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Abstract

High pulsating blood pressure and severe stenosis make fluid–structure interaction (FSI) an important role in

simulating blood flow in stenotic arteries. A three-dimensional nonlinear model with FSI and a numerical method using

GFD are introduced to study unsteady viscous flow in stenotic tubes with cyclic wall collapse simulating blood flow in

stenotic carotid arteries. The Navier–Stokes equations are used as the governing equations for the fluid. A thin-shell

model is used for the tube wall. Interaction between fluid and tube wall is treated by an incremental boundary iteration

method. Elastic properties of the tube wall are determined experimentally using a polyvinyl alcohol hydrogel artery

stenosis model. Cyclic tube compression and collapse, negative pressure and high shear stress at the throat of the

stenosis, flow recirculation and low shear stress just distal to the stenoses were observed under physiological conditions.

These critical flow and mechanical conditions may be related to platelet aggregation, thrombus formation, excessive

artery fatigue and possible plaque cap rupture. Computational and experimental results are compared and reasonable

agreement is found.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A nonlinear three-dimensional (3D) model with

fluid–structure interactions (FSI) and an iterative nu-

merical method based on generalized finite difference

(GFD) are introduced to model unsteady blood flow in

stenotic arteries and simulate cyclic wall compression

and unsteady viscous flow in a stenotic elastic tube with

large strain and large deformation. Flow velocity ac-

celerates when passing through a stenosis (a constriction

in blood vessels) which lowers flow pressure. If the ste-

nosis is severe enough, blood pressure may become

negative and cause artery compression or even collapse

leading to serious clinical consequences such as stroke or

heart attack [1,3,41,44]. The mechanism for the whole

collapse process is not fully understood. Since blood

flow is pulsatile and tube collapse is fully 3D, a 3D

unsteady model is necessary even though the resting

shape of the stenotic tube is axisymmetric in this simu-

lation. The incompressible Navier–Stokes (N–S) equa-

tions are used for the fluid model while a thin-shell

model is used for the tube wall so that cyclic wall col-

lapse can be simulated [10]. Pressure–cross-section area

relationship of the tube wall (known as the tube law,

which is essentially a bi-axial stress/strain relation) is
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measured at three locations of the tube experimentally

using a PVA hydrogel stenotic tube whose mechanical

properties are close to that of bovine carotid arteries

[23,24]. The classic tube law introduced for a uniform

collapsible tube [21,38] is extended to include axial po-

sition, longitudinal tension and axial curvature changes

so that it is more suitable for a stenotic compliant tube.

A physiological 36.5% axial pre-stretch is applied to the

stenotic tube model. Physical parameters and geomet-

rical dimensions corresponding to blood flow in human

carotid arteries are used to make the model physiologi-

cally relevant. In the computational wall model, tube

expansion (which is not assumed to be axisymmetric)

under positive pressure is obtained pointwisely using a

pressure–radius relationship derived from the tube law.

For tube deformation under negative pressure, the cir-

cumferential arc length is assumed to be inextensible

[10], and tube compression and collapse are determined

by solving the thin-shell equilibrium equations using

flow pressure and shear stress distributions on the tube

wall. Mechanical parameters such as the Young’s

modulus and the bending stiffness coefficient are deter-

mined by experimental measurements. The wall model

and fluid model are solved iteratively using an incre-

mental boundary iteration method [37]. Effects of ste-

nosis severity and pressure conditions on cyclic wall

bending and compression, flow velocity, pressure, and

shear stress are investigated to quantify possible wall

collapse conditions and flow characteristics which may

be related to artery fatigue and plaque cap rupture.

Details of the model, method and results are given in the

following sections.

2. Background

FSI play important roles in many biological pro-

cesses, especially for blood flow in stenotic arteries.

Blood vessels are highly compliant. Under pulsatile

blood pressure, high grade stenoses cause critical flow

and mechanical conditions such as high flow velocity,

high shear stress, flow recirculation, negative pressure

and cyclic artery compression which may be related to

platelet aggregation, thrombus formation, and excessive

artery fatigue (for reviews, see [25,47]). Changes in blood

pressure causes artery deformation which affects stenosis

severity (percentage of artery diameter narrowing). A

small change in stenosis severity leads to considerable

changes of flow velocity, shear stress and pressure in the

stenotic region, which in turn affects artery deformation.

The FSI continues and may lead to artery compression

or even collapse when stenosis becomes severe enough

(severity 70–80% in diameter). There has been increasing

evidence that stenotic plaque may rupture under physi-

ological conditions and cause fatal subsequential athero-

sclerotic diseases such as myocardial infarction, cerebral

stroke, etc. [5,7,8,15,30]. Experiment-based computa-

tional models with strong FSI are needed to better un-

derstand these processes and to quantify physiological

conditions under which artery collapse may occur.

Extensive experimental research have been conducted

to quantify mechanical properties of arteries [13,14,18].

