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The Anderson acceleration method is an algorithm for accelerating the convergence 
of fixed-point iterations, including the Picard method. Anderson acceleration was first 
proposed in 1965 and, for some years, has been used successfully to accelerate the 
convergence of self-consistent field iterations in electronic-structure computations. Recent-
ly, the method has attracted growing attention in other application areas and among 
numerical analysts.
Compared with a Newton-like method, an advantage of Anderson acceleration is that there 
is no need to form the Jacobian matrix. Thus the method is easy to implement. In this 
paper, an Anderson-accelerated Picard method is employed to solve the three-temperature 
energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two 
strategies are used to improve the robustness of the Anderson acceleration method. One 
strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another 
strategy is to monitor and, if necessary, reduce the matrix condition number of the least-
squares problem in the Anderson-acceleration implementation so that numerical stability 
can be guaranteed. Numerical results show that the Anderson-accelerated Picard method 
can solve the three-temperature energy equations efficiently. Compared with the Picard 
method without acceleration, Anderson acceleration can reduce the number of iterations 
by at least half. A comparison between a Jacobian-free Newton–Krylov method, the Picard 
method, and the Anderson-accelerated Picard method is conducted in this paper.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In many scientific and engineering computing areas, large-scale nonlinear equations need to be solved. Newton-based 
methods and Picard methods are two main classes of nonlinear iterative methods for solving these nonlinear equations. 
Newton–Krylov methods, in which Krylov-subspace methods are used to solve the Newton linearized equations, constitute a 
class of popular algorithms. These have been developed primarily since the early 1990s [11] and have been used successfully 
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in many areas. At the same time, Picard methods have also been widely used in many complex numerical simulation 
applications.

Newton–Krylov methods have many advantages. Perhaps the most notable advantage is that there is no need to form 
the Jacobian matrix, which may be very difficult or expensive to obtain in some complex applications [11]. Additionally, ap-
propriately implemented Newton–Krylov methods, like many other Newton-based methods, exhibit rapid local convergence 
that, in particular, is typically independent of the mesh size on discretized nonlinear partial differential equation (PDE) 
problems [10,17].

On the other hand, Newton–Krylov methods may have some disadvantages. In a Jacobian-free Newton–Krylov method, 
in which Jacobian-vector products are approximated by finite differences, the errors in the finite-difference scheme may 
adversely affect the robustness of the method, especially in complex multi-scale applications. Additionally, compared to 
Picard methods, the linear systems in Newton-based and Newton–Krylov methods may be more difficult to solve. For ex-
ample, the Jacobian matrix of the three-temperature energy equations is nonsymmetric, while the Picard linearized matrix 
is symmetric. Although a Jacobian-free Newton–Krylov method does not require computing and saving the Jacobian matrix, 
a preconditioning matrix may still be needed in many cases.

Picard methods are often preferred over Newton-based methods because they are relatively easier to implement. How-
ever, as fixed-point iterations, their convergence is usually linear and may be undesirably slow. Recently, a kind of nonlinear 
acceleration method, the Anderson acceleration method, has attracted considerable attention as a means of mitigating slow 
convergence of fixed-point iterations [1,8,14–16,5,18,19]. This method was first proposed in 1965 by Anderson to solve a 
class of nonlinear integral equations [1]. It has since been used successfully in electronic-structure computations to accel-
erate the convergence of self-consistent field iterations. (In electronic-structure computations and some other applications, 
Anderson acceleration is called Anderson mixing because of its physical association with charge mixing.) Anderson acceler-
ation has also been used in simulating fluid–structure interactions. In fact, the quasi-Newton inverse least squares (QN-ILS) 
method [9] for solving fluid–structure problems is essentially the same as Anderson acceleration.

In 2009, Fang and Saad discussed the relationship between Anderson acceleration and certain quasi-Newton methods [5]. 
They proposed two classes of general quasi-Newton methods, the Broyden-like class and the nonlinear Eirola–Nevanlinna-
type methods. In particular, the Anderson acceleration method is a special case of the Broyden-like class methods.

In 2011, Walker and Ni further discussed Anderson acceleration [16]. They showed that, on linear fixed-point problems, 
Anderson acceleration is “essentially equivalent” in a certain sense to the generalized minimal residual (GMRES) method for 
linear equations. Subsequently, Potra and Engler also considered Anderson acceleration and gave a more extensive character-
ization of the method when it is used to solve linear problems [14]. The first convergence result for Anderson acceleration on 
general nonlinear problems was given by Toth and Kelley in 2015 [19]. They proved that the Anderson acceleration method 
is locally r-linear convergent under reasonable assumptions, which they showed to be satisfied in their experiments.

In recent years, there have been a number of new applications of Anderson acceleration. For example, Lott, Walker, 
Woodward and Yang considered the use of Anderson acceleration with Picard iterations in variably saturated flow appli-
cations [13]. Willert, Taitano and Knoll applied Anderson acceleration to improve the convergence of Picard iterations for 
solving two classes of transport equations [18]. (They also considered combinations of Anderson acceleration and moment-
based acceleration methods.) In both of these studies, the results show that Anderson acceleration can improve not only the 
convergence rate but also the robustness of the Picard method. Lipnikov, Svyatskiy and Vassilevski used Anderson acceler-
ation to accelerate the Picard method for steady-state advection–diffusion equations discretized by a positivity-preserving 
finite-volume scheme [12]. In particular, they introduced an inexact modification of Anderson acceleration with an adaptive 
strategy for choosing linear-solver tolerances that significantly improved efficiency in their experiments.

The three-temperature energy equations are a kind of strong nonlinear radiation-diffusion model [2,6]. In [2], a Jacobian-
free Newton–Krylov method was employed to solve the discretized equations. Based on the character of the energy-front 
propagation, an efficient method for choosing an initial iterate for the two-dimensional case was given.

