) IIF(xk + Sk)ll <_ [1 t(1 k)] IIF(xk)l[
SET Xk+l Xk + 8k.

Conditions (2.1) and (2.2) are closely related to certain tests for accepting a step
considered elsewhere. For minimizing f :Rn --, 11, the central feature of those tests
is that, for a given t (0, 1), a step sk from a current point xk is acceptable if

(2.3) aredk(sk) k t. predk(sk),

where aredk(sk) f(xk) f(xk + Sk) is the actual reduction and predk(Sk is the
predicted reduction obtained from a local quadratic model of f (see Mor( and Sorensen
[12], Shultz, Schnabel, and Byrd [16], and the references therein). For general non-
linear equations, a special case of more general tests considered by Powell [14], E1
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Hallabi [7], and E1 Hallabi and Tapia IS] has the form (2.3), with

(2.4)
aredk(sk) =--]lF(xk)ll- IIF(xk + 8k)ll,
predk(sk) =--IIF(xk)ll IIF(xk) + F’(xk)skll,

which we take as our definition of aredk(sk) and predk(sk here. With (2.4), conditions
(2.1) and (2.2) can be rephrased as

(2.5)

(2.)

predk(Sk > (1- k)llF(xk)ll,

aredk(sk) > t(1

Note in particular that if Sk is any step that reduces the norm of the local linear
model and if /k is chosen so that (2.1)/(2.5) is satisfied with equality, then (2.6) is
equivalent to (2.3). Thus (2.1) and (2.2) can be regarded as an extension of tests of
the form (2.3) to the inexact Newton context.

Less closely related tests are the two Goldstein-Armijo conditions derived from
work in [10] and [1]. Typically only the first (the "alpha condition") is implemented
in practice (see, e.g., Dennis and Schnabel [5, Chap. 6]); this is

)T(2.7) f(xk +

where f 1/211Fll and 0 < a < 1. The following proposition shows that when
I1" II I1" 112, the ph condition implies (2.2) for steps satisfying (2.1). Consequently,
algorithms that generate steps satisfying (2.1) and the alpha condition, such as those
of Brown and Saad [3], can be regarded as special cases of Algorithm GIN.

PROPOSITION 2.1. Let ]1’ I1" 112 and f 1/2llFIl. If (2.1) and (2.7) hold, then
(2.2) also holds with t a.

Proof. It follows from (2.7) that

IIF(x / s)ll < IIF(xk)ll + 2aF(xk)TF’(xk)

Writing r =- F(xk) + F’(xk)sk, we obtain from (2.1) that

F(x)TF’(xk) Sk F(xk)T[--F(xk) + r]

=-IlF(xe)ll + F(xk)Tr
<-(1 k)llF(xk)ll 2

whence

IIF(x/s)ll < [1 2c(1 )]llF(x)ll2

Since the left-hand side is nonnegative, we must have 2a(1 r/k) < 1; since x/i e <_
1 -e/2 whenever [e[ _< 1, we also have

3. Convergence theorems. In this section, we develop a theoretical foundation
for Algorithm GIN. This provides a basis for the analysis of all of the algorithms
considered in the sequel. We first address breakdown in Lemma 3.1 and Corollary 3.2
below.
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LEMMA 3.1. Let x and t E (0, 1) be given and assume that there exists an that
satisfies liE(x)+ F’(x)$ll < IIF(z)ll. Then there exists min e [0, 1) such that, for any
? [min, 1), there is an s satisfying

IIF(x) + F’(x)sll <_ lllF(x)ll and

Proof. Clearly F(x) = 0 and $ 0. Set

[IF(x) + F’(x)ll
IIF(x)ll

( )( )IIF()II

min max {, 1
I111

where > 0 is sufficiently small that

IIF(x + s)- F(x)- F’(x)sll

whenever ]]s]] 5. Such a 5 exists by Lemma 1.2.
For ny [min, 1), let s . Then

1 F
-1- -#

1 -F(x)1-F(x)]+ 1-

nllF(z)ll,

and, since

i r/llall < I ?min llall -< aIIII- I-/ I-
it follows that

llF(x + )II _< llF(x + s)- F(x) F’()II + IIF(x) + F’(x)sll
1 r/IIII + nllY(x)II-< e" 1’_

(1 t)(1 /)[[F(x)[[ + /llF(x)[[

[1 t(l r/)] llF(x)ll.

COROLLARY 3.2. Algorithm GIN breaks down at some xk if and only if there is
no inexact Newton step from xk, i.e., if and only if F(xk) 0 and xk is a stationary
point of IIFII.

The next theorem is used in the proof of the global convergence theorem that
follows and is also of independent interest.

THEOREM 3.3. Assume that {x/c} is a sequence such that F(x/c) --, 0 and, for
each k,

liE(x/c) + F’(x/c)skll <_ llF(xk)ll and IIF(xk+l)[I <_ [[F(xk)ll,
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where sa =- Xk+l Xk and is independent of k. If x, is a limit point of (xk} such
that F’(x,) is invertible, then f(x,) 0 and xk -- x,.

Proof. Clearly F(x,) O. Set g =_ lIF’(x,)-ll, and let 5 > 0 be sufficiently
small that F (y)- exists and

1

whenever y E Nh(x,). Such a 5 exists by Lemmas 1.1 and 1.2.
If y Nh(x,), then

IIF(y)II > I[F’(x,)(y x,)ll- IIF(y) F(x,) F’(x,)(y x,)ll
1 1>

IIF,(z,)_II I1 x, II- 5-llu-

e--ll- x, ll,

so that

whenever y N(x,).
Let e e (0, 5/4) be given. Since x, is a limit point of (xa} and F(x,) O, there

is a k sufficiently large that

xk e S (Yl IlY-x, II < 5/2 and

Then

and so

Since

and, by (3.1),

IIF’(xe)- [--F(xk) + {F(xk) + F’(xk)Sk}] II
< IIF’(x)-lll(llF(x)ll / IIF(x)/ F’(xa)sail)
< 2K(1 / )llF()ll

< 2

<2’

Ilxk+l- X, < Ilxk- X, + IIkll < ,

Ilxk,+ x, < 2KIIF(xk+)ll < 2K el[K(1 + 7)] < 5/2,

it follows that x+ S. We conclude that x S c_ N(x,) for all sufficiently large
k, and, since IIF(xk)ll O, it follows from (3.1) that xa --* x,. [:!
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We now establish the basic global convergence theorem for Algorithm GIN.
THEOREM 3.4 (global convergence of algorithm GIN). Assume that Algorithm

GIN does not break down. If -k>0(1- r/k) is divergent, then F(xk) - O. If, in
addition, x. is a limit point of {xk-} such that F’(x.) is invertible, then F(x.) 0
and xk --* x..

Proof. By (2.2),

IIF(xk)ll <_ [1 t(1 r/k-)]

_< IIF(xo)ll II [1 t(1 r/)]
0<j<k

Since t > 0 and 1 r/j _> 0, the divergence of Yk>0(1 r/k) implies F(xk) -- O. The
remainder of the theorem follows from Theorem 3.3 with r/= 1. [:]

With (2.2), the divergence of ’k>0(1 -r/k) implies sufficient cumulative decrease
in IIFII over all steps to ensure that (xk) 0. In applications of Theorem 3.4 in
the sequel, conditions are given under which this divergence holds implicitly; it is
not necessary to assume it explicitly. In general, however, it may not be possible to
determine the r/k’s so that Yk>0(1- r/k) is divergent, even though Algorithm GIN
does not break down. For example, define F(x) -= 1 + exp(-x2) for x E R1. If
x0 0, then the full Newton step is always a well-defined inexact Newton step from
the current xk and, for any t E (0, 1), admissible r/k and sk exist by Lemma 3.1.
However, -k>0(1- r/k) cannot be divergent because {F(xk)} cannot converge to
zero.