However, most of the data obtained are for arteries

under expansion with positive pressures. For collapsible

tubes, pressure–tube cross-section area relationship

(tube law) has been widely used to describe the elastic

properties of the tube wall under both positive and

negative pressure conditions. Considerable work for

flow in collapsible tubes of uniform diameter has been

reported in the last 25 years and many interesting phe-

nomena such as flow choking, flow limitation and dy-

namic behavior (flutter) have been identified and

investigated (for a review, see [9,32]). For flow in ste-

notic collapsible tubes and arteries, research has been

focused on the effect of stenosis severities on the flow

and wall motions under various pressure conditions.

Different stenoses were used in several investigations to

quantify pressure–area and pressure–flow relations and

collapse conditions [4,20,23,24,34,39,41].

Various computational models (from 1D to 3D, with

rigid or compliant tubes) have been used to quantify

flow and wall mechanical behaviors [1,3,9,11,21,27,

44,48]. It has been found that artery stiffness, stenosis

geometry and severity and imposed pressure conditions

are the dominating factors affecting blood flow and ar-

tery motion. However, except the 1D models, higher

dimensional models with FSI simulating cyclic wall

compression and collapse are still lacking in the litera-

ture for the following reasons:

(i) Mechanical properties of arteries under compres-

sion are not readily available. Without the experi-

mental data, modeling for artery compression will

have no supporting basis and no validation.

(ii) Stenotic artery wall behavior under pulsatile pres-

sure is very complex. It is fully 3D, dynamic, in-

volves large strain, large deformation, and cyclic

tube collapse and expansion. Severe stenosis makes

FSI very strong with small change in one causing

large change in another. Regular boundary itera-

tion methods may fail to converge because of that

[37].

(iii) Severe stenosis causes critical flow conditions which

are computationally difficult to handle. Algorithms

that converge for normal pressure and flow condi-

tions may not converge under these critical condi-

tions. For the case we are considering, flow

pressure drops from 150 to )12.5 mmHg just across
a 80% stenosis. That is from about 199,800 to

)16,650 dyn/cm2 in less than 1 cm. That leads to

very large pressure gradient (105) in the flow field.

The flow speed at the throat of the stenosis is about
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400 cm/s just 0.01 cm away from the wall which

leads to very high flow shear stress on the tube wall.

These critical conditions require special handling, at

least much finer mesh should be used near the tube

wall and stenosis to get enough resolution.

The above leads to the introduction of our compu-

tational model which provides a first order approxima-

tion of the complex artery cyclic collapse process with

available experimental data.

3. The Computational model

3.1. The fluid model

We consider viscous flow in a compliant tube simu-

lating pulsatile blood flow in stenotic carotid arteries.

The flow is assumed to be laminar, Newtonian, viscous

and incompressible. Using the arbitrary Lagrangian–

Eulerian (ALE) formulation [19,35], the N–S equations

become:

qðou=ot þ ððu� ugÞ � rÞuÞ ¼ �rp þ lr2u; ð1Þ

r � u ¼ 0; ð2Þ

where u and p are flow velocity and pressure, o=ot is t-
derivative with mesh points fixed, ug is the mesh velocity.

Assuming the fluid and wall move together at the tube

wall, we have:

u ¼ ðu; v;wÞjC ¼ ox

ot
: ð3Þ

Here C stands for the inner tube wall (Fig. 1), x ¼
ðr; h; zÞ is the position vectors of the deformed tube wall,
u, v and w are the radial, angular and axial components

of the flow velocity. The undeformed inner tube wall

radius with a symmetric stenosis is given by

RðZÞ ¼ R0 � SðZÞ; ð4Þ

SðZÞ ¼ S0R0

1� cos
2pðZ � Z1Þ
ðZ2 � Z1Þ

� �� �2
4

; Z1 6 Z6 Z2;
0; otherwise:

8><
>:

ð5Þ
where X ¼ ðR;H; ZÞ is the position vector of the unde-

formed tube wall, R0 is the radius of the uniform part of

the tube, SðZÞ specifies the shape of the stenosis, S0 is the
stenosis severity by diameter, i.e., reduction of the tube

diameter caused by the stenosis, Z1 and Z2 specify the

beginning and ending of the stenosis. Stenosis severity is

commonly defined as

S0 ¼
ðR0 � RminÞ

R0

	 100%: ð6Þ

At the inlet and outlet of the tube, we set:

pjz¼0 ¼ pinðtÞ; pjz¼‘ ¼ poutðtÞ; ð7Þ

ou

oz

				
z¼0;‘

¼ 0: ð8Þ

We start the computation from zero pressure and zero

flow state and gradually raise the pressure to the pre-

scribed conditions.

3.2. The wall model

Mechanical properties of arteries under compression

and pulsatile conditions are very hard to obtain. It is

hard to simulate dynamic wall deformation and collapse

correctly without this information. However, to measure

the 3D nonlinear dynamic wall mechanical properties

and solve the complete nonlinear wall model [13] involving

large strain and large deformation in the collapse process

is a forbidding task. Most existing linear or nonlinear

wall models for arteries are applicable only to normal

positive pressure conditions and are no longer valid when

pressure becomes negative and the artery is under com-

pression [13,40].