In this paper, an Anderson-accelerated Picard method is used to solve the three-temperature energy equations. To im-
prove the robustness of Anderson acceleration, some modifications were made. First, modifications were made so that 
Anderson acceleration preserves certain physical properties (for example, the non-negativity of temperature) during the it-
erations. Second, a strategy like that in [16] and [15] was used to monitor the matrix condition number in the least-squares 
problem in Anderson acceleration and, if necessary, to take steps to improve it in order to retain the effectiveness of the 
method. Our numerical results show that this modified Anderson acceleration method can improve the convergence rate of 
the Picard method when it is used to solve the three-temperature energy equations.

This paper is organized as follows: in Section 2, Anderson acceleration and its implementation are discussed; in Sec-
tions 3 and 4, the modifications of Anderson acceleration are described; the three-temperature energy equations are 
introduced in Section 5; some numerical results are presented in Section 6; and finally the conclusion is given in Section 7.

2. The Anderson acceleration method

In many scientific and engineering computing applications, it is necessary to solve a system of nonlinear equations, 
which we write generically as

F (x) = 0, F :Rn →R
n. (1)
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Often the system (1) can be expressed equivalently as a fixed-point problem

x = G(x), G : Rn →R
n, (2)

such that

x∗ = G(x∗) ⇐⇒ F (x∗) = 0.

Based on the fixed-point problem (2), Algorithm 1 can be given.

Algorithm 1 Fixed-point iteration (FPI).
1: Given x0.
2: for k = 0, 1, . . . do
3: Set xk+1 = G(xk).
4: end for

In many applications, one of the main advantages of Algorithm 1 is that it is easy to implement. In addition, it is often 
possible to construct G so that desirable physical characteristics of the solution are preserved during the iteration process. 
However, the FPI iterates can only be guaranteed to converge if G is a contraction mapping, at least locally. Additionally, FPI 
is usually only linearly convergent in practice and undesirably slow in many cases.

To improve the convergence rate of FPI, we consider Anderson acceleration [1], formulated as in [16] as follows:

Algorithm 2 Anderson acceleration (AA).
1: Given x0 and m ≥ 1.
2: Set x1 = G(x0).
3: for k = 1, 2, . . . do
4: Set mk = min{m, k}.
5: Compute G(xk) and let fk = G(xk) − xk .
6: Set Fk = ( fk−mk , . . . , fk).

7: Determine α(k) = (α
(k)
0 , . . . , α(k)

mk
)T that solves

{
minα=(α0,...,αmk )T ‖Fkα‖2

s.t.
∑mk

i=0 αi = 1
(3)

8: Set xk+1 = ∑mk
i=0 α

(k)
i G(xk−mk+i).

9: end for

We note that the original Anderson acceleration method in [1] allows a more general form

xk+1 = (1 − βk)

mk∑
i=0

α
(k)
i xk−mk+i + βk

mk∑
i=0

α
(k)
i G(xk−mk+i),

where βk > 0 is a relaxation parameter. In some application areas, such as electronic-structure computations, βk is called the 
Anderson mixing coefficient, and the Anderson acceleration method is called the Anderson mixing method. In this paper, as 
in [16], we consider only the case βk = 1 in Algorithm 2.

The idea of Algorithm 2 is to define the (k + 1)-th iterate as a combination of the G values, in which the coefficients are 
determined by minimizing the norm of an affine combination of residual vectors.

In Algorithm 2, at most m + 1 residual vectors are saved at each iteration. At the kth iteration, if k < m, then the latest 
residual vector fk will be appended to the matrix Fk on the right; if k ≥ m, then the oldest residual vector fk−mk is deleted 
from Fk on the left as well.

At the k-th iteration, mk + 1 ≤ m vectors are saved in Fk . For purpose of discussion, mk in Algorithm 2 is called the 
Anderson depth. The maximal depth is limited by the parameter m, and we often denote the method by AA(m) in the 
following. Note that if m = 0, then Anderson acceleration becomes Algorithm 1.

2.1. Form of the least-squares problem

In each Anderson acceleration iteration, a constrained least-squares problem (3) must be solved. In most references, 
this least-squares problem is transformed into an unconstrained least-squares problem [5,16]. In the following, we use the 
notation in [15] to introduce the transformation process.

Let

� f i = f i+1 − f i, i = k − mk, . . . ,k − 1

and
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Fk = (� fk−mk , . . . ,� fk−1), (4)

then least-squares problem (3) is equivalent to

min
γ =(γ0,...,γmk−1)T

‖ fk −Fkγ ‖2, (5)

where α and γ are related by

αi =
⎧⎨
⎩

γ0, i = 0
γi − γi−1, 1 ≤ i ≤ mk − 1
1 − γmk−1, i = mk

and

γi =
i∑

j=0

α j, i = 0,1, . . . ,mk − 1.

Based on the unconstrained least-squares problem (5), a different form of the Anderson acceleration algorithm can be given. 
In fact, if the solution of (5) is given by γ (k) = (γ

(k)
0 , . . . , γ (k)

mk−1)
T , then

xk+1 = G(xk) −
mk−1∑

i=0

γ
(k)
i [G(xk−mk+i+1) − G(xk−mk+i)] = G(xk) − Gkγ

(k),

where

Gk = (�Gk−mk , . . . ,�Gk−1) (6)

with

�Gi = G(xi+1) − G(xi), i = k − mk, . . . ,k − 1.

We now give a more specific version of the Anderson acceleration algorithm in Algorithm 3.

Algorithm 3 Anderson acceleration (AA).
1: Given x0 and m ≥ 1.
2: Set x1 = G(x0).
3: for k = 1, 2, . . . do
4: Set mk = min{m, k}.
5: Compute G(xk) and let fk = G(xk) − xk .
6: Update Fk and Gk by (4) and (6).
7: Determine γ (k) = (γ

(k)
0 , . . . , γ (k)

mk−1)T that solves

min
γ =(γ0,...,γmk−1)T

‖ fk −Fkγ ‖2.

8: Set xk+1 = G(xk) −Gkγ
(k) .