Note that (2.1) is not needed to obtain the weak result that F(xk) --* 0; only
(2.2) is used. However, (2.2) alone implies nothing further about the convergence of
{xk}. Indeed, for F :R --, R given by F(x) x2 1, the solutions are -t-1; if
converges to +1 and satisfies (2.2) for some {r/k}, then {(--1)kxk} also satisfies (2.2)
and has both +1 and -1 as limit points. To show that xk -- x,, we apply Theorem
3.3, which in effect uses (2.1) to ensure that iterates remain near solutions at which
F is invertible, thereby precluding the sort of behavior seen in this example.

Another way to state Theorem 3.4 is that if Algorithm GIN does not break down
and k>0(1 r/k) is divergent, then F(xk) 0 and one of the following holds:

1. xkll--* oc, i.e., {xk} has no limit points;
2. {xk} has one or more limit points, and F is singular at each of them;
3. {xk} converges to a solution x. at which F is invertible.

These alternatives allow useful corollaries to be drawn. For example, if F is invertible
on {x IIF(x)ll N IIF(x0)ll} and this level set is bounded, then alternative 3 must hold
and the ultimate rate of convergence is determined by the values of r/k for large k as
in the local theory of Dembo, Eisenstat, and Steihaug [4].

Alternative 1 can occur. Indeed, if F(x) exp(-x2) for x R and if x0 : 0
and t 1/2, then full Newton steps are admissible in Algorithm GIN and Ixkl

Alternative 2 can also occur, and there can clearly be convergence to a point
at which F is singular. There can also be more than one limit point of {xk}. For
example, define F(x) =_ (x(),O)T for x (x(1),x(2))T e R2. For each k, we take

r/k 1/2 and sk (--x(kl)/2, s(k2))T, where xk (x(kl),x(k2))T and s(k2) is arbitrary. Then
(2.1) and (2.2) hold for any t e (0, 1). Furthermore, the limit points of {xk} constitute
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a subset of the solution set ((0, x(2))T}, and, since each s(k2) is arbitrary, this subset
can be made to contain any given subset of the solution set.

The next theorem is complementary to Theorem 3.3 and is useful in the sequel.
THEOREM 3.5. Assume that Algorithm GIN does not break down. If x, is a limit

point of {xk} such that there exists a F independent of k for which

(3.2)

whenever xk is su]ficiently near x, and k is sufficiently large, then Xk x,.

Proof. Suppose that Xk x,. Let 5 > 0 be such that there exist infinitely many
k for which xk t N(x,) and sufficiently small that (3.2) holds whenever xk e N(x,)
and k is sufficiently large.

Since x, is a limit point of {xk}, there exist (kj} and (j} such that, for each j,

E N/(x,),

+ e N(x,),

+ N(x,),

k + < k+.

Then for j sufficiently large,

kj +l

k=kj

kj+l
r( v)llF(x)ll

k -I-l F
7-{llF(x)ll- IIF(x+l)ll}

F

1-’< (IIF(x)ll IIF(x+ )11 }.

But the last right-hand side converges to zero since xk --* x,; hence, this inequality
cannot hold for large j.

Theorems 3.4 and 3.5 are still valid if we allow r/k E [0, 1] in Algorithm GIN.
The resulting more general statements can be adapted to provide global convergence
results for any sequence {xk} such that each sk Xk+l- xk does not increase the
norm of the local linear model of F, i.e., such that predk(sk >_ 0 for each k. Indeed,
for each k, we can define lk [0, 1] by

tlF(x) / F’(xk)sll/llF(x)ll
rtk { 0

if F(xk) O,
otherwise.
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Then (2.1)/(2.5) holds with equality, and r/k and s are acceptable in Algorithm GIN
if and only if (2.3) holds, i.e, aredk(sk) >_ t. predk(sk ). Moreover, introducing

we have

predk(sk)/[[F(xk)[[relpredk (sk) 1
if F(xk) O,
otherwise,

-(1 r/) relpred(s).
k>0 k>0

Then Theorem 3.4 can be restated as follows.
COROLLARY 3.6. Assume that {xk} is such that predk(Sk >_ 0 and aredk(sk)

t predk(sk) for each k, where t E (0, 1) is independent of k. If k>0 relpredk(sk)
is divergent, then F(xk) --* O. If, in addition, x, is a limit point of xk} such that
F’(x, is invertible, then F(x, 0 and xk x,.

This result can be viewed as an analogue of the results of Wolfe [18], [19] on
sequences that proceed through descent-direction steps for f" Rn R that satisfy
the Goldstein-Armijo conditions. Theorem 3.5 can be restated in a similar manner.

COROLLARY 3.7. Assume that {xk} is such that predk(sk >_ 0 and aredk(sk) >_
t. predk(sk for each k, where t e (0, 1) is independent of k. If x, is a limit point

of {xk} such that there exists a F independent of k for which [[sk[[ _< F. predk(sk
whenever xk is sufficiently near x, and k is sufficiently large, then xk x,.

4. Applications. Although the developments in 2 and 3 are intended primar-
ily to provide a groundwork for 5-8, they also have broader applicability to glob-
alizations of Algorithm N and related methods, which we now illustrate. Material in
this section is not used in later sections.

Application 1. Trust region methods. There are a variety of trust region
methods for unconstrained optimization and general nonlinear equations; see, e.g.,
Dennis and Schnabel [5, 6.4], E1 Hallabi [7], E1 Hallabi and Tapia [8], Mor and
Sorensen [12], Shultz, Schnabel, and Byrd [16], and the references therein. Here, we
show how the developments in 2 and 3 can be brought to bear on these methods
without giving an exhaustive treatment. The algorithm below is meant to reflect the
essential features of several known trust region algorithms; it is especially close to
Algorithm 4.2 of Mor and Sorensen [12].

ALGORITHM TR (trust region method).
LET x0, 0 > 0, 0 < t

_
u < 1, AND 0 < 0min < 0max < 1 BE GIVEN.

FOR k 0 STEP 1 UNTIL cx3 DO:

SET k k AND CHOOSE 8k e arg minllsil<5 [[F(xk) + F’(xk)s[[.
WHILE aredk(sk) < t. predk(sk DO"

CHOOSE 0 e [0min, 0max].
UPDATE 5k +--Ok AND CHOOSE

Sk e arg minllsll< [[f(xk) + f’(xk)s[[.
SET Xk+ Xk -[- 8k.
IF aredk(sk) >_ u. predk(sk CHOOSE 5k+l

ELSE CHOOSE (k+l --> 0min(k.
Algorithm TR and the analysis below could easily be modified to allow steps that

are only approximate minimizers of the local linear model norm within trust regions,
the use of a second norm in determining 5k-balls as in E1 Hallabi [7] and E1 Hallabi
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and Tapia [8], additional refinements in the determination of trust region radii, etc.
It can easily be shown that Algorithm TR does not break down if, for each k, either
F’(xk) is invertible or xk is not a stationary point of

To develop a convergence analysis for Algorithm TR, we first use Corollary 3.7
to obtain the following lemma.

LEMMA 4.1. Assume that Algorithm TR does not break down. Suppose that x,
is a limit point of {xk} such that there exists a F independent of k for which

(4.1) Ilskll <- F. predk(sk

whenever xk is sufficiently near x, and k is sufficiently large. Then xk -- x, and
lim infk-oo 5k > 0.

Remark. One can also conclude that x, is a stationary point, but this is not
needed here.

Proof. It is clear that (xk} satisfies the hypotheses of Corollary 3.7, and it follows
immediately that xk x,. Choose 5 > 0 such that (4.1) holds whenever xk E N(x,)
and k is sufficiently large and also such that

(4.2) IIF( ) F(x)  )11 < r II -xll

whenever x, y Nh(x,). Let k0 be such that if k _> k0, then xk Nh/2(x,) and (4.1)
holds.