In this paper, we use tube law and a thin-shell model

[10] to determine the wall motion under both positive

and negative pressure conditions. To determine the elastic

properties of the stenotic tube, the pressure–area rela-

tionship (tube law)

ðp � peÞjZ¼Zi
¼ piðaÞ; a ¼ A=A0; i ¼ 1; 2; 3 ð9Þ

is measured for a tube made of PVA hydrogel with a

80% thick-walled stenosis under 36.5% axial stretch. The

measurements are taken at three locations of the tube

(straight, shoulder and throat) to take the stenotic effect

into consideration. The experimental data is given by

Fig. 1. A and A0 are the deformed and undeformed

cross-section areas of the tube respectively. The external

pressure pe is set to zero in this paper. For computa-

tional convenience (as well as when conducting the ex-

periments), the inverse of (9) is used to determine a when
p is given (noting pe ¼ 0),

a ¼ aiðpÞ; i ¼ 1; 2; 3: ð10Þ

Mathematical interpolation is used to connect the

three experimentally measured tube laws to cover the

entire tube

agðz; pÞ ¼
X

i

CiðzÞaiðpÞ; agðzi; pÞ ¼ aiðpÞ; ð11Þ

where CiðzÞ are properly chosen to reflect the influence

of the shape and stiffness of the stenosis.

Wall deformation is determined using two different

methods depending on whether the tube is under ex-

pansion or compression. For the portion where the
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pressure is positive, the tube is under expansion and

axisymmetric (or is nearly axisymmetric), (11) is used to

derive the radius–pressure relation:

r ¼ rðz; pÞ: ð12Þ

which is used to determine tube radius pointwisely. Eq.

(12) is equivalent to a stress/strain relation for the tube

under positive pressure conditions.

For the post-buckling stage, tube law (11) is no

longer adequate to determine the tube deformation be-

cause the tube is no longer nearly axisymmetric. Actu-

ally, for a < 1, our experimental measurements provide

additional information for tube wall deformation under

compression (see Fig. 1 for collapsed shape). We use a

thin-shell model [10] to determine wall deformation

under compressed or collapsed conditions. Motivated by

Peskin’s fiber idea [33], we discretize the tube wall by a

set of z-rings and a set of h-lines (longitudinal lines on
the tube with fixed h angles). Following Flaherty [10],

the rings are assumed to be inextensible (so it will change

shape under negative pressure or stress) and the bending

moment M is assumed to be proportional to the cur-

vature change:

M ¼ Kpð1=R� jcÞ; ð13Þ

where R is the undeformed tube radius, jc is the de-

formed ring curvature, and Kp is a stiffness coefficient

determined by the wall material and geometry. For a

thin-wall tube, Kp is determined by [9]:

Kp ¼
Eh3w

12ð1� m2Þr3 ; ð14Þ

where E is the Young’s modulus of the tube determined

from experiment [44], hw is wall thickness, m is Poisson

Fig. 1. The stenotic tube and the tube law measurements.
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ratio, r is the mean tube radius. Following the derivation

in Flaherty’s paper [10] with some adjustments, use the

natural coordinates and neglecting the inertia force

(<1% of tension forces) and the circumferential shear

stress from the fluid, the equilibrium equations for the

tube wall are given by

oTc
os1

þ jcN ¼ 0; ð15Þ

oN
os1

� jcTc ¼ �ðp þ KpTLðjL � jL0ÞÞ cos b; ð16Þ

oM
os1

þ N ¼ 0; ð17Þ

oTL
os2

¼ �s; ð18Þ

where Tc and N are the tangential and outward normal

components of the resultant stress on the z-rings re-

spectively, TL is the longitudinal tension along the h-lines
and s is the fluid shear stress, jL and jL0 are curvatures

of the deformed and undeformed h-lines, b is the angle

between the normal directions of the ring and the tube

wall surface, s1 and s2 are the arc lengths along the z-

rings and h-lines respectively. The axial tension and

strain relationship is measured experimentally,

�L ¼ �LðTLÞ; ð19Þ

which is needed to determine the axial displacement of

the grid points when TL is obtained from (18). The inlet

and outlet of the tube are not allowed to move in the

axial direction to prevent the entire tube from being

pushed away by the flow. This completes the FSI model.

Remark 1. Due to lack of information about the con-

stitutive laws of arteries under compression, the thin-

shell model and tube law (11) combined together

provide a direct method to determine tube deformation

under collapsed condition. While the wall model is very

simplified, the wall deformation obtained is controlled

directly by experimental data, and the results obtained

provide a good approximation for wall and flow be-

haviors in the physiological artery collapse process.

Better wall models and experimental data for tube ma-

terial under compression are needed to get detailed

stress/strain distributions in the tube wall which cannot

be obtained from the current model [43,44].

4. The numerical method

A numerical method using the conventional ALE-

based staggered GFD over an irregular grid with up-

wind differencing and an incremental boundary iteration

technique for FSI is introduced to solve the model

[19,22,29,31,37]. Use of ALE formulation enables us to

choose the mesh properly to avoid large mesh distortion

and eliminates the needs of interpolating the flow vari-

ables for previous steps at the new grids. GFD makes it

possible for us to use finer mesh near the tube wall and

in the stenotic region to handle the critical flow con-

ditions involved in the problem (Fig. 2). The incre-

mental boundary iteration method is essentially a

relaxation technique which is used to handle ‘‘pressure

over-shooting’’ and ‘‘boundary over-shooting’’ [2,37]

and improve on the regular boundary iteration method

to get convergence for the FSI model with large strain

and large deformations. Details of the numerical method

are outlined below.