9: end for

2.2. Solution of the least-squares problem

In this paper, the solution method for the least-squares problem is based on QR decomposition as suggested in [16]. 
Assume that the QR decomposition of Fk is given by

Fk = Q̂ k × R̂k

= [
Q k Q̄ k

] ×
[

Rk
0

]
= Q k × Rk, (7)

where

Q̂ k ∈ Rn×n, R̂k ∈ Rn×mk , Q k ∈ Rn×mk , Q̄ k ∈ Rn×(n−mk), and Rk ∈ Rmk×mk .

Then the solution of the least-squares problem (5) is given by
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γ (k) = arg min
γ

‖ fk −Fkγ ‖2

= arg min
γ

‖ fk − Q̂ k R̂kγ ‖2

= arg min
γ

‖Q̂ T
k fk − R̂kγ ‖2

= arg min
γ

∥∥∥∥∥
(

Q T
k

Q̄ T
k

)
fk −

(
Rk
0

)
γ

∥∥∥∥∥
2

= arg min
γ

∥∥∥∥
(

Q T
k fk − Rkγ

Q̄ T
k fk

)∥∥∥∥
2

= arg min
γ

‖Q T
k fk − Rkγ ‖2.

Specifically, the solution is obtained by solving an mk × mk triangular system Rkγ = Q T
k fk . This shows that only Q k and Rk

need to be computed. In other words, only the “thin” QR decomposition (7) is necessary.
Since Fk is obtained from Fk−1 by appending a new column on the right and possibly dropping one column from the 

left, the QR decomposition of Fk can be efficiently obtained by updating that of Fk−1. For details about this aspect, see [15].

3. Condition number monitoring and Anderson depth modification

In Anderson acceleration, if the allowed maximal Anderson depth m is too small, then the retained iteration history 
may be not enough to sufficiently accelerate the convergence. However, if m is too large, then the matrix Fk may become 
so ill-conditioned that the solution of the least-squares problem is inaccurate and the numerical stability of the overall 
algorithm is adversely affected. In our numerical experiments, we indeed found cases in which the condition number of Fk
became too large if remedial steps were not taken.

In this paper, we use the strategy given in [16] to monitor the condition number of the matrix Fk and, if necessary, to 
modify the matrix to reduce the condition number, as follows: When the condition number of Fk is larger than a given 
tolerance, then the left-most columns of Fk are dropped one by one until the condition number is less than the given 
tolerance.

This is a reasonable filtering strategy since the left-most columns contain the oldest information about the iteration. 
In some exceptional cases, however, there is a risk that some useful columns may be deleted by using this strategy. For 
example, as one of the reviewers pointed out, assume that Fk contains five columns, that is, Fk = (� f1, . . . , � f5). If the 
newest two columns � f4 and � f5 are almost linearly dependent, while � f1, � f2, � f3, and � f4 are mutually perpendic-
ular, then removing the oldest column � f1 would not improve the condition number. Repeatedly removing columns from 
the left would finally leave � f5, while the discarded columns � f1, � f2, and � f3 probably contain useful information. 
This may lower the convergence speed of the Anderson-acceleration method. However, in our numerical experiments, this 
phenomenon never happened.

It should be pointed out that some other filtering strategies can also be used. For example, the authors in [9] considered 
three filtering techniques in the QN-ILS method: old QR filtering, new QR filtering and proper orthogonal decomposition 
(POD) filtering. For these three filtering techniques, the filtered vector may not be the left-most one. The key idea of old QR 
and new QR filtering methods is to filter vectors by the magnitude of the diagonal of the matrix R , with R being the factor 
in QR factorization. POD filtering is based on the eigenvalues and eigenvectors of the autocorrelation matrix of the retained 
vectors. Among all of these filtering methods, it is not clear which strategy is the best. Further research on this would be 
helpful.

Note that the l2-norm condition number of Fk is just that of Rk in the QR decomposition of Fk . Therefore, for the 
filtering strategy used in this paper, it is only necessary to monitor the condition number of Rk and keep it less than the 
given tolerance. When the condition number of Rk is larger than the given tolerance, then deleting the left-most column of 
Fk entails updating the factors Q k and Rk; see [15] for details. The overall process is outlined in Algorithm 4.

Algorithm 4 Condition number management.
1: Given tol > 0 and the QR decomposition Fk = Q k Rk .
2: while cond(Rk) > tol do
3: Delete the left-most column of Fk and update the QR decomposition Fk = Q k Rk .
4: end while

4. Physical constraints in the Anderson acceleration algorithm

In some applications, the iteration process needs to satisfy physical constraints. For example, the temperature in the 
three-temperature energy equations should be non-negative. However, from the Anderson-acceleration iteration xk+1 =
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∑mk
i=0 α

(k)
i G(xk−mk+i), it is evident that even though each G(xk−mk+i) satisfies this physical constraint, it can not be guaran-

teed that xk+1 satisfies this constraint because some α(k)
i obtained from the least-squares problem may be negative.

In fact, we observed that some components of temperature sometimes became negative when Anderson acceleration was 
used to solve the three-temperature energy equations. This halted the simulation because the nonlinear residual can not be 
evaluated and the preconditioning matrix can not be constructed with negative temperature; see the expressions for the 
diffusion coefficients and energy-exchanging coefficients in Section 5.

By employing the idea of modification for the Jacobian-free Newton–Krylov method in [3], a similar modification can be 
made for Anderson acceleration. Assume that the physical constraint set is D, a convex subset of Rn . Assume further that xk
and xk+1 are two consecutive AA iterates, and that xk ∈ D. If xk+1 violates the physical constraint, then a new next iterate 
can be defined as

x̂k+1 = βkxk+1 + (1 − βk)xk, βk ∈ [0,1), (8)

where βk is given by

βk = 0.9 × sup{β : β ∈ [0,1) and βxk+1 + (1 − β)xk ∈ D}.
Since the constraint set D is convex, it is easy to see that there exists a βk satisfying the above condition and that x̂k+1
satisfies the physical constraint. In an AA iteration, if xk+1 violates the physical constraint, then xk+1 will be replaced by 
x̂k+1.

After incorporating the modifications for Anderson acceleration in Sections 3–4, we arrive at Algorithm 5 below. Note 
that lines 14–16 in the algorithm describe the check for the physical constraint. This algorithm will be used to solve the 
three-temperature energy equations at each time step.