We claim that if k >_ k0, then the while-loop in Algorithm TR terminates with

5k >_ min {ko, [gmin(/2 },

whence liminfk-,oo tik >_ min {o, 0minh/2} > 0. To show this, we first note that if
k >_ ko and if sk is a trial step for which Ilskll g 5/2, then (4.2) and (4.1) give

aredk(sk) =--IIF(xk)ll- IIF(xk + s)ll

>- IIF(xk)ll IIF(xk) + F’(xk) Sk II IIF(xk -t- Sk) F(xk) F’(xk) Sk I!

> predk(sk (1 U)

>_ U. predk(sk ).

It follows from this that the while-loop terminates with

(4.3) 5k >_ min {k, OminS/2}.

Indeed, if the while-loop does not reduce 5k, then 5k 5k on termination; whereas,
if the while-loop reduces 5k at least once, then the penultimate value is at least 5/2,
whence 5k >_ dminh/2 on termination. Furthermore, if 5k <_ 5/2 on termination, then

k+l --> 5; whereas, if 5k > 5/2 on termination, then k+l >_ mink > dmin(/2. Thus

(4.4) +1 >_ min {, 0min(/2}.

The claim follows by induction from (4.3) and (4.4). [:]

The next two lemmas allow us to apply Lemma 4.1 in the proof of Theorem 4.4,
which is our main result.
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LEMMA 4.2. If X, is such that F(x,) is invertible, then there exist F and e, > 0
such that, ,for any 5 > O,

(4.5) s e arg min liE(x)+ F’(x)1[

satisfies

(4.6) IIll < r{llF(x)ll- liE(x)+ F’(x) 11}
whenever x E Ne, (x,).

Proof. Set K IIF’(x,)-lll and let e, > 0 be sufficiently small that F’(x) is
invertible and IIF’(x)-ll <_ 2K whenever x N,(x,). Suppose that x Ne,(x,)
and s is given by (4.5) for an arbitrary 5 > 0. Denote sN =_ -F’(x)-lF(x), and note
that Ilsll <_ IIsN since sN is the unique global minimizer of the norm of the local linear
model. If sN 0, then s 0 and (4.6) holds trivially for any F. If sN - 0, then

IlF(x)ll- IIF(x)+ F’(x)ll > IIF(x)[[- I111 NF(x) + F’(x) IIN i[

Ilsll IIF(x)ll

and (4.6) holds with F 2K. Thus (4.6) holds with F 2K Vx e N, (x,). 0
LEMMA 4.3. If x, is not a stationary point of I[FII, then there exist F, 5, > O, and

e, > 0 such that s given by (4.5) satisfies (4.6) whenever x Ne, (x,) and 0 < 5 < 5,.
Proof. Let e > 0 be such that if x e N(x,), then IIF(x)ll > 1/211F(x,)II. Let s, be

such that ]IF(x,)+ F’(x,)s,]] < ]lF(x,)ll. Choose r/, such that

liE(x,) + F’(x,)s, ll/iiF(x,)ll < , < 1.

Since F and F are continuous, there exists e, E (0, e] such that

IlF(x) + F’(x)s, < mllF(x)ll

whenever x e Ne,(x,). Choose 5, e (0,11,11).
0 < 5 _< 5,. For s given by (4.5), we have

Suppose that x e Ne, (x,) and

I111liE(x) lIE(x) + F’(x) sll >_ liE(x)II F(x) + F’(x) ,]]s,

> IIF(x) 1
ils, l[ }lF(x)ll

I111 liE(x)+ F’
I1,11 (),11

> (1 l,)lIF(x)[I I111I1,11

> (1 /,)IIF(:,)II I111211,11
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and (4.6) holds with F 211,11/[ (1 V,)IIF(,)II ]. m
THEOREM 4.4. Assume that Algorithm TR does not break down. Then every

limit point of {xk} is a stationary point of tlFII. Sl x, is a limit point of {xk)
such that F’(x,) is iuvertible, then F(x,) 0 and xk --+ x,; furthermore, sk
--F’(xk)-iF(xk), the full Newton step, whenever k is suJiciently large.

Proof. Suppose that x, is a limit point of {xk} that is not a stationary point of

We claim that, for any 5 > 0, there exists an e > 0 such that if xk N(x,)
and k is sufficiently large, then 5k 5. Otherwise, there would exist a 5 > 0 and
{xk } {Xk} such that xk x, and 5k > 5 for each j. Then

0 lim {lIF(xk)ll- lIF(xk+)ll}
j

> liminf{F(xk)- iF(xk+l)ii}

lim inf aredk (skj

t" lim inf pred (s
j

t. liminflF(x)ll- min iiF(xk)+ F’(xks)sii}

{iiF(xk)ii min F(x) + F’(xk) sii}t. lim

t. iIF(x,)iI- min ilF(x,)+ F’(x,)sil .
11115

But the lt right-hand side must be positive since x, is not a stationary point.
Now let F, 5,, and e, be in Lemma 4.3. By the above claim, there exists

e (0, e,] such that if x N(x,) and k is sufficiently large, then 5k 5,. By Lemma
4.3, (4.1) holds for F independent of k whenever xk N(x,) and k is sufficiently large.
Then Lemma 4.1 implies that xk x, and liminfk 5k > 0. But since the claim
implies that 5k O, this is a contradiction. Hence, x, must be a stationary point.

Suppose that x, is a limit poim of {xk} such that F’(x,) is invertible. Since x,
must be a stationary point, we must have F(x,) 0. It follows from Lemma 4.2 that
there exists a F independent of k for which (4.1) holds whenever Xk is sufficiently
near x,. Then Lemma 4.1 implies that xk x, and there exists a 5 > 0 such that
5 5 for sufficiently large k. Since xk x, and F(x) F(x,) 0, we have
that iF’(xk)-iF(xk)ii 5 5k and, therefore, Sk --F’(zk)-lF(xk) whenever k is
sufficiently large.

Application 2, Global approximate Newton methods. The global approx-
imate Newton method of Bank and Rose [2] can be written as follows.

ALGORITHM GAN (global approximate Newton method [2]).
LET x0 BE GIVEN; DETERMINE K0 0.
FOR k 0 STEP 1 UNTIL DO:

SOLVE Mk Sk --F(xk ), WHERE Mk F’(Xk ).
C oos e [0, K0].

1/(1 + K IIF(z )II).
SET Xk+l Xk 8k.
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Here, we show that Algorithm GAN is a special case of Algorithm GIN and that
the global convergence result below of Bank and Rose [2, 2] follows from Theorem
3.4 under the assumptions in [2, 2], viz., the following:

(1) L(xo) {x IIF(x)ll <_ IIF(xo)ll} is bounded;
(2) F’ is invertible on L(xo), each Mk is invertible, and IIM-II _< for all k _> O;
(3) liE’(y)- F’(x)ll <_ 711Y-xlt for x, y E {u Ilull _< suPvL(xo)Ilvll + llF(x0)ll};
(4) F(xk) 0 and k -= IIF(xk)+ F’(xa)$kll/llF(xk)]l _< 0 < 1 for all k >_ 0;
(5) For t E (0, 1 0), g >_ (t27/2)(1 7 t)-1 -IIF(xk)ll- for all k >_ 0.
PROPOSITION 4.5 (cf. conclusion (i) of [2, Theorem 1, p. 285]). Under assump-

tions (1)-(5) above, there exists an x, such that F(x,) 0 and xk x,.