Fig. 2. The nonuniform mesh used in the computation.
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4.1. The generalized finite difference concept

The advantage of the GFD method is that GFD

schemes can be derived using arbitrary irregular grids

[29]. To derive the second order GFD schemes for the

derivatives fr; fh; fz; frr; . . . ; fzz at a given point x0, let

xiðri; hi; ziÞ, ði ¼ 1; . . . ; n; nP 9Þ be n neighboring points
of x0 and,

ai ¼ ri � r0; bi ¼ hi � h0; ci ¼ zi � z0;

qi ¼ ½a2i þ b2i þ c2i �
1=2

; fi ¼ f ðri; hi; ziÞ;

use the Taylor expansion of f at x0 and omitting higher

order terms, we have,

fi ¼ f0 þ aif 0
r þ bif 0

h þ cif 0
z þ 1

2
ða2i f 0

rr þ b2i f
0
hh

þ c2i f
0
zz þ 2aibif 0

rh þ 2bicif 0
hz þ 2aicif 0

rzÞ: ð20Þ

The GFD schemes for the nine derivatives can be

obtained from these equations using least-squares ap-

proximations with proper weight functions. Other GFD

schemes can be derived similarly. Because there are

virtually no restrictions on the selection of the points xi

and the GFD schemes can be obtained automatically in

the computer program each time the domain and mesh

are adjusted, the GFD method is a suitable tool to

handle the irregular geometry with nonuniform grids

and a free moving boundary which requires frequent

remeshing of the domain.

4.2. Discretization of N–S equations over the irregular

geometry with a nonuniform mesh

Rewriting the N–S equations into the form (use the u-

equation as an example),

qut þ qðu
�

� ugÞ;
qðv� vgÞ

r
;qðw� wgÞ

�
ður; uh; uzÞT

þ pr þ
�
� l

r
; 0; 0;� l;� l

r2
;� l

�
ður; uh; uz; urr; uhh; uzzÞT

� q
r
v2 � lu

r2
þ 2l

r2
vh ¼ 0; ð21Þ

for each grid point x0, using a three-point backward

difference scheme ut � ð3uðnþ1Þ � 4un þ uðn�1ÞÞ=2Dt for

the t-derivative, ðu; v;wÞ values from last iteration in the

convection terms to linearize the equation, the GFD

schemes for the space derivatives with the neighboring

points with staggered grids and upwind techniques (Fig.

3), and rearranging the terms and omitting the super-

script (nþ 1), we have the discretized equation:

u0 þ
X18
i¼1

ku
i ui þ ku

19 þ
X18
i¼1

ku
19þipi ¼ 0;

where the nonhomogeneous term ku
19 came from quan-

tities considered known at this step. The other equations

can be discretized in the same way. Using vector nota-

tion, we have:

u0 þ
X18
i¼1

kui ui þ ku19 þ
X18
i¼1

ku19þipi ¼ 0;

ðequation of motionÞ ð22Þ

X12
i¼1

kci ui þ
X12
i¼1

kc12þivi þ
X12
i¼1

kc24þiwi þ kc37 ¼ 0;

ðequation of continuityÞ ð23Þ

where notations kui ¼ ðku
i ; k

v
i ; k

w
i Þ

T
and kui ui ¼ ðku

i ui; kv
i vi;

kw
i wiÞT were used for simplicity.

4.3. The SIMPLER algorithm

Because the fluid–wall interaction model is complex,

we start from a well-tested SIMPLER algorithm [31] to

solve (22) and (23). Let the residuals of the equations of

motion by um, pm be:

um0 þ
X18
i¼1

kui u
m
i þ ku19 þ

X18
i¼1

ku19þip
m
i ¼ Ruðum; pmÞ; ð24Þ

Fig. 3. The staggered grids and numbering of the neighboring

points.
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where notations kui , k
u
i u

m
i and Ru were used in a similar

way as before. Assuming um þ du and pm þ dp satisfy

(22) and using (24) and (22) becomes,

ðduÞ0 þ
X18
i¼1

kui dui þ
X18
i¼1

ku19þidpi þ Ruðum; pmÞ ¼ 0;

neglecting dui terms leads to:

ðduÞ0 ¼ �
X18
i¼1

ku19þidpi � Ruðum; pmÞ: ð25Þ

Substituting um þ du into (23) and using (25), dp can be

determined. Then du follows from (25) and u and p can

be updated accordingly.

4.4. Incremental boundary iteration method

Boundary iteration methods have become popular

for solving problems with FSI recently where the fluid

and solid models are solved iteratively until convergence

is obtained. However, it has been known that the

boundary iteration method may fail to converge if the

tube wall is considerably compliant [37]. We use an in-

cremental iterative method to reduce the ‘‘displacement

over-shooting’’ and improve the convergence. Displace-

ment over-shooting causes velocity over-adjustment at

the boundary which affects the convergence of the fluid

model. For a given wall adjustment Drðh; zÞ, if the fluid
model fails to converge, we reduce Dr to half and try to

solve the fluid model again. This is repeated until con-

vergence is reached. A similar relaxation technique can

also be used to reduce ‘‘pressure over-shooting’’ which is

the cause of tube wall over-adjustment. When du and dp
are obtained, we update u and p with

unew ¼ uold þ xudu; pnew ¼ pold þ xpdp; ð26Þ

where xu and xp can be chosen between 0 and 1 to

achieve best convergence.