Algorithm 5 Improved Anderson acceleration.
1: Given x0, m ≥ 0 and tol > 0.
2: Set x1 = G(x0).
3: for k = 1, 2, . . . do
4: Set mk = min{m, k}.
5: Compute G(xk) and let fk = G(xk) − xk .
6: Update the QR decomposition Fk = Q k Rk with Fk defined by (4).
7: Update Gk defined by (6).
8: while cond(Rk) > tol do
9: Delete the left-most column of Fk and update the QR decomposition Fk = Q k Rk .

10: Set mk ← mk − 1.
11: end while
12: Solve the triangular system Rkγ = Q T

k fk .

13: Set xk+1 = G(xk) −Gkγ
(k) .

14: if xk+1 violates the physical constraint then
15: Replace xk+1 with x̂k+1 defined by (8).
16: end if
17: end for

5. The three-temperature energy equations and Picard iteration

The three-temperature energy equations [2] are defined as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ve
∂Te
∂t − 1

ρ ∇ · (Ke∇Te) = ωei(Ti − Te) + ωer(Tr − Te)

C vi
∂Ti
∂t − 1

ρ ∇ · (Ki∇Ti) = ωei(Te − Ti)

C vr
∂Tr
∂t − 1

ρ ∇ · (Kr∇Tr) = ωer(Te − Tr)

(9)

where Te , Ti and Tr are the electron, ion and radiation temperatures, respectively. The related physical coefficients in the 
equations are:

• Cvα (α = e, i, r) are isochore specific-heat coefficients;
• ρ is the density of the materials;
• Kα = Kα (ρ, Tα)(α = e, i, r) are heat-conduction (diffusion) coefficients;
• ωei and ωer are the energy-exchanging coefficients between electron and ion, and between electron and photon, re-

spectively.

Specifically, the isochore specific-heat coefficients, heat-conduction coefficients and energy-exchanging coefficients are de-
fined as
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C vα =
⎧⎨
⎩

ce, α = e
ci, α = i
cr T 3

r , α = r
Kα =

⎧⎪⎨
⎪⎩

Ae T 5/2
e , α = e

Ai T
5/2
i , α = i

Ar T 3+β
r , α = r

ωeα =
{

AeiρT −2/3
e , α = i

AerρT −1/2
e , α = r

(10)

where cα are constants, Aα , Aeα , β , and ρ are material dependent. These parameters are continuous in the interior of the 
material. For specific expressions for the parameters, see [2]. Usually, the boundary and initial conditions are as follows.

• Boundary conditions:
(a) on rigid walls, Kα∇Tα · n = 0, α = e, i, r, where n is the outer normal vector of the boundary;
(b) on free surfaces, Kα∇Tα · n = 0, α = e, i; Tr = Tr(t, x, y)|(x,y)∈∂	xy .

• Concatenation conditions: Tα and Kα∇Tα · n are continuous over the material interfaces, α = e, i, r, n is the outer 
normal vector of the interface.

• Initial conditions:

Tα(0, x, y) = T 0
α(x, y), α = e, i, r.

The electron, ion and radiation energies are defined, respectively, as

Ee = ce Te, Ei = ci T i, Er = 1

4
cr T 4

r .

Note that

∂ Ee

∂Te
= C ve,

∂ Ei

∂Ti
= C vi,

∂ Er

∂Tr
= C vr .

Therefore,

C vα
∂Tα

∂t
= ∂ Eα

∂Tα

∂Tα

∂t
= ∂ Eα

∂t
, α = e, i, r.

Consequently, the three-temperature energy equations (9) can also be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ee
∂t − 1

ρ ∇ · (Ke∇Te) = ωei(Ti − Te) + ωer(Tr − Te)

∂ Ei
∂t − 1

ρ ∇ · (Ki∇Ti) = ωei(Te − Ti)

∂ Er
∂t − 1

ρ ∇ · (Kr∇Tr) = ωer(Te − Tr)

(11)

By applying the fully implicit backward Euler method to equations (11), one obtains⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

En+1
e −En

e
�tn

− 1
ρ ∇ · (Ke∇Te)

n+1 = ωn+1
ei (Ti − Te)

n+1 + ωn+1
er (Tr − Te)

n+1

En+1
i −En

i
�tn

− 1
ρ ∇ · (Ki∇Ti)

n+1 = ωn+1
ei (Te − Ti)

n+1

En+1
r −En

r
�tn

− 1
ρ ∇ · (Kr∇Tr)

n+1 = ωn+1
er (Te − Tr)

n+1

where the superscripts n and n + 1 represent two consecutive time levels. For simplicity, omitting the superscript n + 1, the 
equations are given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ee−En
e

�tn
− 1

ρ ∇ · (Ke∇Te) = ωei(Ti − Te) + ωer(Tr − Te)

Ei−En
i

�tn
− 1

ρ ∇ · (Ki∇Ti) = ωei(Te − Ti)

Er−En
r

�tn
− 1

ρ ∇ · (Kr∇Tr) = ωer(Te − Tr)

or ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fe(T) ≡ Ee−En
e

�tn
− 1

ρ ∇ · (Ke∇Te) − ωei(Ti − Te) − ωer(Tr − Te) = 0

Fi(T) ≡ Ei−En
i

�tn
− 1

ρ ∇ · (Ki∇Ti) − ωei(Te − Ti) = 0

Fr(T) ≡ Er−En
r

�tn
− 1

ρ ∇ · (Kr∇Tr) − ωer(Te − Tr) = 0

(12)

where
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T = (Te, Ti, Tr)
T .

Let

F = (Fe, Fi, Fr)
T .

The nonlinear equations that should be solved are then

F(T) = 0.

The Picard method can be used to solve the three-temperature energy equations. The specific method is given by Algo-
rithm 6. Note that in this algorithm, the temperature at time step n is used as the initial iterate for solving the equations at 
time step n + 1.

Algorithm 6 Picard method for the three-temperature energy equations.