Proof. Setting k (1 Tk) + ’Tk for each k, we have that k [0, 1) and

[[F(x) + F’(xe)sll I[(1 -)F(xk) + Tk[F(xk) + F’(xk)$]l

i.e., (2.1) holds. By Bank and Rose [2, (2.18), p. 283], we also have

Since

1 t:k <_ 1 tTk(1 k) 1 t(1

this gives

IIF(xk + sk)ll <_ [1 t(1 r]k)] IIF(xk)ll,

i.e., (2.2) holds. Thus Algorithm GAN is a special case of Algorithm GIN.
To complete the proof, we note that

1 k ’k(1 ]k) >-- Tk(1 70)

and

1 1

+ KllF(x)ll
>

1 + gollF(xo)ll

hence, Ek>0(1-)is divergent. Moreover, assumptions (1) and (2)imply that {xk}
has a limit point x, such that F(x,) is invertible. Then Theorem 3.4 implies that
F(x,) 0 and xk --* x,. D

5. Two paradigm methods. We begin now to develop methods that test ini-
tial inexact Newton steps and, if they are unsatisfactory, determine new steps as
necessary until steps satisfying (2.1) and (2.2) are found. Our ultimate goal is to out-
line particular algorithms in 6-8 that can be implemented as practical algorithms.
To simplify their treatment, we formulate and analyze in this section two paradigm
methods that incorporate their basic features.

At each iteration of these paradigm methods, an initial inexact Newton step at
a specified level is tried and, if it proves unsatisfactory, then inexact Newton steps
at higher levels are tried until a satisfactory step is found. Accordingly, we assume
that, at the kth iteration of each method, there is a means of specifying some inexact
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Newton step from xk for each ?] in [k, 1], where k E [0, 1) is the initial inexact Newton
level. We express this by assuming that, for each k, there is a curve ak satisfying

(5.1) IIF(xk) / F’(xk)ak(?])l] <_ ?]llF(xk)ll, Tk <-- ?] <-- 1.

For now, ak is not required to have any properties other than (5.1).
We call the first method a minimum reduction method: At each iteration, the

initial inexact Newton step is required to achieve at least a prescribed minimum
reduction of the norm of the local linear model.

ALGORITHM MR (minimum reduction method).
LET x0, ?]max E [0, 1), t (0, 1), AND 0 < 0mAn < 0max < 1 BE GIVEN.

FOR k 0 STEP 1 UNTIL Cx:) DO:
CHOOSE ?k [0, ?]max].
DETERMINE ak SUCH THAT (5.1) HOLDS; SET ?]k --k.
WHILE IIF(xk + ak(?]k))ll > [1 t(1 ?]k)] IIF(xk)ll DO:

CHOOSE [Omin, Omax].
UPDATE ?]k +-- 1 (1 ?]k).

SET Xk+l Xk -t- rk(?]k).

We call the second method a trust level method" At each iteration, the initial
reduction required in the local linear model norm reflects a level of trust in the model
based on behavior observed at previous iterations. The term "trust level" is intended
both to evoke and to contrast this method with trust region methods, in which steps
are determined within regions of trust of local linear models of F. The structure of
this method has obvious parallels with that of Algorithm TR in 4.

ALGORITHM TL (trust level method).
LET X0, 0 [0, 1), 0 < t <_ U < 1, AND 0 < Omin < max < 1 BE GIVEN.

FOR k 0 STEP 1 UNTIL (:x:) DO"

DETERMINE rk SUCH THAT (5.1) HOLDS; SET ?]k --k.
WHILE I[F(xk -t- ())11 > [ t(1 ?]k)] IIF(x)ll DO:

CHOOSE 0 e [Omin, Omax].
UPDATE ?]k 1 0(1 ?]k).

SET Xk+l Xk q- Crk(?]k).
IF IIF(x+I)II _< [- u(1- )] IlF(x)ll CHOOSE #+ e [0,];
ELSE CHOOSE k+l [0, 1 0mAn(1 ?]k)].

The restriction /k [0, ?]max] in Algorithm MR should not be a serious practical
restriction since ?]max can be taken arbitrarily near one. The restriction 0 [0mAn, 0max]
in the while-loop in both algorithms is reflective of typical "safeguarding" practices;
see, e.g., Dennis and Schnabel [5, 6.3.2 and 6.4.3]. This still allows a great deal of
flexibility in the choice of 0.

Whether either algorithm breaks down at the kth iteration depends on both the
existence and the nature of ak satisfying (5.1). Some such ak exists if and only if
there exists some inexact Newton step at the level f/k. Indeed, the existence of such
an inexact Newton step is clearly necessary, and if gk is such an inexact Newton step,
then the backtracking curve

(5.2) ak(?]) =--, ?]k < ?] < 1,
1 k
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satisfies (5.1). The lemma below gives useful conditions under which neither algorithm
breaks down in the while-loop once ak satisfying (5.1) has been found.

LEMMA 5.1. At the kth step of Algorithm MR (Algorithm TL), if F(xk) 0 and
there exists a F for which

(5.3) IIk()ll-- r(- )JJF(xk)Jl, ?k

_
1,

then the while-loop terminates with

(5.4) 0min( }1 r/k _> min 1 f/k, FII F(xk)ll
for any 5 > 0 su]flciently small that

1-t
(5.5) IIF(x) F(xk) F’(xk) (x xk)ll < IIx xkF

whenever x E N(xk).
Remark. If ak is given by (5.2) and F(xk) O, then (5.3) holds with F

IlSkll/[(1--i-Tk)llF(xk)ll]. It follows from Lemma 5.1 and the preceding discussion that,
for either algorithm, if F(xk) O, then there exists some ak for which breakdown is
avoided at the kth step if and only if there exists some inexact Newton step at the
level

Proof. Note that if /e [f/k, 1] is such that 1-7 < 6/(FIIF(xk)ll), then (5.3), (5.1),
and (5.5)imply that Ilak(l)ll < 5 and

IlF(xk + ak(r))l[ <_ ]]F(xk) + F’(xk)
+ IIF(xk + ak()) F(xk) F’(xk)

1--t<  llF(z )ll + r
< [ t(

Since 1 -k is reduced by a factor 0 <_ 0max ( 1 at each iteration of the while-loop,
it follows that the while-loop terminates.

Suppose that k is the final value determined by the while-loop. If r/k k,
then (5.4) is immediate, so suppose that k - Ok, i.e., the body of the while-loop has
been executed at least once. Denoting the penultimate value by r/-, we see from the
observation above that 1- r/- >_ 5/(FIIF(x)II). Since 1- r/k 0(1- -)for some
0

_
0min, it follows that 1- k >_ Ominh/(rllF(Xk)ll). [-!

Algorithms MR and TL are clearly special cases of Algorithm GIN, and we use
Theorems 3.4 and 3.5 to obtain the global convergence result below.

THEOREM 5.2 (global convergence of algorithms MR and TL). Assume that Al-
gorithm MR (Algorithm TL) does not break down. If x, is a limit point of {xk} such
that there exists a F independent of k for which

(5.6) Ila(u)ll < r(1- /)llF(xk)ll, k <_ r/ _< 1,

holds whenever xk is sufficiently near x., then F(x,) 0 and xk x.. Furthermore,
lk Ok for all sufficiently large k.

Remark. If {xk} generated by Algorithm MR or Algorithm TL converges to a
solution at which F is invertible and if k k for all sufficiently large k, then the
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ultinlate rate of convergence is governed by the choices of the k’s as in the local
theory of Dembo, Eisenstat, and Steihaug [4]. Analogous statements hold for the
results in 6-8 that are derived from Theorem 5.2.

Proof. It follows immediately from Theorem 3.5 that xk x,.
If F(xk) 0 for some k, then F(xj) 0 for all j >_ k and the remainder of the

theorem follows easily. Suppose that F(xk) 0 for every k. Let 5 > 0 be sufficiently
small that (5.6) holds whenever xk e N(x,) and also

1-t
IIF(y) F(x) F’(x) (y x)ll <_ F

whenever x, y E N2(x,). It follows from Lemma 5.1 that (5.4) holds on termination
of the while-loop whenever xk e N(x,). Set g supxeN(x, IIF(x)ll.