4.5. Numerical method for the wall model

We introduce an iterative method to solve the thin-

shell model. At each boundary iteration, the material

coefficients are determined for each grid point with up-

dated pressure information using the tube laws. Then

Eqs. (15)–(17) are solved on each ring with updated

pressure and longitudinal tension to determine the cir-

cumferential and radial displacements [10]. With these

adjustments, (18) is solved to update the longitudinal

tension which determines the axial displacement of each

grid point. Then (15)–(17) are solved again. This is re-

peated until convergence is reached.

5. Results

Computations are conducted for various pressure

and stenosis conditions to quantify cyclic wall com-

pression and collapse phenomena and related flow be-

haviors. Inlet (upstream) pressure is set to 70–110

mmHg and 90–150 mmHg respectively representing

normal and high blood pressures. As for the distal

pressure, Hafner has reported a carotid stump pressure

between 0 and 25 mmHg for 78 out of 418 patients [17].

So outlet (downstream) pressure is set to 20, 10 or 0

mmHg for different cases in our computations and ex-

periments. Cyclic wall compression, tube collapse and

flow characteristics for an 80% stenosis (by diameter)

with pin ¼ 90–150 mmHg and pout ¼ 20 mmHg are more

critical and results are presented in more details. Results

of other cases are reported as appropriate.

5.1. Parameters, geometry, mesh and convergence

The ranges of parameters and the geometry of the

tube used in the computations are chosen to match the

experimental set-up [23,26]:

R0 ¼ 0:4 cm; l ¼ 8 cm ðtube lengthÞ; Z1 ¼ 3:2 cm;

Z2 ¼ 4:8 cm; m ¼ 0:04 cm2=s; q ¼ 1 g=cm3; m ¼ l=q:

Reynolds number Re is defined as D � U=m where D is the

entrance tube diameter (2R0) and U is the entrance av-

erage velocity. The Reynolds number for a 80% stenosis

with inlet pressure 100 mmHg and outlet pressure 20

mmHg is about 300. The units given above are used

throughout the paper.

Nonuniform meshes (Fig. 2) are used in the compu-

tation to handle the critical flow conditions involved in

the collapse process. We look for solutions which are

symmetric with respect to the horizontal plane and the

model is solved over the ðr; h; zÞ-domain ½0;H � 	 ½0; p� 	
½0; l�. The step sizes in r- and z-directions are reduced by

fixed ratios towards the wall and the middle of the tube

length to get better resolution there. The ratios are

qr ¼
driþ1
dri

¼ 0:92; qz ¼
dziþ1
dzi

¼ 0:95: ð27Þ

For a ð10r 	 20h 	 120zÞ mesh, we have dr1 ¼ 0:0566,
dr10 ¼ 0:0267 at the inlet of the tube where the step size

at the wall dr10 is less than half of the starting step size

dr1. For z, we have dz1 ¼ 0:2097 at the inlet, dz60 ¼
0:01017 at the middle of the tube length which is about

1/20 of dz1. Uniform step size is used for h variable. By

using nonuniform mesh, much better resolution is

achieved near the wall and stenotic region with fewer

grid points which lead to considerable savings of mem-

ory and CPU time.

Since analytic solutions for flow in a compliant ste-

notic tube are not available, numerical solutions are

D. Tang et al. / Computers and Structures 80 (2002) 1651–1665 1657



compared with the exact solution for flow in a rigid

straight tube [12],

w ¼ � 1

4m
ðR2

0 � r2Þpz; u ¼ v ¼ 0; pz ¼ ðpout � pinÞ=l:

ð28Þ

and Table 1 gives a summary of the errors which show

that the algorithm converges reasonably well. The ac-

curacy of the numerical solutions may be better than

what Table 1 shows because the exact solution is as-

sumed to be z-independent while the actual tube length

is always finite and the numerical solutions are slightly

z-dependent.

To check the accuracy and convergence of the algo-

rithm for the complaint model with stenosis, three me-

shes were tested and the results are given in Table 2. As

the mesh gets finer, errors decrease roughly in a linear

fashion indicating that the method is of first-order ac-

curacy. Mesh ð10r 	 20h 	 120zÞ is used in our general

computations in this paper. The tolerance for the N–S

solver (SIMPLER iteration) is set to 1:0	 10�7, i.e.

solutions of (22) and (23) are considered obtained if the

relative errors (corrections) of velocity and pressure are

less than the specified tolerance (TOL1). The tolerance

for the boundary iteration is set to 1:0	 10�4 (TOL2),

i.e., the solution for the tube wall, flow velocity and

pressure were considered ‘‘converged’’ for a given time

step if the relative errors became less than the tolerance

specified. Periodic solutions were considered obtained

when the solutions started to repeat itself within 1%

tolerance (TOL3). Our calculations indicate that three

periods are needed for the solutions to become periodic.