1: Given the initial iterate T(0) = (T (0)
e , T (0)

i , T (0)
r )T = (T n

e , T n
i , T n

r )T .
2: for k = 0, 1, . . . do
3: Solve the linear equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C ve Te−C ve T n
e

�tn
− 1

ρ ∇ · (K (k)
e ∇Te) − ω

(k)
ei (Ti − Te) − ω

(k)
er (Tr − Te) = 0

C vi Ti−C vi T n
i

�tn
− 1

ρ ∇ · (K (k)
i ∇Ti) − ω

(k)
ei (Te − Ti) = 0

C (k)
vr Tr−Cn

vr T n
r

4�tn
− 1

ρ ∇ · (K (k)
r ∇Tr) − ω

(k)
er (Te − Tr) = 0

and let the solution be the next iterate T(k+1) = (T (k+1)
e , T (k+1)

i , T (k+1)
r )T .

4: end for

Note that the linear operator for the Picard method (Picard linearization) is given by

A(k)

Picard = C(k) +D(k) +W(k),

where

C(k) = 1

�tn

⎛
⎜⎝ C (k)

ve

C (k)
vi

1
4 C (k)

vr

⎞
⎟⎠ ,

D(k) = −
⎛
⎜⎝

1
ρ ∇ · K (k)

e ∇
1
ρ ∇ · K (k)

i ∇
1
ρ ∇ · K (k)

r ∇

⎞
⎟⎠ ,

and

W(k) =

⎛
⎜⎜⎝

ω
(k)
ei + ω

(k)
er −ω

(k)
ei −ω

(k)
er

−ω
(k)
ei ω

(k)
ei

−ω
(k)
er ω

(k)
er

⎞
⎟⎟⎠ .

Note that (12) can be expressed as

F(T) = APicard(T)T − bn = 0,

where

bn =
(

C ve T n
e

�tn
,

C vi T n
i

�tn
,

Cn
vr

4�tn

)T

.

Picard iteration can be expressed compactly as

T(k+1) =
(

A(k)

Picard

)−1
bn

=
(

A(k)

Picard

)−1 (
bn − A(k)

PicardT(k) + A(k)

PicardT(k)
)

= T(k) −
(

A(k)

Picard

)−1
F(T(k)).
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It is easy to see that the difference between Picard iteration and Newton iteration is only the matrix (operator) expression 
used to determine the step T(k+1) − T(k) .

In Section 6, A(k)

Picard will be used as the preconditioner for both the Newton–Krylov and Picard methods.
Note that square-root computations for temperature are used when a nonlinear residual is evaluated or a preconditioning 

matrix is constructed (see the expressions in (10) for diffusion coefficients and energy-exchanging coefficients). Therefore, 
in the iteration process, if some components of the temperature in an intermediate iteration are negative, then the iteration 
will be halted. In particular, if the procedure for maintaining the physical constraint is disabled in Anderson acceleration, 
then the method will halt and the simulation can not be finished. Physical-constraint checking plays a critical role when 
Anderson acceleration is used to solve the three-temperature energy equations, where the physical-constraint domain is 
defined as

D = R N+ ≡
{

x = (x1, . . . , xN)T ∈ R N : xi > 0, i = 1, . . . , N
}

,

and N is the number of unknowns of the discretization system.

6. Numerical results

In this section, numerical results for the Picard-GMRES method (PG) and the Anderson-accelerated Picard-GMRES method 
are given. For the purpose of comparison, results for a Jacobian-free Newton-GMRES method (JFNG) are also given.

Both two-dimensional (2D) and three-dimensional (3D) cases are considered. For the 2D case, the computing domain is 
[0, 10] × [0, 10] with the upper half domain filled with CH material and the lower half domain filled with SO2 material. For 
the 3D case, the computing domain is [0, 10] × [0, 10] × [0, 10]. Similar to the 2D case, the upper half domain is filled with 
CH and the lower half domain is filled with SO2. For both 2D and 3D cases, the upper boundary is the free surface, and the 
rest are rigid walls. The initial temperature is set to 3 × 10−4, and the initial time-step size is 10−3 for all cases. For more 
information about the three-temperature energy equations, including specific parameters in the equations, see [2].

For spatial discretizations, the standard five-point finite-difference scheme for the 2D case and the seven-point finite-
difference scheme for the 3D case are used. In the numerical results, the grid scales for the 2D case include 32 ×32, 64 ×64, 
128 × 128, 256 × 256, 512 × 512 and 1024 × 1024; and the grid scales for the 3D case include 16 × 16 × 16, 32 × 32 × 32
and 64 × 64 × 64.

6.1. Control of the time-step size

In the simulations, the time-step size is determined adaptively by the variation of energy. The concrete algorithm is given 
in Algorithm 7.

Algorithm 7 Control of the time-step size.
1: Let �tn−1 be known. Given energy-variation thresholds β and γ , such that 0 < β < γ < 1; time-step shortening and enlarging factors θ0 and θ1, such 

that 0 < θ0 < 1 < θ1; and minimal and maximal time-step sizes �tlow and �tup, such that �tlow < �tup.
2: If �En−1

relative < β , then �tn = θ1�tn−1.

3: If �En−1
relative > γ , then �tn = θ0�tn−1.

4: If β ≤ �En−1
relative ≤ γ , then �tn = �tn−1.

5: Let �tn = max{min{�tn, �tup}, �tlow}.

In Algorithm 7, �En−1
relative is defined by

�En−1
relative = max

i
{|En

i − En−1
i |/En−1

i },

which is the maximal relative energy variation on all cells. Here i is the index for cells. In the numerical results, β = 0.01, 
γ = 0.2, θ0 = 0.8, θ1 = 1.2, �tlow = 10−9, and �tup = 10−1.

For each of the considered grid scales, the same time-step size histories are determined by Algorithm 7 for all compared 
methods. It should be pointed out that, by using three different methods, the same solution is obtained at each time step. 
Therefore, exactly the same time-step sizes are obtained at each time step for the different methods. To show specific 
time-step sizes in the simulation, the time-step size curves for 32 × 32 × 32 and 64 × 64 × 64 are given in Figs. 1 and 2, 
respectively.