To apply Theorem 3.4, we show that -k>0(1 -r/k) is divergent. In the case of
Algorithm MR, it follows from (5.4) that wheKever Xk N(x,), we have

on termination of the while-loop. Since xk x,, there are infinitely many k for
which Xk N(x,); therefore, k>0(1 -r/k) is divergent in this case. In the case of
Algorithm TL, we set e (1 u)/ and take smaller if necessary so that

IIF(y) F(x) F’(x) (y x)ll <_ ellY xll

whenever x, y N(x,). Suppose that k0 is sufficiently large that xk Nh(x,)
whenever k >_ k0. Then for k >_ k0, (5.7) and (5.6) give

I[F(Xk+l)]l (__ []F(xk) zt- Ft(Xk)

+ [[F(xk+l)- F(xk) F’(xk)ak(rlk)][

< ,IIF()II +
_< [1 u(1 Tk)][[F(xk)[[,

which implies k+l <_ v/k. Then (5.4) and an easy induction give

1--/k+ >_min{1--k+,O5}
>_ min {1-- Tk, Oi5 }
>_ min 1-rko, rK

It follows that k>o(1- r/k) is divergent in this case as well.
Since k>0(1- r/k) is divergent, Theorem 3.4 implies that F(x,) 0. Then

F(xk) 0,-and it follows from (5.4) that r/k k whenever k is sufficiently
large. [:1
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6. Backtracking methods. In this section, we outline backtracking algorithms
that can be easily implemented as practical algorithms once a means of determining
initial inexact Newton steps has been provided. These algorithms are based on Algo-
rithm MR in 5; Algorithm TL does not provide a useful paradigm, as noted below.
Developments in this section are not used in later sections.

The principal algorithm in this section is the following.

ALGORITHM INB (inexact Newton backtracking method).
LET X0, max e [0, 1), t e (0, 1), AND 0 < 0min < 0max < 1 BE GIVEN.

FoR k 0 STEP 1 UNTIL Oo DO:

CHOOSE k [0,?max] AND DETERMINE k SUCH THAT

IIF(xk) / F’(xk)  kll -< #kllF(xk)ll.
SET 8k 3k AND 71k --k.

IIf(x + > IIF(  )II .o"

CHOOSE e [Omin, max].
UPDATE Sk +--OSk AND ]k +-- 1-

SET Xk+ Xk - 8k.

Algorithm INB is a special case of Algorithm MR. Indeed, for each k, if ak is the
backtracking curve given previously by (5.2), i.e.,

1 -v/k, /k < r/< 1,

then a} satisfies (5.1) and an easy induction shows that sk ak(k) in the while-loop
of Algorithm INB. Algorithm MR provides a useful paradigm here because if rk is
given by (6.1) with /k E [0, /max], then we can show that (5.3) holds for F independent
of k near a point at which F’ is invertible and we can apply Theorem 5.2. Algorithm
TL does not provide a useful paradigm because no inequality of the form (5.3) can
hold for all backtracking curves if / is not bounded away from one.

Algorithm INB does not break down at the kth step if a suitable Sk can be
found and if either F(xk) = 0 or F’(xk) is invertible. Indeed, suppose we have found

k. If F(x}) = 0, then it follows from Lemma 5.1 and the subsequent remark that
the algorithm does not break down in the while-loop; if F(xk) 0 and F’(x) is

invertible, then $ 0 and the while-loop terminates immediately. Note that if

F’(xk) is invertible, then a suitable k exists and the algorithm does not break down
at the kth step. Similar remarks hold for the other algorithms outlined in this section.

THEOREM 6.1 (global convergence of algorithm INB). Assume that Algorithm
INB does not break down. If x, is a limit point of {xk} such that F’(x,) is invertible,
then F(x,) 0 and xk -- x,. Furthermore, sk and 1 1 for all sufficiently
large k.

Proof. Set g =_ IIF’ (x, )-l ]l and let 5 > 0 be sufficiently small that F’(x)- exists

and IIF’(x)-lll < 2K whenever x e N(x,). Suppose that xk e N(x,), and set
r =- F(xk) + F’(xk)k. With ak(l) given by (6.1), we have

1 1 II- F(xk) + rll<_ 2K
1 k

< 2Kll -I- (1 n)llF( , )ll
--/k
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< 2K
1 +ma__x (1 )llF(xk)ll.
1 rimax

Thus (5.3) holds with F 2K(1 + max)/(1- ?max), and the theorem follows from
Theorem 5.2. [3

Application. Backtracking for (exact) Newton’s method. When the
initial trial step is the Newton step at each iteration, Algorithm INB has a particularly
simple form. We take max 0, so that k 0 and F’(xk)$k --F(xk) for each k.
Since sk ak() for a given by (6.1), we have F’(xk)s -(1- ?k)F(x), whence

Thus predk(sk (1- k)llF(Xk)ll, and the while-loop terminates when aredk(sk)

_
t. predk(sk (see 2). Algorithm INB can now be rephrased as follows:

ALGORITHM ENB (exact Newton method with backtracking).
LET x0, t E (0, 1), AND 0 < Omin < Omax < 1 BE GIVEN.
FOR k 0 STEP 1 UNTIL x) DO:

F’ -F(x ).
WHILE aredk(sk) < t. predk(sk DO:

CHOOSE e [Omin, Omax].
UPDATE 8k -" Sk.

SET Xk+l Xk " Sk.

COROLLARY 6.2 (global convergence of algorithm ENB). Assume that Algorithm
ENB does not break down. If x, is a limit point of {xk} such that F’(x,) is invertible,
then F(x,) O, xk --* x,, and sk --F’(xk)-lF(xk), the full Newton step, for all
su]flciently large k.

Extension. Piecewise linear backtracking through inexact Newton steps.
Suppose that at the kth iteration of Algorithm MR we have choosen k and have de-
termined inexact Newton steps s(kl), S(kink) such that

[IF(x) + F’(xk)s( /)ll _< j 1,...,

where (k1), 11k:(’k) satisfy

_(m)
Tmax

_
?(k1) > > ’llk k.

We set (k) 1 and s(k) 0 and define a piecewise linear curve ak by connecting the

steps s(j)"

(6.2) if [(k/), (k/-1)].

we have (5.1) by convexity, and so this a is admissible in Algorithm MR.
THEOREM 6.3. Assume that Algorithm MR with each ak defined by (6.2) does

not break down. If x, is a limit point of {xk} such that Ft(x,) is invertible, then
F(x,) 0 and x -+ x,. Furthermore, lk C7 for all su]ficiently large k.

Proof. We claim that if Ft(xk) is invertible, then

< iiF,(x)_ll
/[1 + r/m/\ (- v)llF(x)ll, ff < ’q < 1.(6.3) IIo(’)11
\ 1 ?max ]
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(1) (< rmax) thenIndeed, if /k <_ r/ _< /k

IIF’(xk) k()ll --< IIF(xk)ll + IIF(xk) + F’(xk)k()ll

< ( + )lIF(x)ll
1 + /max<
1 T]max

and if r/(k1) _< r/ <_ r/(k) (= 1), then

Since IIk()ll -< IlF’(xk)-Xll IIF’(xk)k()ll, inequality (6.3) follows.
It is clear from (6.3) that an inequality of the form (5.3) holds for xe sufficiently

near a point x, such that F’(x,) is invertible, and the theorem follows from Theorem
5.2. D

7. Equality curve methods. In this section, we consider instances of Algo-
rithms MR and TL in which each curve a is continuous, satisfies ak(1) 0, and is
such that (5.1) holds with equality, i.e.,

(7.) IIF(xk) + F’(xk)k()ll llF(xk)ll, Tk <_ rl <_ 1.