5.2. Wall deformation, cyclic wall compression and

collapse

Fig. 4 shows tube deformation when the inlet pres-

sure is at its minimum and maximum respectively. The

tube is collapsed at the distal side of the stenosis when

inlet pressure is at its maximum. The location of the

collapse is about one diameter distal to the stenosis,

consistent with experimental observations. The cyclic

compression repeats as the inlet pressure changes peri-

odically.

Fig. 5 gives ultrasound images of the vertical views of

the tube with pressure conditions set at pin ¼ 70–130

mmHg and pout-avg ¼ 0 mmHg. The tube is fully col-

lapsed when pin is at its maximum. pout-avg was set to 0

mmHg in the experiment so that full tube collapse could

be observed. pout ¼ 20 mmHg is more physiologically

relevant and is used in our numerical simulation as the

main case.

5.3. Negative pressure in the stenotic tube

Pressure imposed at inlet is given by Fig. 6(a). Since

pressure is directly related to tube compression and

collapse, minimum pressure for the entire fluid domain

as a function of time is plotted in Fig. 6(b). The slight

waviness is due to the fact that minimum pressure may

occur at different neighboring points for different times.

Transmural pressure at the tube wall at t ¼ 0:5 is plotted
in Fig. 6(c). Transmural pressure at the tube wall at

h ¼ 90� changing with time is plotted by Fig. 7. Pressure
distributions inside the tube were reported in our pre-

Table 1

Comparison of 3D numerical solutions with exact solution for flow in a rigid straight tubea

r 	 h 	 z enðuÞ enðvÞ enðwÞ enðpÞ
20	 16	 60 5:7	 10�7 4:4	 10�9 0.098 3:7	 10�6

30	 20	 80 3:1	 10�7 4:2	 10�9 0.031 2:3	 10�6

40	 24	 100 1:4	 10�7 3:8	 10�9 0.018 1:1	 10�6

a pin ¼ 100 mmHg, p2 ¼ 99:8 mmHg, umax ðexactÞ ¼ 32:98 cm/s, dt ¼ 0:005, time step computed ¼ 1600. Relative errors are defined

as enðf Þ ¼ kfn � fexactk2=kfnk2, n ¼ time step.

Table 2

Order of accuracy of the numerical methoda

r 	 h 	 z ðdr;dh;dzÞend enðuÞ enðvÞ enðwÞ enðpÞ enðHÞ
8	 16	 80 (0.0367, 0.196,

0.0310)

3.918E�3 1.283E�10 1.369E�3 9.922E�6 4.683E�6

10	 20	 100 (0.0267, 0.157,

0.0175)

2.398E�3 1.343E�11 0.874E�3 5.981E�6 2.584E�6

12	 24	 120 (0.0202, 0.131,

0.0102)

1.527E�3 2.473E�12 0.538E�3 3.791E�6 1.576E�6

a p1 ¼ 130 mmHg, p2 ¼ 40 mmHg, S0 ¼ 80%, dt ¼ 0:001, time steps computed ¼ 800. Mesh step size reduction ratios are 0.92 for r

and 0.95 for z. Step sizes given in the table are the minimum r-step size at the inlet of the tube and the minimum z-step at the middle of

the tube length.
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vious papers [45,46] and it was found that minimum

pressure occurs at the throat of stenosis. Because the

prescribed inlet and outlet pressures are positive, the

pressure inside the tube is, in general, positive and

the tube is inflated almost everywhere (about 60% at the

inlet under 100 mmHg). However, negative pressure

may occur at and distal to the stenosis if the stenosis is

severe enough and pressure drop is large enough. Min-

imum pressure occurs at the throat of the stenosis as

expected. Fig. 6(c) and Fig. 7 show clearly that the

Fig. 4. Numerical results for tube wall deformation under maximum and minimum inlet pressure showing cyclic wall compression.

pin ¼ 90–150 mmHg, pout ¼ 20 mmHg, S0 ¼ 80%, portion of the tube plotted: z ¼ 1:5–6.5 cm.

Fig. 5. Ultrasound image of cross-section during flow collapse. pin ¼ 70–130 mmHg, pout-avg ¼ 0 mmHg.
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pressure does not change much on the upstream side. It

decreases drastically across the throat of the stenosis,

reaches its minimum at the throat, then recovers to 20

mmHg, the specified downstream pressure. Minimum

pressure decreases as the prescribed inlet pressure in-

creases, reaches its lowest value ()12.5 mmHg) when

inlet pressure reaches its maximum 150 mmHg, then

recovers to about 2.5 mmHg, corresponding to mini-

mum inlet pressure 90 mmHg. While the minimum

pressure occurs at the throat, the tube wall does not

collapse there because the thick-wall stenosis is very stiff.

5.4. Maximum velocity and flow recirculation

Fig. 8 gives plots of the maximum axial velocity as a

function of time and the axial velocity profiles at several

horizontal cross-sections of the tube with S0 ¼ 80% at

t ¼ 0:5 s when pin ¼ 150 mmHg, pout ¼ 20 mmHg. Dif-

ferent scales are used for the profiles at different loca-

tions to show details of the flow field. The recirculation

region and the flow in the negative axial direction are

clearly visible.