From Fig. 1, one can see that at the first several time steps, the time-step size decreases quickly from 1.0 × 10−3 to 
1.25 × 10−4, and then it is stable with this value until time step 550. Later, the time-step size increases gradually to 
3.92 × 10−4, and this value is retained from time step 940 to the end of simulation.

Similar observations can be made for 64 × 64 × 64 in Fig. 2. At early time steps, the time-step size decreases quickly 
from 1.0 × 10−3 to 1.25 × 10−4, and then it remains stable with this value until time step 337. Later, the time-step size 
increases gradually to 2.21 × 10−4, and this value is retained from time step 445 until the end of simulation.
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Fig. 1. Time-step size curve for 32 × 32 × 32.

Fig. 2. Time-step size curve for 64 × 64 × 64.

6.2. Compared methods

For comparison, the performance of the following three methods will be evaluated.

• JFNG;
• PG;
• Anderson-accelerated Picard-GMRES method with maximal Anderson depth m (PG-AA(m)).

All tests for these methods were carried out using KINSOL 2.8.2 [4], with some modifications for PG-AA(m) to include 
condition-number monitoring and physical-constraint checking in Anderson acceleration.

For all methods, the convergence criterion for the nonlinear iteration was

‖F (xk)‖∞ ≤ 10−12,

and the allowed maximal nonlinear iteration number was 100.
The maximal Krylov dimension for GMRES was 60, and the allowed number of restarts was 2. The convergence crite-

rion for GMRES was 10−4. The matrix A(k)

Picard was used as the preconditioning matrix for all methods. The BoomerAMG 
algebraic-multigrid solver in HYPRE [7] was used as the solver for the preconditioning system.

For iterative methods, the cost can be represented by the numbers of iterations, function evaluations, preconditioning 
setups, and preconditioning solves. For brevity, the following notation will be used.

• NNI: number of nonlinear iterations;
• NLI: number of linear iterations;
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Table 1
Cost comparison for three methods.

JFNG PG PG-AA(m)

NFE NNI+NLI+1 NNI+1 NNI+1
NPreSet NNI NNI NNI
NPreSol NNI+NLI NNI+NLI NNI+NLI

Table 2
Average iteration numbers and CPU times for the 2D case (10000 time steps).

Method 32×32 64×64 128×128 256×256 512×512 1024×1024

JFNG 2.91 2.90 2.91 2.93 2.90 2.88
NNI PG 22.27 21.90 21.22 21.05 21.43 24.32

PG-AA(10) 8.52 8.35 8.20 8.09 8.43 9.11

JFNG 13.74 13.62 13.14 12.65 12.46 12.90
NLI PG 22.27 21.90 21.23 21.05 21.43 24.32

PG-AA(10) 8.52 8.35 8.20 8.09 8.43 9.11

JFNG 17.65 17.52 17.05 16.58 16.36 16.78
NFE PG 23.27 22.9 22.22 22.05 22.43 25.32

PG-AA(10) 9.52 9.35 9.2 9.09 9.43 10.11

JFNG 16.65 16.52 16.05 15.58 15.36 15.78
NPreSol PG 44.54 43.8 42.45 42.1 42.86 48.64

PG-AA(10) 17.04 16.7 16.4 16.18 16.86 18.22

JFNG 0.34 1.36 3.51 6.85 13.27 28.77
CPU PG 0.89 3.59 9.32 18.97 38.95 92.28

PG-AA(10) 0.34 1.37 3.61 7.31 15.38 34.78

• NFE: number of function evaluations;
• NPreSet: number of preconditioning setups;
• NPreSol: number of preconditioning solves;
• CPU: CPU time for solving the three-temperature energy equations.

For the three methods compared here, the numbers of function evaluations, preconditioning setups, and preconditioning 
solves were determined by the numbers of nonlinear iterations and linear iterations, as shown in Table 1. Here, it is assumed 
that no globalization strategy (such as line search or trust-region techniques) is used in the JFNG method.

In the numerical results, condition-number monitoring was used in Anderson acceleration with tol = 1010. The maximal 
depth in Anderson acceleration was m = 10. This value is relatively large; however, since a condition-number monitoring 
strategy was used in Anderson acceleration, it was not necessary to worry about the condition number becoming prob-
lematically large. The physical constraint used with Anderson acceleration was that the temperature was required to be 
positive.

6.3. Performance of the methods

Table 2 shows the average numbers of nonlinear iterations, linear iterations, function evaluations, preconditioning solves 
and CPU times for the 2D case. From Table 2, one can see that, in these tests, the accelerated Picard method was always 
better than the Picard method without acceleration, and that acceleration improved the performance of the Picard method 
by at least a factor of two with regard to the numbers of nonlinear iterations, linear iterations, function evaluations and 
preconditioning solves. One can also see that, on all grids, JFNG required the smallest numbers of nonlinear iterations of the 
three methods; however, PG-AA(10) required the smallest numbers of linear iterations and functions evaluations. In terms 
of preconditioning solves, JFNG performed slightly better than PG-AA(10). The CPU times for JFNG were slightly less than 
those of PG-AA(10), while the CPU times for PG were much greater than those of PG-AA(10).

Compared with the PG method, the CPU-time speedups of JFNG and PG-AA(10) are given in Table 3 for the 2D case. From 
this table, one can see that the least speedup of PG-AA(10) is 2.53, and in most cases, the speedup is greater than 2.60. 
The speedups of JFNG are greater than those of PG-AA(10) because the numbers of nonlinear iterations and preconditioning 
solves for JFNG are less than those of PG-AA(10).

Table 4 shows the average numbers of nonlinear iterations, linear iterations, function evaluations, preconditioning solves 
and CPU times for the 3D case. From this table, similar conclusions can be drawn to those in the 2D case. In all cases, 
Anderson acceleration improved the efficiency of the Picard method by at least a factor of two. JFNG was the best in terms 
of numbers of nonlinear iterations and preconditioning solves, and PG-AA(10) was the best in terms of numbers of linear 
iterations and function evaluations. The CPU times of PG-AA(10) were slightly greater than those of JFNG. In all cases, the 
performance of the Picard method without acceleration was the worst.
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Table 3
Speedups of JFNG and PG-AA(10) compared to PG for the 2D case.