In 8 we give important applications in which such ak’S are easily determined. Here,
we reformulate Algorithms MR and TL appropriately for such ak’s and establish a
somewhat specialized global convergence analysis, assuming that the norm is an inner
product norm. These reformulated algorithms can be readily implemented as practical
algorithms once a means of determining such tYk’s has been specified.

At the kth iteration of Algorithms MR and TL, the while-loop terminates if

(7.2) IIF(x + os:(n))ll < [1 t(1 ’qa)] IIF(x)ll.

By analogy with (2.4), we define

aredk(rlk) =--IIF(xs:)ll- IIF(x -4-’k(rk))ll,

predk(rlk) IIF(xs:)ll- IIF(x)+ F’(x)o()ll.

If (7.1) holds, then predk(rk --(1- k)llF(xk)ll, and (7.2)is equivalent to

aredk(rlk) > t. predk(rk).

This leads to the following reformulations of Algorithms MR and TL.
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ALGORITHM ECMR (equality curve minimum reduction method).
LET x0, r]max [0, 1), t ( (0, 1), AND 0 < Omin <Omax < 1 BE GIVEN.

FoR k 0 STEP 1 UNTIL (X) DO:

CHOOSE #k E [0,/]max].
DETERMINE A CONTINUOUS (:rk SUCH THAT (7.1) HOLDS

AND k(1) 0; SET k k.
WHILE aredk(k) < t. predk(k DO:

CHOOSE {9 E [Omin, gmax].
UPDATE 7]k +’- 1 0(1 ?;,).

SET Xk+l Xk -[- (rk (k).

ALGORITHM ECTL (equality curve trust level method).
LET X0, 0 e [0, 1), 0 < t

_
u< 1, AND 0 < gmin < {gmax < 1 BE GIVEN.

FOR k 0 STEP 1 UNTIL (X) DO"

DETERMINE A CONTINUOUS (k SUCH THAT (7.1) HOLDS

AND ak(1) 0; SET k k.
WHILE aredk(Ik) < t. predk(k DO"

CHOOSE ( [gmin, gmax].
UPDATE 7]k +-- 1- 0(1- k).

SET Xk+ Xk -IF aredk(k) >_ u. predk(k CHOOSE k+l
ELSE CHOOSE #k-t-1 e [0, 1 0min(1 ?k)].

Theorem 5.2 provides a general global convergence result for Algorithms ECMR
and ECTL, but we develop a more specialized result under the assumption that the
norm I1" is induced by an inner product (., .), i.e., Ilvll- (v, v) 1/2 for v e Rn.

Define f(x) =_ 1/211F(x)ll 2 for x e Rn and note that the Frchet derivative f’ of

f at x is given by f’(x) (F’(x)* F(x), .), where F’(x)* is the adjoint operator of
F’(x) with respect to (., .). Thus F’(x)* F(x) is the gradient of f at x with respect to
(., .), and -F’(x)* F(x) is the steepest descent direction (see Kantorovich and Akilov
[11, pp. 462-463]).

LEMMA 7.1. If x and s are such that IIF(x) + F’(x)sll < IIF(x)ll, then

(F’(x)* F(x), s) < O,

i.e., s is a descent direction .for f at x.

Proof. Writing r F(x) + F’(x)s, we have

<F’(x)* F(x), s> <F(x),-F(x) + r> <_ -IIF(x)ll + IlF(x)llllrll < o.

LEMMA 7.2. At the kth step of Algorithm ECMR (Algorithm ECTL), assume
that F(xk) = 0 and set

(7.3) " inf
I(F(xk), F’(xk) ak(r/)>

If k > 0 and F’(xk) is inveible, then

(7.4) Ilak(V)]l 2llf’(xk)-ll (1 )lF(xk)l]

for max{k, (1 /)/2} _< r] _< 1.
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Proof. For /k _< ?/ _< 1, we have

:llF(x)ll:= IlF(xa) + F’(zk)()11
(7.5)

IlF(x)ll u + 2(F(x),F’(x)a())+ IIF’(x)()ll

Define

[(F(xa), F’(xk)

and note that (F(xk),F’(xk)ak(?/)) < 0 by Lemma 7.1. Then (7.5) gives

IIF’(xk) ak(?/)ll 2 2"(?/)llF(xc)llllF’(xk ak(?/)ll + (1 ?/2)llF(x)ll 2 0.

This is a quadratic equation in IIF’(x),:"(r)ll, the solutions of which are

7(?/)llF(xk)ll{l+il
Since ak(?/) is continuous and ak(1) 0, we must have

(7.6) IIF’(x)a()ll-’()llF(xa)ll{1-11 1-?/2 }/(?/) 2

whenever ?/ is sufficiently near one. In particular, since (1- ?/2)/,),(?/)2 < 1 for
max{, (1- ,)1/2} < ?/< 1, we must have (7.6) for max{k, (1- ,)1/2}

_
?/< 1.

Since 1 v/1 e _< e whenever 0 _< e _< 1, it follows that

1--?/2 < 2
IIF’(xklk()ll < ()llF(xk)ll ()U --(1--)llF(xk)ll

for max{k,(1- .)1/2} <_ ?/ < 1. Since Ilak(?/)ll <_ IIF’(xa)-II IiF’(xa)aa()ll,
inequality (7.4) follows.

It is clear from (7.3) that k > 0 if and only if the vectors F’(xk)a(?/) are
bounded away from orthogonality with F(xk). Moreover, if F(xk) is invertible, then
/k > 0 if and only if the vectors k(?/), which are descent directions for f at xk, are
bounded away from orthogonality with the steepest descent direction -F’(xk)* F(x).
This follows from

a(F,(xa))_ I{F’(x)* F(x),a())l <

I(F’(x)* F(), (’))l

where a(F’(xk)) =_ IIF’(x)llllF’(x)-ll is the condition number of F’(xk).
If F(x) = O, F’(xk) is invertible, and a is such that -k > 0, then it fol-

lows from Lemmas 7.2 and 5.1 that neither Algorithm ECMR nor Algorithm ECTL
breaks down in the while-loop. In fact, if F(xk) is invertible, then it is always
possible to avoid breakdown in either algorithm. Indeed, one can choose rk(?/) ------(1- ?/)[-F’(xk)-lF(xk)], for which (7.1) holds. For this ak, if F(xk) 0, then
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"k 1, and if F(xk) O, then ak(l) =-- O. In either case, neither algorithm breaks
down in the while-loop.

The specialized global convergence result below is an immediate corollary of The-
orem 5.2 and Lemma 7.2.

THEOREM 7.3 (global convergence of algorithms ECMR and ECTL). Assume
that Algorithm ECMR (Algorithm ECTL) does not break down. If x, is a limit point
of {xk} such that F’(x,) is invertible and if there exists a " > 0 independent of k
such that

(7.7) "k inf I(F(xk)’F’(xk)ak(l))l > "
whenever F(xk) = 0 and xk is sufficiently near x,, then F(x,) 0 and xk -* x,.
Furthermore, k flk for all sufficiently large k.

Proof. Set K IIF’(x,)-l]l and assume that 5 > 0 is sufficiently small that
F’(z) -1 exists and ]]F’(x)-ll <_ 2K whenever x e Nh(x,) and, furthermore, that
(7.7) holds whenever F(xk) 0 and xk e Nh(z,).

Suppose that xk e N(x,). If F(xk) O, then (7.7) and Lemma 7.2 give

4K
(.s) II(,)il <_ ---(1-
for max{f/k, (1 --.),2)/2} _< r/ _< 1. If F(xk) 0, then ak(l) =-- 0 since F’(xk) is
invertible; thus equation (7.8) still holds. It follows easily that there is a F for which
(5.3) holds whenever Xk E Nh(x,), and the theorem follows from Theorem 5.2.