5.5. Maximum shear stress

Shear stresses at the tube wall corresponding to

maximum and minimum inlet pressure are plotted in

Fig. 9 for severity S0 ¼ 80% with inlet pressure pin ¼
150, 90 mmHg and outlet pressure pout ¼ 20 mmHg. The

peak shear stress reaches 3270 (dyn/cm2) which may

cause damage to the vessel wall and platelet activation

[28].

Fig. 6. Transmural pressure changes drastically across the

stenosis: (a) the inlet pressure; (b) minima of the corresponding

pressure field; (c) transmural pressure at t ¼ 0:5 s along the tube

wall. pin ¼ 90–150 mmHg, pout ¼ 20 mmHg, S0 ¼ 80%.

Fig. 7. Transmural pressure along the tube wall pðz; h ¼ 90�; tÞ. pin ¼ 90–150 mmHg, pout ¼ 20 mmHg, S0 ¼ 80%.
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5.6. Comparison between numerical and experimental

results

Fig. 10 plots computational and experimental tube

radius variations under pulsatile pressure conditions.

The inlet pressure was set to 70–130 mmHg, and outlet

pressure was set to 60–80 mmHg (average 70 mmHg) in

the experiment. The radius was measured at z ¼ 2 cm.

The curves show that there is a reasonable agreement

between computational and experimental results.

Fig. 11 compares computational and experimental

flow rates under unsteady conditions. Pressure condi-

tions imposed at the inlet and outlet of the tube in the

Fig. 8. Behavior of velocity under unsteady pressure and across the stenosis. (a) Maximum axial velocity occurs at the throat of

stenosis (centerline) and changes with in-let pressure accordingly; (b) velocity profiles at different axial positions, horizontal cross-

section. Different scales are used at different z-locations to show details. pin ¼ 90–150 mmHg, pout ¼ 20 mmHg, S0 ¼ 80%.

Fig. 9. Shear stress distribution along h ¼ 90� line under

maximum and minimum inlet pressure.

Fig. 10. Comparison of tube radius between numerical and

experimental results at cross-section z ¼ 2:0 cm. S0 ¼ 80%,

pin ¼ 70–130 mmHg, pout ¼ 60–80 mmHg.
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experiment are 70–130 mmHg and 0–20 mmHg (average

10 mmHg) respectively. The outlet pressure was chang-

ing slightly because it was not possible to keep it con-

stant in the experiment. Fig. 11(a) plots the pressure

drop which is more relevant to flow rate changes. Fig.

11(b) gives the computational and experimental flow

rates at the outlet. While there is a rough agreement, we

notice that there is a clear phase shift between the

computational and experimental data. There is also a

phase shift between the experimental flow rate and the

imposed pressure condition. A smaller phase shift of

tube radius between experimental and numerical data

can also be seen in Fig. 10. This may be an indication of

viscoelasticity of the tube. A viscoelastic model is cur-

rently being developed to improve the elastic model [42].

The wall mechanical properties will also need to be

measured under unsteady flow conditions.

Fig. 12 shows pressure–area relationship (tube law)

calculated numerically under ‘‘no flow’’ conditions and

compared with experimental data. The agreement is

good for p > 0, remains reasonable for p > �20 mmHg,
and becomes poor for p < �20 mmHg. This indicates

that the wall model provides reasonable approximation

when tube collapse is minor. The approximation be-

comes less accurate as tube collapse becomes more se-

vere and caution must be taken when interpreting the

numerical results.

6. Discussion

6.1. Comparison with previous computational models

A review of the previous numerical results from 1D

models can be found from Downing and Ku [9]. Since

the 1D models used only average pressure and axial

velocity, the complex pressure distribution near stenosis,

axial and radial wall deformation, flow separation and

Fig. 11. Comparison of flow rates between numerical and ex-

perimental results: flow rate (a) pressure drop curve; (b) flow

rate curves. S0 ¼ 80%, pin ¼ 70–130 mmHg, pout-avg ¼ 10 mmHg

(0–20 mmHg).

Fig. 12. Comparison of numerical pressure–area relationship (tube law) with experimental data. Calculations were conducted under

no-flow condition with pin ¼ pout ¼ �50–100 mmHg, S0 ¼ 80%.
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shear stress information could not be obtained. Existing

2D and 3D models [43,45,46] were limited by the way

tube law was implemented: tube cross-section area re-

duction under collapsed conditions was incorrectly im-

plemented as tube radius reduction in their derivation of

the stress–strain relationship for the tube wall. Since

tube geometry is one of the most important factors af-

fecting flow and wall behaviors, and the thin-shell theory

provides a better interpretation of the tube law under

both expansion and collapsed conditions, this new 3D

model provides more accurate information about wall

deformation and collapse, shear stresses, flow velocity

and pressure fields, and gives more accurate predictions

about collapse conditions. Comparison of the main re-

sults of three models is given by Table 3.