32×32 64×64 128×128 256×256 512×512 1024×1024

JFNG 2.62 2.64 2.66 2.77 2.94 3.21
PG-AA(10) 2.61 2.62 2.58 2.60 2.53 2.65

Table 4
Average iteration numbers and CPU times for the 3D case (10000 time steps).

Method 16×16×16 32×32×32 64×64×64

JFNG 2.94 2.91 2.96
NNI PG 20.75 22.27 25.24

PG-AA(10) 9.40 9.82 10.53

JFNG 13.61 13.98 15.45
NLI PG 20.75 22.27 25.24

PG-AA(10) 9.40 9.82 10.53

JFNG 17.56 17.89 19.41
NFE PG 21.74 23.27 26.24

PG-AA(10) 10.40 10.82 11.53

JFNG 16.56 16.89 18.41
NPreSol PG 41.50 44.54 50.48

PG-AA(10) 18.80 19.64 21.07

JFNG 0.25 2.21 13.06
CPU PG 0.66 6.23 38.20

PG-AA(10) 0.30 2.75 15.96

Table 5
Speed up of JFNG and PG-AA(10) for 3D case.

16×16×16 32×32×32 64×64×64

JFNG 2.64 2.82 2.92
PG-AA(10) 2.20 2.27 2.39

Table 6
Percentage of Anderson-acceleration cost in PG-AA(10) for 2D case.

32×32 64×64 128×128 256×256 512×512 1024×1024

100 × CPUAA
CPUtotal

0.98 0.91 0.82 0.52 0.44 0.38

Table 7
Percentage of Anderson-acceleration cost in PG-AA(10) for 3D case.

16×16×16 32×32×32 64×64×64

100 × CPUAA
CPUtotal

0.97 0.87 0.79

Similar to the 2D case, the speedups of JFNK and PG-AA(10) compared to PG are given in Table 5 for the 3D case. From 
this table, one can see that the speedups of PG-AA(10) are greater than 2.2 in all cases. Because the numbers of nonlinear 
iterations and preconditioning solves for JFNG are less than those of PG-AA(10), the speedups of JFNG are slightly greater 
than those of PG-AA(10).

Compared with the PG method, the extra cost of PG-AA(m) is the solution of the least-squares problem (5) plus a 
modest number of arithmetic operations at each iteration. In our tests, this extra cost was very low. Tables 6 and 7 show 
the Anderson-acceleration module costs as a percentage of the whole solution cost for the 2D and 3D cases. In these two 
tables, CPUAA represents the cost for the Anderson acceleration module, and CPUtotal represents the whole solution cost. 
One can see that for all cases, the cost of Anderson acceleration is less than 1%.

To show the influence of the parameter m for PG-AA(m) method, Table 8 and Table 9 are given for the 2D and 3D cases, 
respectively. Note that when m = 0, PG-AA(0) is just the PG method. From Table 8 one can see that the numbers of nonlinear 
iterations, linear iterations, function evaluations and preconditioning solves decrease dramatically when m increases from 
0 to 2. For example, the average number of nonlinear iterations is 21.05 for the PG method, while the average number of 
nonlinear iterations is 9.58 for PG-AA(2) method. As the parameter m increases, the performance of PG-AA(m) continues to 
improve until m = 8. When m > 8, there is no further improvement. This suggests that m = 8 is a near-optimal value.
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Table 8
Average iterations of PG-AA(m) with different m (256×256, 10000 time steps).

m

0 2 4 6 8 10 12

NNI 21.05 9.58 8.43 8.13 8.08 8.09 8.08
NLI 21.05 9.58 8.43 8.13 8.08 8.09 8.08
NFE 22.05 10.58 9.43 9.13 9.08 9.09 9.08
NPreSol 42.10 19.16 16.86 16.26 16.16 16.18 16.16

Table 9
Average iterations of PG-AA(m) with different m (64×64×64, 100 time steps (2000∼2100)).

m

0 2 4 6 8 10 12

NNI 34.10 10.64 9.15 8.92 8.92 8.92 8.92
NLI 34.10 10.64 9.15 8.92 8.92 8.92 8.92
NFE 35.10 11.64 10.15 9.92 9.92 9.92 9.92
NPreSol 68.20 21.28 18.30 17.84 17.84 17.84 17.84

Table 10
Average and maximal Anderson depths for the 2D case.

32×32 64×64 128×128 256×256 512×512 1024×1024

m̄k 4.2 4.1 4.1 4.0 4.1 4.2
m̂k 10 10 10 10 10 10

Table 11
Average and maximal Anderson depths for the 3D case.

16×16×16 32×32×32 64×64×64

m̄k 4.8 4.9 5.2
m̂k 10 10 10

Table 9 shows the performance of PG-AA(m) on 100 time steps for the 3D case. One can draw similar conclusions as in 
the 2D case. Notable differences in this case are that the improvement is even greater when m increases from 0 to 2 and 
that the optimal value of m is about 6.

Recall that the number of vectors retained in Anderson acceleration is the Anderson depth, represented by mk in Algo-
rithm 5. This mk is determined by the allowed maximal depth m, the iteration index, and the condition-number monitoring 
strategy. Tables 10 and 11 show the average and maximal Anderson depth in the 2D and 3D simulations, respectively. In 
the tables, m̄k is the average Anderson depth over all iterations and all time steps, and m̂k is the maximal Anderson depth 
for all iterations and all time steps.

From Table 10, one can see that the average Anderson depth is about 4.0 to 4.2, which is less than the allowed maximal 
number of vectors 10. This shows that the condition-number monitoring had a strong influence on Anderson depth during 
the simulations. At the same time, one can see that the maximal Anderson depth is 10. This shows that at some time 
steps, the condition number of the matrix Fk was relatively good, and no vectors were filtered by the condition-number 
monitoring strategy in some iterations. Similar conclusions can be drawn from Table 11 for the 3D case; the main difference 
is that the average Anderson depth varies over slightly larger values (4.8 to 5.2) for the different grid scales.