8. Applications of equality curve methods. In this section, we give applica-
tions of the results in 7, focusing on ways of determining the curves ak in Algorithms
ECMR and ECTL. In the first application, our main purpose is to outline ways of
determining these curves in certain Newton iterative methods; we also show how to
obtain a dogleg globalization of (exact) Newton’s method using Algorithm ECTL. In
the second application, we show how Levenberg-Marquardt globalizations of Newton’s
method can be obtained from Algorithms ECMR and ECTL.

We assume throughout that I1" is induced by an inner product (., .).
Application 1. Piecewise linear backtracking through residual minimiz-

ing steps. Suppose that the Newton equation (1.2) is solved approximately using a
residual minimizing iterative method, i.e., a method for solving a linear system Au b
that begins with an initial approximate solution u0 (and residual ro =- b- Auo) and,
at the ith iteration, determines a subspace K:i c_ Rn and a correction

zi e arg min lib- A(uo + )11.
zlCi

There are many such methods. Two familiar examples, in which I1" II- I1 II, are
the GMRES method of Sand and Schultz [15], with/C span{r0, Aro,..., A-lr0},
and the conjugate gradient method applied to the normal equations ATAx ATb, or
CGNR (see Elman [9]), with K:i _= span{ATro, (ATA)ATro,..., (ATA)i-IATro}.

Here, we require only that /C C /(:2 C .... Then pi =_ I]b-A(uo+zi)l is
nonincreasing in i. The following lemma shows that if pi > pj for some i < j, then
the residual norm is strictly monotone decreasing along the line segment from u0 + zi
to Uo + zj and gives a parametrization of this line segment in terms of the residual
norm.
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LEMMA 8.1. Suppose that Pi > Pj. For pi >_ p >_ pj, set

T(p) 2 pj2 and z(p) T(p)Zi + (1 T(p) )zj.
p p

Then lib- A(uo + z(p))[[ p for p, >_ p >_ pj.

Proof. Defining IIW[IA [Inwlt for w e R, we have

lib- A(uo / z)ll Ilu o zllA.
Therefore, for any l, we have zt P(u- u0), where Pt denotes I1" llA-orthogonal
projection onto K:t, and

pz I1 o zllA IIP(u uo)llA,

e? Z- Also, sinc < j, c P e? e?e 
It follow8 that for pi p pj,

lib- A(uo + z(p))ll = Ilu o (p)I1

IIT(R)P(u UO) + ( T(R))P(u uo)ll

T(R)IIP(u 0)11 + (X (p))IIP(u uo)ll

T(R)2R + (1 --T(R)2)R
p2.

We determine a curve ak at the kth step of Algorithm ECMR or Algorithm
ECTL as follows: If F(xk) 0, then ak(l) 0 for /k _< / _< 1. If F(xk) = O, then
we apply a residual minimizing method to the Newton equation (1.2), beginning with

zero as the initial approximate solution, to obtain approximate solutions s(k) 0,

S(k1), S(kink), which are not necessarily consecutive iterates but such that

-i) (m)1 /(kO) > r/(kI> >’"> r/(km’ > f/e _> /

where

?(k0 IIF(xk) + F’ (xt) s(i)
IIF(xk)ll

0,..., ink.

:(mk) either by redefining /k to be _(mk)), then we force /k ’lk .% or byIf /k > ?(kmk
(’) and s(km-) whichreplacing 8(km) with an appropriate convex combination of sk

is easily done using Lemma 8.1. We take ak to be the piecewise linear curve connecting

s(k), S(km). It follows from Lemma 8.1 that this curve can easily be parametrized
continuously in /such that (7.1) holds and ak(1) 0.

We give global convergence results for Algorithms ECMR and ECTL with each
(rk determined in this way.

LEMMA 8.2. If IIF(xk)ll 0 and [[F(xk) + F’(xk) s[[

_
[[F(xk)H for some s and

/E [0, 1), then

I<F(x,),F’(x,) s>l > 1 r/

IlF(x,)llllF’(x,) 11 1 + 7
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Proof. Writing r F(xk) + F’(xk)s, we have Ilrll <_ ?]llF(xk)ll < IIF(xk)l[. Then
F(xk) s : O, and

IlF(xk IIF’(xk) 8ll
(F(x), --F(xk + r)

IIF(xk)llll F(x) + rll

> IIF(x)ll -IIF(x)llllrll > X-
IIF(x)ll (llF(x)ll + I111) +

THEOREM 8.3. Assume that Algorithm ECMR with each crk determined as above
does not break down and that ?](kl) <_ ?]max whenever F(xk) = O. If x, is a limit point

of {Xk} such that F’(x,) is invertible, then F(x,) 0 and x x,. Furthermore,
?]k 1 for all sufficiently large k.

Proof. We claim that if F(xk) 0 and ?](k1) _< ?]m, then

inf
I(F(xk)’F’(xk)akO?))l > 7

W<,<X IIF(x)I[IIF’(x) (7)11 1 + ?]max

Indeed, if ?](kl) < ?] < 1, then rk(?]) TS(k) for some T E (0, 1], and Lemma 8.2 gives

I(F(x), F’(xk) a(?]))
IIF(xk)llllF’(xk) ()11

I(F(xk),F’(xk) sk))l" 1 ?]) 1 ?]max

IIF(xk)llllF(xk) s(l)ll
>

1 + ?]()
>

1 + ?]max

If /k < ?] < ?](i), then it follows from Lemma 8.2 that

I(F(xe),F’(xe)a(V))l > !,- >
IlF(xa)llilF’(x) ae()ll i +

(1) 1 ?]max1 --?]k >(1) 1 + ?]mx

The theorem now follows from Theorem 7.3. B
To treat Algorithm ECTL, we formulate the following condition on F and the

residual minimizing method (with zero as the initial approximate solution) near a
point x,.

Nonorthogonality condition. There exist 5 > 0 and > 0 such that if x N(x,)
and F(x) : O, then F’(x) z : 0 for some z e K:i and

max
I(F(x)’F’(x) z)l > A.
IIF(x) IIIIF’(x) zll

F’ (x) z=O

Remark. This is a condition that F’(x)(KI) be uniformly bounded away from
orthogonality with F(x) for x near x,. As in the remark after Lemma 7.2, if F’(x) is
invertible near x,, then it is equivalent to a condition that K:I be uniformly bounded
away frown orthogonality with -F’(x)* F(x), the steepest descent direction for f(x)
-[[F(x)[I 2 for x near x, Since F’ is continuous, this condition holds, e.g. if the
method is CGNR and F’(x,) is invertible, or if the method is GMRES and F’ (x,) +
F’(x,)T is positive definite.

THEOREM 8.4. Assume that Algorithm ECTL with each (7k determined as above
does not break down. If x, is a limit point of {xk} such that F’(x,) is invertible and
the nonorthogonality condition holds, then F(x,) 0 and xk --* x,. Furthermore,
?]k flk for all sufficiently large k.
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Proof. Let 5 > 0 and A E [0, 1) be as ia the nonorthogonality condition, and
assume that xk N(x.) and F(xk) O. By the nonorthogonality condition, we
have

min IIF(xk) -t- F’(xk) zll min
ZII

F’(k)z=0

min
zEK:i

F’(xk)z--O

IIF(x) + F’(xk)zll

min IIF(x) + F’(xk)(z)ll

min (llF(xk)]]2 (F(xk)’F(xk) z)2)ec IIF’(illr
F’(xk)z=0

(F(xk) F’(xk)
1 max

zecl
F’(xk)z--O

< V/1 ,X2 IIF(x)ll.