Because of the thin-wall assumption in the model, it

was not possible to obtain detailed stress–strain distri-

butions in the tube wall. Tube compressive stress can

only be inferred from wall compression and collapse

from this model, not direct stress calculation. A thick-

wall FSI model is being developed to improve on this

model. Results from the thin-wall model can be used as

initial approximations.

Phase delays between imposed pressure and wall de-

formation and flow rates were noticed in the experi-

mental data which may be caused by viscoelasticity of the

tube wall. The extend of the viscoelastic effects needs to

be investigated by a viscoelastic model. Some prelimi-

nary results have been obtained in this regard [42] and we

are currently working on a 3D viscoelastic model.

6.2. Physiological significance of the findings

Arteries are made to sustain positive pressure and

expansions. Compressive stress and cyclic wall bending

and compression may be important in the development

of atherosclerotic plaque fracture and subsequent throm-

bosis or distal embolization. Negative flow pressure is

found in the stenotic region which is closely related to

compressive stress in the tube wall. In fact, maximum

compressive stress is found in the plaque near the throat

of the stenosis using a thick-wall model [43]. High shear

stress in the order of 2000–3000 dyn/cm2 at the stenosis

may cause damage to the endothelial layer of the vessel

wall and platelet aggregation [28]. The flow recirculation

region provides an environment with small and alter-

nating shear stresses and prolonged cell residence time

favorable for cell adhesion and thrombus formation

[6,36]. It was also noticed both experimentally and

computationally that if the upstream pressure was high

enough and downstream pressure low enough, the tube

may collapse and remain collapsed even when upstream

pressure drops again. This means the flow would remain

choked (actually, fluttering will occur) and the patient

may have noticeable clinical symptoms.

6.3. Effect of stenosis severity and pressure conditions

Since pressure decreases considerably when passing a

severe stenosis, the effect of the stenosis severity on flow

and pressure fields become much more noticeable when

comparison is made with comparable flow rates. An

80% stenosis and a 50% stenosis are compared with pin
set to 120� 30 mmHg for both stenoses, pout set to 20

mmHg for the 80% stenosis and 117� 30 mmHg for the

50% stenosis respectively. The average flow rate is

11.0331 ml/s for the 80% stenosis and 11.0354 ml/s for

the 50% stenosis. Comparison of the two cases is given

in Table 4. While minimum pressure ()12.5 mmHg) and
wall collapse were observed for the 80% stenosis, pres-

sure decreased less than 2 mmHg when passing the 50%

stenosis and no negative pressure and wall compression

Table 3

Comparison of critical flow characteristics and wall deformation from three stenosis models showing severe stenosis has considerable

effects on wall compression and flow behavior

3D 80% stenosis (current

model)

2D 80% attached stenosis [3] 3D 78% stenosis [43]

Tube radius (cm) 0.4 0.2 0.4

Wall thickness (cm) 0.1 0.016 0.1

Axial stretch 36.5% 50% 2%

Radial expansion (under 100

mmHg, with stretch)

60% 22% 12%

pin (mmHg) 90–150 80–120 100 (steady)

pout (mmHg) 20 20 (min) 20

umax (cm/s) 583.5 650 594

Re at inlet 325 197 315

pmin (mmHg) )12.5 (at wall) )39 (centerline) )52.5 (at wall)

smax (dyn/cm2) 2233–3270 (throat) 7740 3127

Radius reduction )0.22 (distal) )0.007 (throat) )0.002 (throat)
Cyclic tube collapse Yes Unable to simulate Unable to simulate
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were observed. Maximum velocity and shear stress for

80% stenosis are 583.5 cm/s and 3270 dyn/cm2, enough

to be of physiological significance, while they are only

104.8 cm/s and 149.4 dyn/cm2 respectively for the 50%

stenosis which do not cause any clinical symptoms.

These results are consistent with clinical observations

[16].

To see the influence of imposed pulsatile pressure on

the flow and wall behaviors, pin was set to 120� 30

mmHg and 90� 20 mmHg, representing high and nor-

mal pressures. pout is set to 20 mmHg. Stenosis severity is
still 80% by diameter. While high velocity and high shear

stress are observed for both cases, cyclic wall compres-

sion and collapse are observed only for the high pressure

case. Comparison of the two cases is also included in

Table 4. More in vivo experimental validations are

needed before these results can become applicable in

clinic applications.

7. Conclusion

An experiment-based 3D computational model with

FSI was introduced and solved using a GFD method to

simulate blood flow in stenotic collapsible carotid ar-

teries. Cyclic wall compression and collapse were ob-

served under physiological pressure conditions. Stenosis

severity and pressure conditions are found to be the

dominating factors affecting wall compression and col-

lapse and related flow conditions. The unstructured

nature of the GFD method made 3D mesh generation

and code development possible without much compli-

cations. The incremental boundary iteration technique

used in this paper can be applied to a wide range of

problems with FSI involving large deformations. Criti-

cal flow conditions such as negative transmural pressure,

high shear stress and large wall deformation caused by

severe stenosis under physiological pressure conditions

were quantified which may be directly related to artery

collapse and plaque cap rupture. Further investigations

using viscoelastic 3D thick-wall models are needed to

fully simulate the collapse process and make more ac-

curate physiologically-relevant predictions.
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