Figs. 3–6 plot the numbers of nonlinear iterations, linear iterations, function evaluations, and preconditioning solves, 
respectively, versus time steps for the 32 × 32 × 32 grid. Fig. 3 shows that the nonlinear iteration numbers for JFNG are very 
stable, with 3 nonlinear iterations at most time steps. The numbers of nonlinear iterations of PG-AA(10) are higher than 
those of JFNG, but much lower than those of PG. From Figs. 4–5, one can see that at most time steps, the linear iterations 
and function evaluations of PG-AA(10) are the lowest. Fig. 6 shows that the numbers of preconditioning solves for JFNG and 
PG-AA(10) are very similar, with those for JFNG a little less than those for PG-AA(10). One can also see that at early time 
steps (about from time step 1 to 1300), the performance of PG-AA(10) is almost the same as that of PG. This is because the 
time-step size is relatively small and the temperature variation is low in this period. About from time step 1300, PG-AA(10) 
performs much better than the PG method. One can obtain similar conclusions from Figs. 7–10 for the 64 × 64 × 64 grid.

Fig. 11 shows the specific numbers of nonlinear iterations of PG-AA(m) at each time step with different m. From this 
figure one can see that there is a dramatic drop from the curve for m = 0 (the PG method) to the curves for m ≥ 2. This 
shows that the Anderson acceleration method is very effective, even for small m. When m increases from 2 to 10, there is 
some further decrease, but not as great. Our numerical experiments showed that m = 10 is large enough in the 2D case; 
the number of iterations can not be decreased further by additionally increasing m.
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Fig. 3. Number of nonlinear iterations, 32 × 32 × 32 grid.

Fig. 4. Number of linear iterations, 32 × 32 × 32 grid.

Fig. 5. Number of function evaluations, 32 × 32 × 32 grid.
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Fig. 6. Number of preconditioning solves, 32 × 32 × 32 grid.

Fig. 7. Number of nonlinear iterations, 64 × 64 × 64 grid.

Fig. 8. Number of linear iterations, 64 × 64 × 64 grid.
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Fig. 9. Number of function evaluations, 64 × 64 × 64 grid.

Fig. 10. Number of preconditioning solves, 64 × 64 × 64 grid.

Fig. 11. Number of nonlinear iterations with different m, 256 × 256 grid.

Fig. 12 shows the specific numbers of nonlinear iterations at 100 time steps for the 64 ×64 ×64 grid. Similar conclusions 
can be drawn as in the 2D case. This figure shows that the number of nonlinear iterations is decreased by at least two-thirds 
when Anderson acceleration is used compared to the unaccelerated Picard method. When m increases from 2 to 10, the 
numbers of iterations can be further decreased. As in the 2D case, m = 10 is large enough; the number of iterations can not 
be further decreased by additionally increasing m.
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Fig. 12. Number of nonlinear iterations with different m, 64 × 64 × 64 grid.

Fig. 13. Nonlinear-residual norm curve at time step 2000, 64 × 64 × 64 grid.

Fig. 14. Nonlinear-residual norm curve at time step 3000, 64 × 64 × 64 grid.

Figs. 13 and 14 show the nonlinear residual norm curves for the PG and PG-AA(10) methods on two time steps. From 
these two figures one can see that after four or five iterations, Anderson acceleration begins to accelerate the convergence 
of the PG-AA(10) iterates, while the PG iterates converge at a significantly slower linear rate.

The simulations can be carried out to completion when the physical-constraint preserving strategy is used in Anderson 
acceleration. However, without this strategy, a simulation may halt because negative temperatures occur at some iteration. 
This did not happen very often in our experiments; for example, it occurred a total of 75 times for the 64 × 64 × 64-grid 
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Fig. 15. Condition-number curves at the first time step, 64 × 64 × 64 grid.

Fig. 16. Condition-number curves at the second time step, 64 × 64 × 64 grid.

simulation in 10000 time steps. Most occurrences were in early time steps. The reason is that the temperatures are low at 
earlier simulation times, which increases the likelihood that unconstrained steps will result in negative temperatures. The 
higher temperatures at later simulation times make this outcome less likely.

In our Anderson-acceleration implementation, the condition number is monitored to ensure stability and robustness. 
In all numerical results, the tolerance for the condition-number monitoring is 1010. Figs. 15 and 16 show the specific 
effects of condition-number monitoring. Fig. 15 shows that the condition number becomes more than 1015 if there is 
no condition-number monitoring, but fortunately the iteration still converges after 15 iterations. With condition-number 
monitoring, when a new vector is added to F4 at iteration step 4, the condition number is initially greater than 1010 (Fk
is defined by (4) in Section 2). However, after deleting two vectors from F4 on the left, the condition number is less than 
1010, and the iteration succeeds after 4 iterations. Similar observations can be made from Fig. 16.

7. Conclusion

Anderson acceleration is a method for improving the convergence of fixed-point iterations. Picard methods constitute a 
class of nonlinear fixed-point iterations that are widely used in complex numerical simulations. In this paper, an Anderson-
accelerated Picard method is used to solve a kind of radiation-diffusion equation — the three-temperature energy equations.

To improve the robustness of the Anderson-accelerated Picard method, two strategies have been used in Anderson 
acceleration. One is the modification of the iteration so that the positive-temperature physical constraint remains sat-
isfied. In our experiments, there were some cases in which this was necessary for the simulations to be carried out 
to completion. Another strategy is a procedure for monitoring and, if necessary, reducing the condition numbers of the 
least-squares problems in Anderson acceleration. Condition-number monitoring is very important in numerical computa-
tion. Our results demonstrate that, by using this strategy, both the numerical stability and the convergence rate can be 
improved.

In our experiments, Anderson acceleration improved the time to convergence of Picard iteration by at least a factor of 
two. For the maximum Anderson depth (the maximum number m of residuals saved in the Anderson-acceleration algo-
rithm), our numerical results show that the optimal value is less than 10.
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