Then we must have /(i)
_

x/i ,k2 and, by an argument similar to that used in the
proof of Theorem 8.3,

1 /i ),2
inf

I(F(xa),F’(x)m;(r))l > =_
/_<v/<l IIF(x)llllF’(x)o(n)ll

The theorem now follows from Theorem 7.3. []

The dogleg curve is widely used in trust region globalizations of (exact) Newton’s
method; see, e.g., Dennis and Schnabel [5, Chap. 6]. At xk, this curve is the piecewise
linear curve connecting zero, the minimizer of IIF(xk) + F’(xk)s]12 in the steepest
descent direction --F(xk)TF(xk) (the steepest descent step), and the Newton step
--F’(xk)-iF(xk). With I1" II I1" 112, we can determine ak as a subset of this curve
in Algorithm ECTL. Indeed, if we choose K:i -= span{--F’(xk)TF(xk)} and/C2 Rn

and take zero as the initial approximate solution, then the first and second residual
minimizing iterates are the steepest descent step and the Newton step, respectively,
and we obtain the dogleg curve.2 Consequently, we can take ak to be the part of the
dogleg curve from zero to the point at which the local linear model norm is TkllF(x)ll2.
Since the nonorthogonality condition holds for this choice of/C1 if F (x,) is invertible,
the corollary below follows immediately from Theorem 8.4.

COROLLARY 8.5. Assume that Algorithm ECTL with each ak obtained from the
dogleg curve does not break down. If x, is a limit point of {Xk} such that F’(x,) is
invertible, then F(x,) 0 and xk --, x,. Furthermore, Tk Tk for all sufficiently
large k.

Application 2. Levenberg-Marquardt globalizations of (exact) New-
ton’s method. The Levenberg-Marquardt curve is also often used in trust region
globalizations of Newton’s method; see, e.g, Dennis and Schnabel [5, Chap. 6]. At
xk, this curve is swept out by arg minllsll< ]]F(xk) + F’(xk)8112 0 < 5 < CX:), and is
usually given by

(8.1) ak(#) =-- [F’(xk)TF’(xk) + tI] -1 F’(xk)TF(xk), 0 <_ # < oo.

2 The dogleg curve can also be obtained using CGNR: With zero as the initial approximate
solution, the first CGNR iteration gives the steepest descent step, and the Newton step is obtained
after no more than n iterations.
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Note that ak(O) -F’(xk)-:F(xk), the Newton step, and that lim__,o ak(#) O.
It is well known that

7(#) =- IIF(xk) + F’(xk)ak(#)ll2

is strictly monotone increasing in #; furthermore, 7(0) 0 and lim--,oo 7(#) 1.
Therefore, we can reparametrize the curve in r/ and, setting ak(1) 0, obtain a
continuous curve (:rk such that ak(1) 0 and

IIF(xk) + F’(xk)ak(/)ll2 ?llF(xk)ll2, 0<__<1.

We obtain Levenberg-Marquardt globalizations of Newton’s method from Algo-
rithms ECMR and ECTL by taking [[. [[ [[. [[2 and taking each ak to be the subcurve
of the Levenberg-Marquardt curve from zero to the point at which the local linear
model norm is Tk F(xk)l[ 2.

THEOREM 8.6. Assume that Algorithm ECMR (Algorithm ECTL) with each
rk obtained from the Levenberg-Marquardt curve does not break down. If x, is a
limit point of {xk} such that F’(x,) is invertible, then F(x,) 0 and xk x,.
Furthermore, lk Tk for all sufficiently large k.

Proof. Set g max{[[F’.(x,)[[2, I[F’(x,)-:[12} and let 5 > 0 be sufficiently small
that F’(x)- exists and max{liE’(x)[[2, [[F’(x)-l[[2} _< 2K whenever x e N(x,).

Suppose that xk E N(x,) and F(xk) = O. We derive a lower bound on /k in
(7.7) with k 0; this will also be a lower bound for any /k E [0, 1). We work with
the usual parametrization (8.1). Note that

F’(xk)ak(lz)=--F’(xk)< #I]- F’(x)TF(xk)

ix +, F(x)
=-Q (I + #h-)-1QTF(xk),

where F(xk)F(xk)T QAQT, Q is orthogonal, and A diag (,..., An) with each

Ai > 0. Setting Amax K maxi Ai, min mini Ai, and w (w,..., Wn)T QTF(xk),
we have from (7.7) and (8.2) that

IwT (I w .A-1)-lw[
k inf

n i 2

> inf ( Amin )/( Amax )
min min +inf

0D( max max T

(min
2

__( 1

[iF,(xk)_lll2llF,(x)[12
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1
256Ks"

Thus (7.7) holds with ’ (256KS) -1 whenever xk E N,(x,) and F(xk) O, and the
theorem follows from Theorem 7.3.

9. Postview. In this paper, we have outlined inexact Newton methods with
strong global convergence properties. Our purposes have been the following:

to introduce new algorithms that will be useful in implementing Newton
iterative methods and other Newton-like methods in which the Newton equation (1.2)
is solved inaccurately;

to provide a general framework for treating globalizations of Newton’s method
and related methods.

Our most general method is Algorithm GIN in 2; all subsequent algorithms are
special cases of it. The analysis for Algorithm GIN in 3 provides the basis for all
global convergence results in the sequel; for all methods, except the paradigm methods
in 5, these include a basic result to the effect that, under reasonable assumptions, if
a sequence of iterates has a limit point at which F is invertible, then that limit point
is a solution of (1.1) and the iterates converge to it. The developments in 2-3 are
first applied directly in 4 to give global convergence results for trust region methods
and global approximate Newton methods. They are then used in 5 to develop a
theoretical basis for Algorithms MR and TL, which, in turn, serve as paradigms for
algorithms in 6-8 that are of ultimate interest.

The algorithms in 6-8 test initial inexact Newton steps and, if they are unsatis-
factory, determine new steps in specified ways until satisfactory steps are found. For
each of these algorithms, we show, in addition to the basic global convergence result
above, that initial inexact Newton steps are ultimately satisfactory near a solution at
which F is invertible and, therefore, the convergence can be made as fast as desired,
up to the rate of Newton’s method, by choosing appropriately small initial inexact
Newton levels.

The algorithms in 6 are backtracking methods. The principal method is Algo-
rithm INB for backtracking from initial inexact Newton steps that achieve a specified
minimum reduction of the local linear model norm but otherwise are arbitrary. This
algorithm is based on Algorithm MR. It can easily be implemented as a practical
algorithm once a means of determining initial inexact Newton steps is given. As a
special case of Algorithm INB, we give a backtracking globalization of (exact) New-
ton’s method in Algorithm ENB. We also discuss extensions of Algorithm INB to
piecewise linear backtracking through inexact Newton steps.

The algorithms in 7-8 are equality curve methods. The basic algorithms are
Algorithms ECMR and ECTL in 7, which are based on Algorithms MR and TL,
respectively. To implement these, one must provide a means of specifying continuous
curves of inexact Newton steps along which inexact Newton conditions are satis-
fied with equality. Applications are given in 8 in which such curves are easily and
naturally determined. The principal application is to Newton iterative methods in
which the Newton equation (1.2) is solved approximately using a residual minimiz-
ing iterative method; we also show how to obtain dogleg and Levenberg-Marquardt
globalizations of (exact) Newton’s method.

We close with Fig. 1 below, which gives an organizational chart of the methods
and applications in this paper and their interrelationships.
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Basic method: Algorithm GIN (2)

Paradigm methods:
Algorithm MR
Algorithm TL

Applications: (4)
trust region methods (Algorithm TR)
global approximate Newton methods (Algorithm GAN)

(5)

Backtracking methods: (6)
Algorithm INB

backtracking globalization of Newton’s method
(Algorithm ENB)

piecewise linear backtracking through inexact Newton steps

Equality curve methods:
Algorithm ECMR
Algorithm ECTL

(7)

Applications: ({}8)
piecewise linear backtracking through residual minimizing steps

dogleg globalization of Newton’s method
Levenberg-Marquardt globalizations of Newton’s method

FIG. 1. Organizational chart of algorithms and applications.
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